
Engineering Environment-mediated
Coordination via Nature-inspired Laws

Franco Zambonellii

Dipartimento di Scienze e Metodi dell’Ingegneria,
University of Modena and Reggio Emilia

e-mail: franco.zambonelli@unimore.it

Abstract SAPERE is a general multiagent framework to support the
development of self-organizing pervasive computing services. One of the
key aspects of the SAPERE approach is to have all interactions between
agents take place in an indirect way, via a shared spatial environment. In
such environment, a set of nature-inspired coordination laws have been
defined to rule the coordination activities of the application agents and
promote the provisioning of adaptive and self-organizing services.

1 Introduction

Progresses in mobile and ubiquitous computing are making possible to conceive a
variety of innovative general-purpose pervasive computing services for interacting
with the physical and social worlds around us [2]. However, the effective design
and development of such services requires the capability of promoting flexible
and adaptive interactions among a multiple of distributed devices and software
components.

To support the vision, a great deal of research activity in pervasive com-
puting has been devoted to meet the requirements of pervasive service systems,
i.e.: supporting self-configuration and context-aware composition; enforcing self-
adaptability and self-organization; and ensuring that service frameworks can be
highly-flexible and long-lasting [8]. The SAPERE (“Self-aware Pervasive Service
Ecosystems”) approach [7] tackles the problem at the foundation, conceiving
a radically new way of modeling integrated pervasive services and their execu-
tion environments, such that the apparently diverse issues of context-awareness,
dependability, openness, flexibility, can all be uniformly addressed.

SAPERE models a pervasive service framework as a distributed multia-
gent system, in which the coordination between the application agents rely on
spatially-situated and environment-mediated interactions [5]. In particular, in
the SAPERE environment, a set of simple yet very expressive nature-inspired
interaction laws dictates how agents will interact with each other, e.g., how they
will compose and orchestrate their activities and how they will exchange infor-
mation. Such an approach supports the provisioning of adaptive self-organizing
services, suitable to meet the requirements of pervasive service systems.

In the remainder of this paper, we introduce the SAPERE environment-
centered architecture and the key characteristics of its nature-inspired laws.



2 The SAPERE Approach and its Reference Architecture

SAPERE takes its primary inspiration from nature, and starts from the con-
sideration that the dynamics and decentralization of future pervasive networks
will make it suitable to model the overall world of pervasive services, data, and
devices as a sort of distributed computational ecosystem.

As from Figure 1, SAPERE conceptually architects such pervasive service
ecosystem as a non-layered spatial environment, laid above the actual perva-
sive network infrastructure. The environment embeds the basic interaction laws
(which we also call eco-laws) that rule the activities of the system. The environ-
ment mediates all interactions and represents the ground on which components
of different species indirectly interact and combine with each other. Such inter-
actions take place in respect of the eco-laws and typically based on the spatial
relationships between components, so as to serve their own individual needs as
well as the sustainability of the overall ecology. Users can access the ecology in a
decentralized way to use and consume data and services, and they can also act
as “prosumers” by injecting new data or service components, possibly also for
the sake of controlling the ecology behavior.

For the components living in the ecosystem, all of which can be abstracted
as autonomous software agents (and whether being sensors, actuators, services,
users, data, or resources in general), SAPERE adopts a common modeling and
a common treatment. Each of them has an associated semantic representation
which we call “LSA” (Live Semantic Annotations), to be injected in the spatial
environment as it it were a sort of shared spatial memory (or tuple space [3]).
This is a basic ingredient for enabling dynamic environment-mediated interac-
tions between components. To account for the high dynamics of the scenario and
for its need of continuous adaptation, SAPERE defines LSAs as living, active
entities, tightly associated to the agent they describe, and capable of reflect-
ing its current situation and context. This supports semantic and context-aware
interactions both for service aggregation/composition and for data/knowledge
management. In the case of pure data items, the entity and its LSA coincide.

The eco-laws define the basic interaction policies among the LSAs of the
various agents of the ecology. In particular the idea is to enforce on a spatial
basis, and possibly relying on diffusive mechanisms, dynamic networking and
composition of data and services by composing their LSAs and exchanging data
via them. Data and services (as represented by their associated LSAs) will be sort
of chemical reagents, and interactions and compositions will occur via chemical
reactions, relying on semantic pattern-matching between LSAs.

As detailed later on, the set of eco-laws includes: Bond, which is the basic
mechanism for local interactions between components, and acts as a sort of
virtual chemical bond between two LSAs (i.e., their associated agents); Spread,
which diffuses LSAs on a spatial basis, and is necessary to support propagation
of information and interactions among remote agents; Aggregate, which enforces
a sort of catalysis among LSAs, to support distributed data aggregation; Decay,
which mimics chemical evaporation and is necessary to garbage collect data.



