
Infrastructures to engineer open environments
as electronic institutions

Dave de Jonge, Juan A. Rodriguez-Aguilar, Bruno Rosell, Carles Sierra

Artificial Intelligence Research Institute, IIIA
Spanish National Research Council, CSIC

08193 Bellaterra, Spain
{davedejonge,jar,rosell,sierra}@iiia.csic.es

Abstract. Electronic institutions provide a computational analogue of
human institutions to engineer open environments in which agents can
interact in an autonomous way while complying with the norms of an
institution. We survey the currently available infrastructures to engineer
open environments as electronic institutions: (i) AMELI, the coordina-
tion infrastructure which is core to run EIs; and (ii) the conversion of
the AMELI infrastructure to run over a peer to peer network. We also
discuss the type of applications that both infrastructures target at.

1 Introduction

As the complexity of actual-world applications increases, particularly with the
advent of the Internet, there is a need to incorporate organisational abstractions
into computing systems that ease their design, development, and maintenance.
Electronic Institutions (EIs) are at the heart of this approach[1]. EIs provide
a computational analogue of human organisations in which intelligent agents
play different organisational roles and interact to accomplish individual and
organisational goals. EIs appear as the glue that puts together self-interested
parties, coordinating, regulating, and auditing their collaborations. Just like any
human institution, an EI is a place where participants come together and inter-
act according to some pre-defined protocol. It warrants that the norms of the
institution are enforced upon its participants, and thus prevents them from mis-
behaving. An EI therefore provides the environment in which agents can interact
in an autonomous way within the norms of the institution.

EIs have been under development for more than 15 years, which has resulted
in a large framework consisting of tools for implementing, testing, running and
visualizing them [1]. The purpose of this paper is to survey the currently available
infrastructures ot engineer open environments as electronic institutions. First,
we briefly outline the features of AMELI, the coordination infrastructure which
is core to run EIs. AMELI was conceived to support the development of open
environments for agents as EIs. However, AMELI requires that the rules of an
EI are designed off-line prior to its execution. Therefore, at run-time the rules of
an EI are set and do not change. However, some open environments may require



that communities of participants design and enact at run-time their own rules of
interaction. For instance, consider a social network that allows its users to form
their own communities and choose and enact their own rules. With this aim, here
we describe the conversion of the AMELI infrastructure to run over a peer to peer
network. The resulting infrastructure enables users in an open environment to
to design their own communities with their own norms in the form of electronic
institutions. The decentralised implementation of AMELI allows to exploit the
benefits inherent to P2P systems (e.g. self-organisation, resilience to faults and
attacks, low barrier to deployment, privacy management, etc.).

The paper is organised as follows. Section 2 outlines the features of the
AMELI infrastructure, whereas section 3 outlines the infrastructure support-
ing the exectution of an EI over a peer to peer network. Finally, section 4 draws
some conclusions.

2 AMELI: a core infrastructure for electronic institutions

The infrastructure that enables the execution of EIs is called AMELI [4]. AMELI
enables agents to act in an electronic institution and controls their behaviour.
Its main functionalities are:

– to provide a way for different agents with different architectures to com-
municate with one another without any assumption about their respective
internal architectures; and

– to enforce a protocol of behaviour as specified in an institution specification
upon the agents. This means that AMELI makes sure that the agents can
only do those actions that the protocol allows them to do.

AMELI was conceived as a general-purpose platform in the sense that the
very same infrastructure can be used to deploy different institutions. With this
purpose, agents composing AMELI load institution specifications as XML doc-
uments generated by ISLANDER. Thus, the implementation impact of intro-
ducing institutional changes amounts to the loading of a new (XML encoded)
specification. Therefore, it must be regarded as domain independent, and it can
be used in the deployment of any specified institution without any extra coding.
During an EI execution, the agents composing AMELI keep the execution state
and they use it, along with the institutional rules encoded in the specification,
to validate agents’ actions and to asses their consequences.

AMELI is composed of three layers: a communication layer, which enables
agents to exchange messages, a layer composed of the agents that participate
in an EI, and in between a social layer, which controls the behaviour of the
participating agents. The social layer is implemented as a multi-agent system
whose agents are responsible for guaranteeing the correct execution of an EI
according to the specification of its rules.

The participation of each agent in an EI through AMELI is handled by
a special type of mediator, the so-called governor. An agent must be able to
communicate with its governor, but this only requires that the agent is capable



of opening a communication channel. Since no further architectural constraints
are imposed on external agents, we can regard AMELI as agent-architecture
neutral.

The current implementation of AMELI can either use JADE (Bellifemine
et al., 2001) or a publish-subscribe event model as communication layer. When
employing JADE, the execution of AMELI can be readily distributed among
different machines, permitting the scalability of the infrastructure. From the
point of view of the participating agents in an EI, AMELI is communication
neutral, since they are not affected by changes in the communication layer.

