ActivFORMS: Active formal models for
Self-Adaptation

M. Usman Iftikhar, Danny Weyns

Linnaeus University Sweden
fusman.iftikhar, danny.weyns}@Inu.se
http://homepage.lnu.se/staff/daweaa/ActivFORMS/ActivFORMS.htm

Basic model architecture-based
self-adaptation

Self-adaptive software system

> Managing system

monitor ﬂ adapt
A4

Managed system
Controllable software

monitor | 1 effect

monitor

Environment

Non-controllable software,
hardware, network, physical context

ActivFORMS

Active formal models for self-adaptation

* Formalization of complete MAPE-K loop

* Model is directly executed to adapt the
managed system

 Model directly supports online verification of
goal satisfaction/violation

* Model can be adapted at runtime to support
unanticipated changes

http://homepage.lnu.se/staff/daweaa/ActivFORMS/ActivFORMS.htm

goal
adaptation

<

Engineer/
Admin

Q

changing
goals

interacts

<—

User

Approach

Satisfied

planningAdd|RiD]?

EnableOrAdd EnablelnProgress

enableLane()

planned()

stopLocking[RiD]!

;)IanEnainng()

execute[RiD]!

EnableOrAddPlanReady

Goal
Manager

AddInProgress
addElement()
planAddition()

model
adaptation

Analysis

Planning

o

Active Model

Monitoring

system
adaptation

=3

const ...
bool fun ...

typedef struct { .

Execution

=2

Managed System

Enact /Update
Formal Model

Virtual Machine

Levels of adaptation

 Level 1: active model adapts the managed
system

e Level 2: adapt the active model (adapt MAPE)

Task

Out of scope

Focus of task

Java implementation of
managed system and
environment

Goal
Manager

model
adaptation

@Dm%

Active Model

system
adaptation

Managed System

Goal Manager

* Provides interface for runtime management of
— Runtime verification of system goals
— Runtime adaptation of the managing system

Virtual machine

Transforms a formal model (network of timed
automata) into a task graph representation

Executes that model
Can detect and notify goal violations
Can adapt the current model at runtime

Case study

8 O 0 Robot System Manager
 Tasks 1 Map
= NS G [e)
Pick |Drop |Status
A D Done
B D Done
C D R1
B D R2
A D Pending
C D Pending
A
— R2 @
D B
L

User Interface

* Download ActivFORMS with the extra required
libraries from:

http://homepage.lnu.se/staff/daweaa/ActivFORMS/ActivFORMS.htm

* To start ActivFORMS double click on the
ActivFORMS jar file

* Or run activforms.gui.ActivFORMS via the
command line:

“lava -jar ActivFORMS.jar activforms.qui.ActivFORMS”

User Interface

e OO0 ActivFORMS
| Connect | | Update Models | | Goals |
@ Robot 1 localhost:9000 z a 63
™ . . -
. Robot 2 localhost:9001 £ E -
Goals
Status Name Goal
@ Robotl position.x > -1 and position.y > -1

800 ActvEORMS

([Connect) [Update odels | [Goais |

lew Running Model =~ ~

e O O Robot 1
4
Globals »| rAnalyze
el . g
_§ ;:gtritlzstliz:s {\(/)a:;:)={x=0 v Extra == matchResources(request) DisableOrRlemoveRaquest
S Y. analyze[RiD]?
Bl | occupied false planningRem[RiD]! >O S
remLocation {0=channel} Analyzing : '
Egcslz;pdate (100=10} noNeed == matchResources(request) NoChange
QU .
N analyze[RiD]?
>| [Locky 100 \. _
2| addedLane {0={src={x=0,... - request = getReques()
< -
5223:’;&; :hannel Missing == matchResources(requestEnableOrAddRequest
SOUTH 2 Y analyze([RiD]?
la gAdd[RID -
3| posUpdate {0=channel} planningAdd(RID] 4
<| rem_loc {0=0}
2| |empty {x=-1, y=-1}
E ok channel -
& | | addLocation {0=channel} rPlanning_Add
as updateDest {x=0, y=0} Satisfied EnableOrAdd EnableInProgress
PLANNING 2
ROBOTS 1 planningAdd[RiD]? (@, enableLane()
g waiting channel > >(C
& | | sDest {x=0, y=0} planEnabling()
g’ remDestination {0=channel}
‘e | | charging 50 c planned()
c eae
© | | cPosition {0={x=0, y=0}} execute[RiD]!
= . ’ AddInProgress
A | update_position channel .
EDGE_UNAVAIL... 0 EnableOrAddPlanReady addlementu
STARTING_SOU... {0={x=4, y=1}...
- PLANNED 3
S| | STARTING_DES... {0={x=0, y=2}...
SI remLane {0=channel}
5| | LockE 102
& | | startLocking {0=channel} rPlanning_Rem
g | |RECVD 1 planningRem[RiD]?
position {x=0, y=0})) o
< D {x=0. y=2} DisableInProgress DisableOrRemove Satisfied
=

