
Where Are All the Semantic Web Agents:

Establishing Links Between Agent and Linked

Data Web through Environment Abstraction

Oguz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey
oguz.dikenelli@ege.edu.tr

Abstract. Semantic Web Agents have been considered as main software
artifacts to consume the semantic data since the Semantic Web concept
was raised �rst time in the well known �The Semantic Web� article in
2001. More then a decade passed and there is no collaboration between
multi-agent systems and semantic web (or its current realization: the
Linked Data Web) communities that can be considered important. In
this paper, it is argued that initial vision was right and two comminities
need each other to scale up their current practice. Thus, a conceptual
framework is proposed to establish necessary links between agent and
linked data web infrastructures. Environment abstraction has a special
role in this framework and this role is especially discussed throughout
the paper.

1 Introduction

In the beginning of the Semantic Web movement, agents have been considered
as a �rst-class abstractions. The �rst article that put the Semantic Web concept
forward is the well known �The Semantic Web� article written by Berners-Lee,
Hendler, and Lassila [4]. The �rst two paragrafs of the paper describes a Semantic
Web scenario where Lucy tries to schedule a series of physical therapy sessions
for her mom together with her brother Pete. The second paragraph of the paper
is rewritten below to emphasize the importance of Semantic Web Agent concept
in the initial vision.

�At the doctor's o�ce, Lucy instructed her Semantic Web agent through her
handheld Web browser. The agent promptly retrieved information about Mom's
prescribed treatment from the doctor's agent, looked up several lists of providers,
and checked for the ones in-plan for Mom's insurance within a 20-mile radius of
her home and with a rating of excellent or very good on trusted rating services.
It then began trying to �nd a match between available appointment times (sup-
plied by the agents of individual providers through their Web sites) and Pete's
and Lucy's busy schedules. (The emphasized keywords indicate terms whose se-
mantics, or meaning, were de�ned for the agent through the Semantic Web.)�
As it is seen, (Semantic Web) agents are playing the leading role in the scenario.



Six years later, James Hendler wrote a letter as IEEE Intellegent Systems editor
in May-June 2007 issue and asked an important question �Where are all the
Intelligent Agents�. He commented in the letter that key obstacles to the wider
deployment of agents were identi�ed early on as the needs for interoperabil-
ity and intercommunication. He also argued that well established web services
standards (and vendor(s) support) provide necessary interoperability infrastruc-
ture and Semantic Web standards provide knowledge sharing infrastructure for
intelligent agent's intercommunications.

In 2007 when Hendler wrote the letter, RDF, RDF Schema and OWL had
become standards. There was huge research e�ort on many areas such as new
standard development (such as SPARQL), inference optimization, new ontology
constructions for di�rent domains, ontology mapping and alligment languages
and so on. Also, there was huge tool development e�ort which resulted some
great open source tools to create and manipulate ontologies such as Protoge,
Pellet, Jena and many others.

Despite of huge research e�orts in mid 2000's, it was very doubtful to argue
that there was a Semantic Web in that time as envisioned. Because, The Semantic
Web was de�ned as a universal knowledge graph from the beginning where every
concept named by a URI and these concepts are progressively linked into a
universal web [4]. In 2007, there was lots of necessary standards, tools, and
independent information systems that use these standards and tools but not a
universal linked knowledge web. So the question would be �Where is the Semantic
Web We Envisioned� for that time.

But, today it is certain that we are living in the era of transformation of web
into a knowledge web which is also called Linked Data Web. There were 295
linked data sets in the Linked Data Cloud in August 2011 (the time when last
snapshot was taken) creating more than 31 billion triples and 500 million out
links [5]. Linked data web is contantly and exponentially growing which incudes
datasets in many domains such as goverment, media, life sciences, geocraphic
and etc.

So it is time for agent researchers and practitioners to ask themself how they
can link agents to this new web. In this paper, a conceptual framewok is proposed
to identify the linkage between the semantic agents and the linked data web.