Figure 1. The SAPERE Architecture based on environment-mediated interactions

Adaptivity in SAPERE is not in the capability of individual components, but
in the overall self-organizing dynamics of the ecosystem. In particular, adaptiv-
ity will be ensured by the fact that any change in the system (as well as any
change in its components or in the context of the components, as reflected by
dynamic changes in their LSAs) will reflect in the firing of new eco-laws, thus
possibly leading to the establishment of new bonds or aggregations, and/or in
the breaking of some existing bonds between components.

3 The SAPERE Middleware and its Programming
Interface

In this section we shortly overview how SAPERE applications can be pro-
grammed, by introducing the API of the SAPERE middleware and exemplifying
its usage.

3.1 The Middleware

The execution of SAPERE applications is supported by a middleware infrastruc-
ture [6] which reifies the SAPERE architecture in terms of a lightweight software
support, enabling a SAPERE node to be installed in tablets and smartphones.
Operationally, all SAPERE nodes (whether fixed at the infrastructure level or
mobile) are considered at the same level since the middleware code they run
could support the same services and provides the same set of functions.

Each SAPERE node hosts a local tuple space [3], that acts as a local repos-
itory of LSAs for local agents, and a local eco-laws engine. The LSA-space of
each node is connected with a limited set of neighbor nodes based on spatial



proximity relations. Such relations consequently determine the spatial shape of
the SAPERE substrate. From the viewpoint of individual agents (that will con-
stitute the basic execution unit) the middleware provides an API to access the
local LSA space, to advertise themselves (via the injection of an LSA), and to
support the agents’ need of continuously updating their LSAs. In addition, such
API enables agents to detect local events (as the modifications of some LSAs)
or the enactment of some eco-laws on available LSAs.

Eco-laws are realized as a set of rules embedded in SAPERE nodes. For each
node, the same set of eco-laws applies to rule the dynamics between local LSAs
(in the form of bonding, aggregation, and decay) and those between non-locally-
situated LSAs (via the spreading eco-law that can propagate LSAs from a node
to another to support distributed interactions).

From the viewpoint of the underlying network infrastructure, the middle-
ware transparently absorbs dynamic changes at the arrival/dismissing of the
supporting devices, without affecting the perception of the spatial environment
by individuals.

3.2 The SAPERE API

In the SAPERE model, each agent executing on a node takes care of initializing
at least one LSA (representing the agent itself), of injecting it on the local LSA
space, and of keeping the values of such LSA (and of any additional LSA it
decides to inject) updated to reflect its current situation. Each agent can modify
only its own LSAs, and eventually read the LSAs to which it has been linked by
a proper eco-law. Moreover LSAs can be manipulated by eco-laws, as explained
in the following sections.

At the middleware level, a simple API is provided to let agents inject LSA
– injectLSA(LSA myLSA) – and to let agents atomically update some fields of
an LSA to keep it “alive” – updateLSA(field = new-value). In addition, it is
possible for an agent to sense and handle whatever events occur on the LSAs
of an agent, e.g., some match that triggers some eco-laws. E.g., it is possible to
handle the event represented by the LSA being bound with another LSA via the
onBond(LSA mylsa) method.

The eco-laws assure self-adaptive and self-organizing activities in the ecosys-
tems. Eco-laws operate on a pattern-matching schema: they are triggered by the
presence of LSAs matching with each other, and manipulate such LSAs (and the
fields within) according to a sort of artificial chemistry [8].

3.3 LSAs

LSAs are realized as descriptive tuples made by a number of fields in the form
of “name-value” properties. By building over tuple-based models and extending
upon them [3], the values in a LSA can be: actual, yet possibly dynamic and
changing over time (which makes LSAs live); formal not tied to any actual
value unless bound to one and representing a dangling connection (typically
represented with a “?”).



Pattern matching between LSAs – which is at the basis of the triggering of
eco-laws – happens when all the properties of a description match, i.e, when for
each property whose names correspond (i.e., are semantically equivalent) then
the associated values match. As in classical tuple-based approaches, a formal
value matches with any corresponding actual value.

For instance, the following LSAa:(sensor-type = temperature; accuracy
= 0.1; temp = 45), that can express the LSA of a temperature sensor, can
match the following LSAb:(sensor-type = temperature; temp = ?), which
can express a request for acquiring the current temperature value. LSAa and
LSAb match with each other. The properties present in LSAa (e.g., accuracy)
are not taken into account by the matching function because it considers only
inclusive match.