8 00

Goal Management

Goal Manager

Select Devices * Enter New Goal
Select Name position.x > -1 and position.y > -1
| & [Robotl |
| Add | | Remove
Status Name Goal Select
« Robot 1 position.x > -1 and position.y > -1 ()

Model Updates

7]

e O O Model Updation Manager
Select Devices New Model
Select Name -Analyze
& Roborl | O Aet
Extra == matchResources(request) IsableUrRemaveRieques
Y analyze[RiD]?
Y ! 1
Analyzing planningRem[RID] O

noNeed == matchResources(request) NoChange

analyze[RiD]?
@

Missing == matchResources(requestEnableOrAddRequest
VoY analyze[RiD]?
-

request = getRequest()

planningAdd[RID]! -
rPlanning_Add
Satisfied EnableOrAdd EnableInProgress
planningAdd[RiD]? ‘/C\ enableLane() \C
stopLocking[RID]! -
planEnabling()
planned()
C execute[RID]!
' AddInProgress
EnableOrAddPlanReady ()

addElement
Add

| Select Model | | Update

A

How to use ActiveFORMS?

Select models

Configure virtual machine
Create probes and effectors
Send and receive data

Start virtual machine

1. Select Models

Select the managing processes that need to be
executed by ActivFORMS.

e.g. system, monitor, analyze, plan, execute;

2. Configure Virtual Machine

Add ActivFORMS.jar into your java project as external jar with required libraries
provided in lib folder

Import activforms.engine.ActivFORMSEngine;

Instantiate Virtual Machine
ActivFORMSEngine engine = new Act1vFORMSEngine(path, port);

Set maximum number of delay transition at a time

engine.setMaximumNoOfDelayTransitions(1);

Set model time unit to real time
engine.setRealTimeUnit(1000);

Set committed location time to have good view in gui if needed

engine.setCommittedLocationTime(500);

3. Create probes and effectors

* Probes: send sighals to the managing system
from the managed system

e Effectors: receive signals from the managing
system for the managed system

Probe

e Virtual machine uses unique identifier for
each channel. E.g.

int monitor = engine.getChannel(“monitor”),

* Use channel ids to send signal from managed
system to managing system

engine.send(monitor, synchronizer, data);

Effector

* An effector must register itself to the virtual
machine for the channels from which it wants
to receive data. E.g.

int effector = engine.getChannel(“effector[0]”),

engine.register(effector, synchronizer, data);

Synchronizer

An interface that is used by the virtual machine to communicate with the
managed system. You have to import activforms.engine.Synchronizer in
your class to use it. Synchronizer has three functions:

Return true if the managed system (via probes and effectors) is ready to
receive a signal, however signal is not guaranteed.

boolean readyToReceive(int channelld);

The managed system receives the signal after response to readyToReceive.
void receive(int channelld, HashMap<String, Object> data);

When the managed system sends a signal, the virtual machine sends an
acknowledgment

void accepted(int channelld),

4. Send and Receive data

Probe sends data to virtual machine by calling
engine.send(channelld, synchronizer, data);

Data are a number of string expressions
— “request=37,

— “array[0]=2",

— “struct.member.value=3"

— “struct.array[index] = 4”

4. Send and Receive data

Effector registers for signals at the virtual machine
engine.register(channelld, synchronizer, data);

Data are a number of string expressions to receive with
each signal

— “request”,

— “array[0]”,

— “struct. member.value”
— “struct.array[index]”

— “struct”

Data will be sent with each call to receive function of
synchronizer

Example Probe

public class MyProbe implements Synchronizer {
int monitor;
public MyProbe (ActivFORMSEngine engine){
monitor = engine.getChannel(“monitor”);

}

public sendSignal(){
engine.send(monitor, this, dataToSend);

}

@override
public accepted(int channelld){
if (monitor == channelld)
system.out.printin(“Monitor signal is accepted”);

}

/// other functions

Example Effector

public class MyEffector implements Synchronizer {
int effector;
public MyEffector (ActivFORMSEngine engine){
effctor= engine.getChannel(“effector”);
effector.register(effector, this, dataNeeded);

}

@override
public readyToReceive(int channelld){
if (channelld == effector)
return true;

}

@override
public receive(int channelld, HashMap<String, Object> data){

if (monitor == effector){
system.out.printin(“Data:” + data);
}
}

/// other functions

5. Start virtual machine

e Call “start” method to start the virtual
machine, i.e.

engine.start();

e |f the virtual machine blocks it will throw a
runtime exception

Features not supported

e Scalar types and meta variables

* Priorities of channels and processes
e Selection annotation of edges

* |teration loop

* Forall, exit and sum functions

 |Invariants are not shown in the GUI

Summary

Formal active model guarantees verified
properties of the adaption process

Active model directly executes the adaptation:
no coding, no model transformations

Adaptation of adaptation functions:
lightweight process to add new goals

Online detection of goal violations