2 Architectural Patterns of Linked Data Web

In July of 2006, Tim Berners-Lee published a personal note titled �Linked Data
- Design Issues� [3]. Note was beginning with the following sentences; �The Se-
mantic Web isn't just about putting data on the web. It is about making links,
so that a person or machine can explore the web of data.� I believe that this
note is crucial for the Semantic Web evolution. Because, it changed the focus of
the whole community to real problem; creating a web of data by making links.
At that time, community was considering the ontologies like silver bullet and
putting them into almost any information system problem known. There was
many projects which use ontologies and related tools and many proposed do-



main ontologies, but creating a web of data was not a common vision within the
community. Tim Berners-Lee reminded the community the original vision and
renamed this vision as Linked Data Web to get rid of the confusion within the
community.

After the publishment of �Linked Data - Design Issues�, community have
taken the message and began to create linked data web. Actually, there were
only 4 principles in �Linked Data - Design Issues� note:

1. Use URIs as names for things.
2. Use HTTP URIs, so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
4. Include links to other URIs, so that they can discover more things.

By applying these principles, the community has created the Linked Data Cloud
which included more than 31 billion triples and 500 million out links in Au-
gust 2011 (last measurement, but constantly expanding). Today, we have a well
established infrasturacture to publish and consume the linked data from the
cloud.

To publish data, there are various ready-to-use data wrappers and converters
for all widely used structural and semi-structural data models. Since most of the
structural data on the Web are stored by relational databases, the most mature
wrappers are for transforming relational databases structures to RDF model.
W3C published a recommendation in September 2012 for a standard language
called R2RML [8] to express customized mappings from relational databases to
RDF datasets. R2RML has been widely accepted by tool developers, even well
known open source D2R [7] uses R2RML as the mapping language.

There are, of course, many tools to convert application speci�c formats such
as CVS, Excel, XML ext. into RDF. These tools are known as RDFizing tools
and a list of them can be found in [6]. The output of these tools can be static
RDF �les accessed through a web server or converted RDF data can be loaded
to an RDF Store.

Once the internal data sources are converted to RDF and/or necessary map-
pings are de�ned through wrappers to create RDF view, these created RDF data
can be accessed via Web by two ways: querying with SPARQL protocol through
SPARQL endpoints (RDBtoRDF wrappers and RDF stores provides endpoint
support) or accessing RDF �les (by dereferencing URL adresss) through web
server.

Now consider that there hundreds (thousands in very near future) data
sources publishing their data, there are many links (billions of them) between
published sources and there is very dynamic environment where new sources
enter and new links are created constantly and in an uncontrolled manner.
Although the tools and approaches for publishing RDF data are stable and
deployed succesfully in hundres of data sources in LOD cloud, consuming the
desired data from such a highly dynamic environment is very challenging task.
So, linked data community's main focus is to �nd e�ective ways to consume
data from the Linked Data Cloud. This focus is also very critical for semantic



agent researchers since agents have been considered as the main consumer as it
is discussed in the introduction.

There are three well undestood architectural patterns for consuming linked
data depending on the application requirements: the On-The-Fly Dereferencing
Pattern, the Crawling Pattern and the Query Federation Pattern. These pat-
terns have been broadly described in [13], and they are brie�y introduced in the
following paragraphs to identify the alternative ways of consuming the Linked
Data Cloud.

On-The-Fly Dereferencing Pattern is also known as follow your nose ap-
proach. This pattern conceptualizes the web as a graph of documents which
contains dereferenceable URIs. So, an application execute a query by access-
ing an RDF �le by dereferencing the URL adress then follows the URI links by
parsing the received �le on-the-�y [12]. The problem with this pattern is the per-
formance of the complex operations especially when it is needed to dereference
thousands of URIs.