4 The Eco-laws Set

Let us now detail the SAPERE eco-laws and discuss their role in the SAPERE
ecosystem.

4.1 Bond

Bonding is the primary form of interaction among co-located agents in SAPERE
(i.e., within the same LSA space). In particular, bonding can be used to locally
discover and access information, as well as to get in touch and access local
services. All of which with a single and unique adaptive mechanism. Basically,
the bond eco-law realizes a sort of a virtual link between LSAs, whenever two
LSAs (or some SubDescriptions within) match.

The bond eco-law is triggered by the presence of formal values in at least one
of the LSAs involved. Upon a successful pattern matching between the formal
values of an LSA and actual values of another LSA, the eco-law creates the
bond between the two. The link established by bonding in the presence of the
“?” formal fields is bi-directional and symmetric.

Once a bond is established, the agents holding the LSAs are notified of the
new bond and can trigger actions accordingly. After bond creation, the two
agents holding the LSAs can read each other LSAs. This implies that once a
formal value of an LSA matches with an actual value in an LSA it is bound
to, the corresponding agent can access the actual values associated with the
formal ones. For instance, with reference to the LSAa and LSAb of the previous
subsection, the agent having injected LSAb, upon bonding with LSAa (which
the agent can detect with the onBond method) it can access the temperature
measure by the sensor represented by LSAb.

As bonding is automatically triggered upon match, debonding takes place
automatically whenever some changes in the actual “live” values of some LSAs
make the matching conditions no longer holding.

We emphasize that bonding can be used to enable two agents to sponta-
neously get in touch with each other and exchange information, all of which



with a single operation and with both having injected an LSA in the space.
That is, unlike in traditional discovery of data and services, without distinguish-
ing between the roles of the involved agents and subsuming the traditionally
separated phases of discovery and invocation.

4.2 Aggregate

The ability of aggregating information to produce high-level digests of some
contextual or situational facts is a fundamental requirement for adaptive and
dynamic systems. In fact, in open and dynamic environments, one cannot know
a priori which actual information will be available (some information source
may disappear, other may appear, etc.) and the availability of ways to extract a
summary of all available information (without having to explicitly discover and
access the individual information sources) is very important.

The aggregate eco-law is intended to aggregate LSAs together so as to com-
pute summaries of the current system’s context. An agent can inject an LSA
with the aggregate and type properties. The aggregate property identifies a func-
tion to base the aggregation upon. The type property identifies which LSAs to
aggregate. In particular it identifies a numerical property of LSAs to be aggre-
gated. In the current implementation, the aggregate eco-law can perform most
common order and duplicate insensitive aggregation functions [1].

The aggregate eco-law supports separation of concern and allows to re-use
previous aggregations. On the one hand, an agent can request an aggregation
process without dealing with the actual code to perform the aggregation. On the
other hand, the LSA resulting from an aggregation can be read (via a proper
bond) by any other agent that needs to get the pre-computed result.

4.3 Decay

The decay eco-law enables the vanishing of components from the SAPERE en-
vironment. It applies to all LSAs that specify a decay property to update the
remaining time to live according to the specific decay function, or actually re-
moving LSAs that, based on their decay property, are expired.

The Decay eco-law therefore is a kind of garbage collector capable of removing
LSAs that are no longer needed in the ecosystem or no longer maintained by an
agent, for instance because they are the result of a propagation.

4.4 Spread

The above eco-laws act on a local basis, i.e., on a single LSA space. Since the
SAPERE model is based on a network of interaction spaces, it is fundamental to
enable non-local interactions, by providing a mechanism to send information to
remote LSA spaces and making it possible to distribute information and results
across a network of LSA spaces.

To this end, in SAPERE we defined the spread eco-law to diffuse LSAs to
remote spaces. One of the primary usages of the spread eco-law is to enable



searches for components that are not available locally, and vice versa to enable
the remote advertisement of services. For an LSA to be subjected to the spread
eco-law, it has to include a diffusion field, whose value (along with additional
parameters) defines the specific type of propagation.

Two different types of propagation are implemented in the SAPERE frame-
work: (i) a direct propagation used to spread an LSA to a specified neighbor
node, so as to make it possible to realize gossiping schemes and multicasts; (ii)
a general diffusion capable of propagating an LSA to all neighboring SAPERE
nodes, possibly recursively applying such propagation up to a maximum distance
form the source node.