3 Decentralising electronic institutions

Running AMELI as a centralized application on a server has several disadvan-
tages. First of all it requires a server. Normal users may not have access to
such a server, or may not be willing to pay for server space. Moreover, you may
not want to keep total control over the institution and without having to rely
on a third-party. Secondly, the centralized implementation of AMELI may fail
due to network traffic if the number of users increases. Thirdly, people may not
want to upload their EI-specifications and other resources to a server, because
of copyright or privacy issues.

For these reasons we have implemented a Peer-to-Peer version of AMELI. We
have built it on top of the Freepastry1 library. A free and open-source Java library
that implements Peer-to-Peer network [3, 2, 5]. Freepastry provides a number
of useful features such as the routing of messages, or the possibility to create
broadcast messages.

A running institution is managed by a number of agents called scene man-
agers and governors. On a Peer-to-Peer system one needs to decide on which
node in the network each of these agents will be running. For this reason we have
added another type of agent to the framework called the device manager. Each
node in the network runs exactly one device manager. Whenever a new agent
needs to be launched, the Device Managers determine where that agent is going
to be launched. In the current implementation this is decided randomly, but in
future implementations the device managers will apply negotiation to make such
decisions, taking into account the capacity of each node (e.g. bandwith and cpu
power).

Note that the agent participating in the EI are not directly inside the P2P
network. Instead, they are connected to a governor through a direct socket con-
nection, which is inside the P2P network. We have chosen this model for security
reasons, because messages in a P2P do not always go straight from sender to
receiver, but may make several ’hops’ between nodes of the network before ar-
riving at the receiver. This means that agents participating in the institution
would be able to intercept those messages and manipulate them.

The P2P version of AMELI also provides a distributed database where users
can publish their EI-specifications, search for existing specifications, and search

1 http://www.freepastry.org/FreePastry/



User
Assistant 1

Governor 1Device
Manager 1

User
Assistant 2

Governor 2

Device
Manager 2

User
Assistant 3

Governor 3

Device
Manager 3

EI
Manager

Scene
Manager 1

Scene
Manager 2

Socket Connection

Freepastry connection

P2P 
NETWORK

User
Assistant 1

Scene
Manager 2

Device
Manager 2

EI
Manager

Governor 3

Device
Manager 1

Device
Manager 3

User
Assistant 2

User
Assistant 3

Governor 1

Governor 2

Scene
Manager 1

Device 1

Device 3

Device 2

Fig. 1: Diagram of the Peer-to-Peer Electronic Institutions topology

for running instances of electronic institutions. This is implemented using the
indexer/search library Apache Lucene.2 Each node in the network has its own
repository which is maintained by the device manager. When a query to the
database is made, this query is sent to all the device managers in the network,
and each of them sends back a reply, if possible.

Programming an agent that interacts in a P2P EI can be done in two ways.
One way consists of extending an existing Java agent that abstracts away all
the underlying communication protocols. The other way is to make use of a rest
governor. The intended actions of the agent are then sent as http requests to
the rest governor. The advantage of the second method is that one can use any
kind of programming language or technology that allows making web requests,
but has the disadvantage that one has to deal with the http protocol on a lower
level.

4 Conclusions

We have surveyed the currently available infrastructures to engineer open envi-
ronments as electronic institutions: (i) AMELI, the coordination infrastructure
which is core to run EIs; and (ii) the conversion of the AMELI infrastructure to
run over a peer to peer network. We argue that the decentralised implementation
of AMELI eases the engineering of open environments that require that commu-
nities of participants design and enact at run-time their own rules of interaction.
Furthermore, it allows to exploit the benefits inherent to P2P systems.

2 http://lucene.apache.org/



References

1. Josep Llúıs Arcos, Marc Esteva, Pablo Noriega, Juan A. Rodŕıguez-Aguilar, and
Carles Sierra. Engineering open environments with electronic institutions. Eng.
Appl. of AI, 18(2):191–204, 2005.

2. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. One
ring to rule them all: service discovery and binding in structured peer-to-peer over-
lay networks. In Proceedings of the 10th workshop on ACM SIGOPS European
workshop, pages 140–145. ACM, 2002.

3. P Draschel and A Rowstron. Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware 2001), pages
329–350, 2001.

4. Marc Esteva, Bruno Rosell, Juan A. Rodŕıguez-Aguilar, and Josep Llúıs Arcos.
Ameli: An agent-based middleware for electronic institutions. In Proceedings of
AAMAS, pages 236–243, 2004.

5. Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.
Scribe: The design of a large-scale event notification infrastructure. In Networked
group communication, pages 30–43. Springer, 2001.