The Crawling Pattern follows the approach of web search engines like Google,
Yahoo. In this approach, collection of data and usage of the collected (cached)
data are two seperate taks. So the data collection task constantly crawl the web
by dereferencing URLs, followign links and integrating te discovered data on
the local site. The main advantage of the crawling pattern is its performance.
Applications can use high volume of integrated data in much higher performance
than other patterns. On the other hand, the main disadvantages of this pattern is
that original data may change while you use it from replicated local cache (stale
data problem). Also, integration of the discovered data is a very challenging task
since di�erent publishers may use di�erent URLs to identify the same concept.
In this case, one has to resolve this identity problem and also to consider the
quality of the data (using the provenence knowledge) while integrating the all
collected data.

Query Federation Pattern is based on dividing a (complex) query into sub-
queries and distributing sub-queries to relevant datasets which are selected using
metadata about datasets. It raises on the �ndings of the database literature on
distributed query processing. Query federation is composed of two main steps
before performing a query. Firstly, query is divided into sub-queries and datasets
relevant with sub-queries are selected using some metadata which re�ects dataset
content. Then, the query execution plan is constructed using statistics about
datasets in the query optimization step. For the purpose of executing sub-queries
on distributed data sources, query federation requires accessing datasets via
SPARQL endpoints. SPARQL endpoints have become the standard approach
to publish high volume of data since all relational database wrappers and RDF
stores support data publishing through endpoints. Also, puslishing metadata
about the data sources was added to the �Linked Data - Design Issues� note as a
new principle in 2009 and a RDF scheme called VoID (Vocabulary of Interlinked
Datasets) was proposed [2] to express metadata about the data sources and
has become a defacto standart. So, there is a well established infrastructure to
execute Query Federation Pattern and it is the one of the most researched topic



within the linked data community. The main problem is again performance of the
complex queries especially when query needs to join data from large number of
data sources. But, recent federated query engines like SPLENDID [10], WODQA
[1] show reasonable performances even with complex queries.

When these three pattern are examined, it can be easily noticed that Query
Federation an On-the-�y Dereferencing patterns query data from its original data
sources, on the other hand Crawler pattern brings and integrates all crawled data
in the application's local site. At this point, an important question that need
to be answer is which pattern(s) are more suitable for semantic agent and the
Linked Data Cloud interaction. Let's remember the Semantic Web scenario again
to answer this question.

Lucy's semantic agent looks up several lists of providers, and checks for the
ones in-plan for Mom's insurance within a 20-mile radius of her home and with a
rating of excellent or very good on trusted rating services. In the world of linked
data web, it can be easily assumed that there are two datasets publishing med-
ical providers knowledge (types of services, location ext.) and rating knowledge
as SPARQL endpoints. There will be links in these datasets and also links from
medical provider data to the insurence dataset published somewhere else. So,
the answer of the question is clear, semantic agents �rst able to discover right
dataset(s) and query linked data in their original place by using Query Federa-
tion or On-the-�y Dereferencing patterns. Of course, semantic agents can take
role in crawling process like handling identitiy resolution, quality handling and
management of high volume of crawled data, but agent researchers �rst need to
�nd e�ective ways to incorporate linked data querying patterns with the agent
systems.

3 A Conceptual Architecture for Linking Agents with

the Linked Data Web

As it is discussed in the preceding section, semantic agents should be able to
discover the relevant dataset(s) according to the agent's running task require-
ment(s) and then able to query these dataset as the part of task execution. But
querying is not enough in situations where agent need to react to the changing
conditions in the Linked Data Cloud. For example, ratings of medical provider
may change and agent need to monitor these changes to inform Lucy about the
fall of her medical service rating numbers. Besides of rating numbers, many pa-
rameters of surrounding the Linked Data Cloud such as new medical provider en-
terence, insurence conditions or laws, conditions of provider services may change
over time and semantic agent may need to monitor all of these parameter de-
pending on its requirements.