General diffusion of an LSA via the spread eco-law to distances greater than
one is a sort of broadcast that induces a large number of replicas of the same
LSA to reach the same nodes multiple times from different paths. To prevent
this, general diffusion is typically coupled with the aggregate eco-law, so as to
merge together such multiple replicas.

5 From Eco-laws to Distributed Self-organization

The above presented eco-laws form a necessary and complete set to support
self-organizing environment-mediated interactions.

The eco-laws are necessary to support decentralized adaptive behaviors for
pervasive service systems. Bonding is necessary to support adaptive local service
interactions, subsuming the phases of discovery and invocation of traditional
service systems. Spreading is necessary to diffuse information in a distributed
environment and to enable distributed interactions. Aggregation and decay are
necessary to support decentralized adaptive access to information without being
forced to dynamically deploy code on the nodes of the system, which may not
be possible in decentralized environments.

Further, and possibly of more software engineering relevance, the eco-law
set is sufficient to express a wide variety of interaction schemes (or “patterns”),
there included self-organizing ones. Bonding and spreading can be used to realize
local and distributed client-server scheme of interactions as well as asynchronous
models of interactions and information propagation. Coupling spreading with
aggregation and decay, however, makes it possible to realize also those distributed
data structures necessary to support all patterns of nature-inspired adaptive and
self-organizing behaviors, i.e., virtual physical fields, digital pheromones, and
virtual chemical gradients [1].

In particular, aggregation applied to the multiple copies of diffused LSAs
can reduce the number of redundant LSAs so as to form a distributed gradient
structures, also known as computational force fields. As detailed in [4], many
different classes of self-organized motion coordination schemes, self-assembly,
and distributed navigation can be expressed in terms of gradients.

In addition, spreading and aggregation can be used together to produce
distributed self-organized aggregations, i.e., dynamically computing some dis-
tributed property of the system and have the results of such computation avail-



able at each and every node of the system. Distributed aggregation is a basic
mechanism via which to realize forms of distributed consensus and distributed
task allocation and behavior differentiation.

By bringing also the decay eco-law into play, and combining it with spread-
ing and aggregation, one can realize pheromone-based data structures, which
makes possible to realize a variety of bio-inspired schemes for distributed self-
organization [1]. In particular, while general diffusion and progressive decay can
be used to realize diffusible and evaporating pheromone-like data structures,
direct propagation can be used to navigate by following pheromone gradients.

6 Conclusions

The innovative nature-inspired approach of SAPERE is effective to enforce,
via environment-mediated interactions, a variety of self-organizing schemes for
pervasive computing services. As the activities within the SAPERE European
Project have finished, we will now challenge the SAPERE findings and tools
against innovative services in the area of urban computing and smart cities [2].

Acknowledgments: Work supported by the EU project SAPERE, No. 256873.

References

1. Ozalp Babaoglu and al. Design patterns from biology for distributed computing.
ACM Trans. Auton. Adapt. Syst., 1(1):26–66, 2006.

2. Nicola Bicocchi, Alket Cecaj, Damiano Fontana, Marco Mamei, Andrea Sassi, and
Franco Zambonelli. Collective awareness for human-ict collaboration in smart cities.
In 21st IEEE International WETICE Symposium, pages 3–8, 2013.

3. David Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, January 1985.

4. Marco Mamei and Franco Zambonelli. Programming pervasive and mobile com-
puting applications: the tota approach. ACM Trans. Software Engineering and
Methodology, 18(4), 2009.

5. Danny Weyns, Alexander Helleboogh, Tom Holvoet, and Michael Schumacher. The
agent environment in multi-agent systems: A middleware perspective. Multiagent
and Grid Systems, 5(1):93–108, 2009.

6. Franco Zambonelli, Gabriella Castelli, Marco Mamei, and Alberto Rosi. Integrating
pervasive middleware with social networks in sapere. In International Conference
on Selected Topics in Mobile and Wireless Networking, pages 145–150, Shanghai,
PRC, 2011.

7. Franco Zambonelli et al. Self-aware pervasive service ecosystems. Procedia CS,
7:197–199, 2011.

8. Franco Zambonelli and Mirko Viroli. A survey on nature-inspired metaphors for
pervasive service ecosystems. Journal of Pervasive Computing and Communications,
7:186–204, 2011.


	Engineering Environment-mediated Coordination via Nature-inspired Laws
	Introduction
	The SAPERE Approach and its Reference Architecture
	The SAPERE Middleware and its Programming Interface
	The Middleware
	The SAPERE API
	LSAs

	The Eco-laws Set
	Bond
	Aggregate
	Decay
	Spread

	From Eco-laws to Distributed Self-organization
	Conclusions