The Linked Data Cloud changes constantly in two dimensions. In �rst di-
mension, cloud itsself expands by enterence of new data sources and creations
of new links between the sources. Keeping track of these changes is a must for a
semantic agent to be able to discover right knowledge sources to query depend-
ing of its task's requirements. In the second dimension, actual data may change



in the data sources and these changes may be critical for agent's internal tasks
(such as Lucy's medical provider information) and need to be monitored by the
agent. Consequently, semantic agent has to monitor and interpret the changes
in the Linked Data Cloud structure and also changes in speci�c data sources
which are dependent to its task(s) requirements. It is obvious that handling all
of these linked data dynamism within the agents makes agent implementation
very complex and it is agains the well known software engineering best practice
known as seperation of concerns. Agent researchers encountered this problem
before and de�ned the environment abstraction [17] to cope with it.

Environment is de�ned as the �rst class entity used during the design of
multi-agent systems, and it includes all the resources and services that an agent
needs. Thus, environment shields the agent developer from the complexity of
the outside world. In the similar manner, it is necessery to shield semantic agent
developer from the complexity of handling the Linked Data Cloud dynamism.
So, it is time to think how linked data dynamism can be managed within the
environment abstraction and what kind of services (interfaces) of environment
should be provided to semantic agents to simplfy the usage of the Linked Data
Cloud.

To de�ne internal structure of the proposed architecture, the well known
A&A (Agents and Artifact) [15] meta-model will be used. Thus, to form a basis
for our discussion on the proposed conceptual architecture, an overview of the
A&A meta-model is given �rst. The artifact concept lies at the core of the A&A
metamodel. Artifacts are the building blocks of the environment and provide
speci�c functionalities for agents. An artifact has a usage interface which de�nes
the operations that an agent can excute on that artifact. There are two types
of actions provided for an agent that can be performed on an artifact. The �rst
one is the use action through which the agent can execute the operations in
the usage interface of the artifact. The other one is the focus action through
which an agent can start to observe speci�c properties of the artifact. These two
actions can be used by semantic agents to query the Linked Data Cloud and
to monitor the chances in speci�c data source(s). Additionally, events generated
as a result of the operations triggered by other agents can also be observed
by a speci�c agent. Finally, the artifacts can interact with each other through
their link interfaces. A workspace is de�ned as a logical container of agents and
artifacts. It organizes agents and artifacts from a topological perspective and
de�nes the scope for interacting with the environment. In terms of semantic
agents perspective, workspaces de�nes the scope of a speci�c domain that a
group of agents aim to interact. For example in Lucy's scenario, domain represent
the medical domain and workspace knows and manages the linked data view of
(national) medical domain. Of course, not just Lucy's agent but many agents
may interact with this workspace and other domains are represented by di�erent
workspaces.

The proposed conceptual architecture has two layers as shown in Figure 1:
Agent-Linked Data Integration Services (A&LDIS) layer and Linked Data Access
Services (LDAS) layer. A&LDIS layer appears in every workspace. On the other



hand, LDAS layer can be used by all workspaces in the environment or can be
replicated in di�erent workspaces if data volume or performance considerations
requires.The scope of the workspace is de�ned by the VoID documents stored in
the VoID store about the dataset(s) in a speci�c domain. If there is one VoID
store in the environment, then each workspace should be able to access the VoID
documents in its domain of interest.

Fig. 1. Environment Architecture for Linking Semantic Agents with Linked Data Cloud

Semantics agents interact with the environment through two specially de-
signed artifacts as seen in the �gure. The �srt problem is to de�ne the basic
entity(ies) that is passed by agents to artifacts, As it is discussed before, envi-
ronment provides two basic services to agents: it executes queries and monitor
changes of data that is requested by agent. For query service, it is obvious that



basic entity is SPARQL query. On the other hand, Monitoring service seems
more complex since changes in one data source a�ect other sources if there are
link(s) between them. But, SPARQL query can also be considered as the best
entity for monitoring the Linked Data Cloud. Because, a SPARQL query de�nes
a sub-graph (or a node as the minimal graph) of the Linked Data Cloud and
any data (even the linked one) within the cloud can be de�ned with a SPARQL
query. Changes in this sub-graph may occur because of any changes in linked
datasets that constitute this sub-graph and observing changes in a SPARQL
query lets semantic agents to be able to observe any kind of subgraph within the
cloud. Therefore, semantic agents uses SPARQL queries for both querying and
monitoring the Linked Data Cloud. It is important to emphasize that semantic
agent only knows the ontology(ies) which are also in the environment's scope
and construct SPARQL queries either for querying or monitoring based on its
local knowledge. Note that accessing the URL address is not de�ned as one of
the environment services, because it is a simple task for semantic agent to retrive
and interpret an RDF �le by itself.

Querying service is hadled by Query Engine Artifact. This artifact directly
uses Linked Data Query Engine module located in LDAS layer to execute the
query. Linked Data Query Engine module incorparates the Query Federation
Pattern to the proposed archiecture. As discussed in section 2, Linked Data
Query Engines execute SPARQL queries in two steps. In the �srs step, query
is divided to sub-queries and datasets relavant with each subquery are selected
using the metadata about the datasets. In the proposed architecture, VoID vo-
cabulary is selected to manage dataset's metadata since it is widly accepted as
standart vocabulary to represent dataset metedata and there are well known
Linked Data Query Engines such as SPLENDID [10], WODQA [1] which use
VoID as the metadata vocubulary. In the second step, a query plan is con-
stracted and sub-queries executed on SPARQL endpoints of selected dataset(s)
and intermediate results are joint following the plan. So , semantic agent just
deploys the query to the Query Engine Artifact, it then distributes it to relevent
datasets according to its view of the cloud (based on its VoID store).

Proposed architecture includes only a Linked Data Query Engine for query-
ing which means the exclusion of the On-The-Fly Dereferencing pattern from
the architecture. This desicion depends on the fact that SPARQL endpoints
become a defacto standart to publish high volume of data to the cloud. But,
On-The-Fly Dereferencing algotihms found in the literature [11] can be incor-
parated to the architecture in a way that when there is no VoID description is
found to execute the query, Query Engine Artifact can create an artifact that
is responsible from On-The-Fly Dereferencing execution. This extansion makes
the architecture more complex but more adaptable in terms of query execution.

Ontology Management System Artifact (OMSA) is responsible of monitoring
service. To do so, it creates a seperate Query Artifact for each SPARQL mon-
itoring request coming from registered semantic agent(s). Query Artifact �rst
executes query with Linked Data Query Engine and stores the result in the RDF
store of the environment. Then it divides the query to sub-queries and selects



the relevant dataset(s) using Linked Data Query Engine capabilities and create
a seperate Sub-Query artifact for each identi�ed sub-queries. Each Sub-Query
artifact begins to monitor its query by periodically querying selected dataset(s)
and compares the result with the previous one. Once a change is detected by
a Sub-Query artifact, it is noti�ed to the related Query Artifact. In this case,
Query Artifact reexecute the SPARQL query using Linked Data Query Engine
and compare the result with the stored result. If a change is detected, the result
is noti�ed to each registered agent(s) and store in the RDF store.

Monitoring the data changes of SPARQL query is not enough. Each SPARQL
query depends on one or more ontologies and these ontologies may change dy-
namically (name of a concept or propert may change and/or new concept may
added or removed ext.) in the Linked Data Cloud without the control of the
semantic agent(s). Therefore, changes of ontologies, that monitored queries are
build upon, should be monitored too. Query Artifact creates Ontology Arti-
fact to monitor changes of ontologies. Ontology Artifact creates separate On-
tology Artifact(s) for each ontology used in the query. Then, each Ontology
Artifact monitors its assigned ontolog by preodically retrieving original ontology
and identi�es the changes (if any) using a ontology comparison algorithm like
OWLDi� [14]. Ontological changes are noti�ed to registered agents with Ontol-
ogy Change Noti�cation Artifact using a special ontology which is designed to
represent changes within an ontology like the one proposed by Palma et. al. [16].

As a result, Lucy's semantic agent can query medical providers informa-
tion and ratings from the Linked Data Cloud without any knowledge about the
dataset(s) and how they are distributed and linked in the cloud. Moreover, agent
may monitor any related information like changes in provider information, rating
information, insurance policy or any changes in ontologies it depends on.

4 Conclusion

In this paper, an environment architecture is proposed to facilitate the interac-
tion between semantic agents and the Linked Data Cloud. Proposed architecture
is based on the experience of the implementation attempt of such an environ-
ment [9]. These e�orts can be considered as initials steps to attract attention of
both agent and linked data researchers to this challenging area of linking agents
to the Linked Data Web.

References

1. Ziya Akar, Tayfun Gökmen Halaç, Erdem Eser Ekinci, and Oguz Dikenelli. Query-
ing the web of interlinked datasets using void descriptions. In Christian Bizer, Tom
Heath, Tim Berners-Lee, and Michael Hausenblas, editors, 5th Linked Data on the
Web Workshop (LDOW 2012), 21th World Wide Web Conference (WWW 2012),
Lyon, France, 2012.



2. Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describ-
ing Linked Datasets - On the Design and Usage of voiD, the 'Vocabulary of Inter-
linked Datasets'. InWWW 2009 Workshop: Linked Data on the Web (LDOW2009),
Madrid, Spain, 2009.

3. Tim Berners-Lee. Linked data - design issues.
http://www.w3.org/DesignIssues/LinkedData.html, 2006. [Online Technical
Note; accessed March-2014].

4. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web: Scienti�c
American. Scienti�c American, May 2001.

5. Chris Bizer, Anja Jentzsch, and Richard Cyganiak. State of the LOD Cloud.
http://www4.wiwiss.fu-berlin.de/lodcloud/state/, August 2011.

6. W3C Community. ConverterToRdf. http://www.w3.org/wiki/ConverterToRdf.
7. Richard Cyganiak, Christian Bizer, and Freie Universität Berlin. D2r server: A

semantic web front-end to existing relational databases.
8. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2rml: Rdb to rdf map-

ping language. http://www.w3.org/TR/r2rml/.
9. Riza Cenk Erdur, Oylum Alatli, Tayfun Gökmen Halaç, and Oguz Dikenelli. Mon-

itoring the dynamism of the linked data space through environment abstraction.
In I-SEMANTICS, pages 81�88, 2013.

10. Olaf Görlitz and Ste�en Staab. SPLENDID: SPARQL Endpoint Federation Ex-
ploiting VOID Descriptions. In Proceedings of the 2nd International Workshop on
Consuming Linked Data, Bonn, Germany, 2011.

11. Olaf Hartig. Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In ESWC (1), pages 154�169, 2011.

12. Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. Executing sparql
queries over the web of linked data. In International Semantic Web Conference,
pages 293�309, 2009.

13. Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data
Space. Morgan & Claypool, San Rafael, CA, 1 edition, 2011.

14. Petr Kremen, Marek Smid, and Zdenek Kouba. Owldi�: A practical tool for com-
parison and merge of owl ontologies. In Proceedings of the 2011 22nd International
Workshop on Database and Expert Systems Applications, DEXA '11, pages 229�
233, Washington, DC, USA, 2011. IEEE Computer Society.

15. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432�456, December 2008.

16. Raúl Palma, Peter Haase, Óscar Corcho, and Asunción Gómez-Pérez. Change
representation for owl 2 ontologies. In OWLED, 2009.

17. Danny Weyns, Andrea Omicini, and James Odell. Environment as a �rst class
abstraction in multiagent systems. Autonomous Agents and Multi-Agent Systems,
14(1):5�30, February 2007.


