
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards organizational interoperability through artifacts

Fabio T. Muramatsu, Tomas M. Vitorello, Anarosa A. F. Brandão

Computing Engineering and Digital Systems Department
University of Sao Paulo – Brazil

fabio.muramatsu@usp.br, tomas.vitorello@usp.br
anarosa.brandao@usp.br

Abstract. Achieving interoperability among open and distributed systems is an
issue addressed by several research communities, such as the ones related to
service-oriented, cloud and bigdata computing, among others, mostly by pro-
posing standards and protocols. The multiagent systems (MAS) research com-
munity is also interested in it, since Organization-Centered MAS (OC-MAS)
are suitable for developing open systems for distributed and heterogeneous en-
vironments. Nevertheless, OC-MAS are still dependent on organizational infra-
structures to execute properly, which means that to interoperate with several
OC-MAS, agents must be able to run on different organizational infrastructures.
This is still an issue under investigation in the MAS community. In this paper,
we describe a first step to provide an artifact-based solution to achieve interop-
erability among OC-MASs by using an existing normative programming lan-
guage to translate organizational models and following the multiagent pro-
gramming approach from JaCaMo platform.

1 Introduction

The adoption of an organization-centered approach to develop multiagent systems
(MAS) is based on the definition of a set of constraints that a group of agents adopts
to achieve their social purposes easily [16]. This set of constraints is usually described
as organizational models, such as MOISE+ [14, 12], AGR [7] and Opera [6], among
others. By having an underlying organization model, the MAS may assure some level
of efficiency and efficacy [8] apud [12], since the model establishes ways to coordi-
nate and control the agents' behavior. This characteristic makes such approach suit-
able for developing open systems for distributed and heterogeneous environments. In
fact, by this very nature, any agent that agrees to adopt the organization constraints is
allowed to enter it. These systems are called Organization-centered MAS (OC-MAS).

The implementation of OC-MAS uses to be dependent on organizational infra-
structures (OI) tailored to the OC-MAS underlying model. For instance, S-MOISE+
[15] and MADKit [9] are OI for MOISE+ and AGR, respectively. Therefore, in order
to enter an open system developed as an OC-MAS, an agent should run on its associ-
ate OI. In this scenario, to interoperate with several OC-MAS, agents must be able to
run on different OI, which is still a problem under investigation. Considering that OC-
MAS are suitable for developing open systems for distributed and heterogeneous

environments such as the ones which support Ambient Intelligence, Smart Cities and
Internet of Things, addressing such problem may accelerate their adoption in such a
scale. At the best of our knowledge, Coutinho et al [5] is the only work that addresses
such problem by providing a model-driven approach to define an integrated organiza-
tional model that can be mapped to existing ones and used as a common model to
provide interoperability among different organizational models.

Recently Hübner and colleagues proposed ORA4MAS [10], an approach that
transfers to the environment the responsibility of the OI, implementing it through the
use of artifacts [17]. In such approach, agents must be able to interact with organiza-
tional artifacts in order to decide about the adoption of the organization constraints.
An implementation of that was given considering MOISE+ and CArtAgO [18], which
is an environment-oriented framework to support the development of MAS based on
artifacts. Moreover, CArtAgO was integrated with several agent-programming plat-
forms [19], including Jason [2].

Considering that CArtAgO and MOISE+ had already been integrated with Jason
[19][13], respectively, Boissier et al recently propose JaCaMo [1], a platform that
integrates Jason, CArtAgO and MOISE+ by combining agent-oriented, environment-
oriented and organization-oriented programming issues. Also, JaCaMo adopts a nor-
mative programming language (NPL) [11] to describe the organization constraints
related to coordination and control originally present in Moise+, through the inclusion
of a normative engine in organizational artifacts. Nevertheless, the organizational
artifacts implementation relies on the NPL interpreter instead of the OI itself, as
shown in Fig. 1.

In this paper, we investigate if the NPL adopted by JaCaMo could be used to de-
scribe other organization models as a first step to address interoperability among or-
ganizational models using an environment-oriented approach. This is so because the
organizational artifacts responsible for coordinating and controlling the organization
constraints just need a translation of the organization specification to the NPL to run.

Fig. 1. General view of the organizational scheme artifact in Moise+ (source [11])

 The paper is organized as follows: section 2 presents the organizational models we
refer on the paper and section 3 describes the background knowledge for understand-
ing the paper idea. Section 4 shows the translation of two organizational models to the
NPL. Section 5 discusses about possible modification in existing artifacts followed by
the conclusion and further work suggestions on the issue in section 6.

2 Organizational Models

2.1 MOISE+

MOISE+ is a model to support organization-centered MAS [12] modeling while pro-
viding a conceptual framework and syntax for designing their underlying organization
specifications. It distinguishes three organizational dimensions to explain how a MAS
organization can be designed: the Structural Specification, the Functional Specifica-
tion and the Deontic Specification. The Structural Specification addresses the static
aspects of an organization and involves roles, links and groups as main concepts.
These concepts are used to describe the individual, the social and the collective levels
of an organization, respectively. The individual level is formed by the organization’s
roles while the social level specifies the links (relations between roles) defined in
order to constrain the agent action after accepting to play a role. Possible links are
authority, communication and acquaintance. Finally, the collective level specifies
how different roles can take part in groups.

 The Functional Specification describes how organizational goals should be
achieved, stating how these goals are decomposed in plans and distributed to the
agents through missions. Finally, the Deontic Specification is responsible for linking
the Functional and Structural Specifications by relating roles and missions through
permissions and obligations.

A comparative analysis based on six organizational models was performed in [4],
aiming at identifying which modeling dimensions were present in each of them. In the
case of MOISE+, three dimensions were identified, the functional, structural and
normative ones, in conformance to the aforementioned specifications.

2.2 AGR

The AGR (Agent/Group/Role) model [7] was developed aiming at providing a simple
and concise way to describe multiagent organizations. As its acronym suggests, it is
based on three primitives: agents, groups and roles. Agents are proactive, autonomous
and communicative entities that populate these organizations by assuming certain
roles within groups. Groups can be defined as sets of agents that have some similari-
ties. Lastly, roles are abstract representations of agent functionalities in a group.

In this model, a group is described by a group structure. Such structure contains all
the characteristics that define a group, for example its name and the roles agents are
allowed to play in it. Thus, it is possible to conceive groups as instances of group
structures.

In AGR, two types of constraints between roles are defined, namely correspon-
dence and dependence. If there is a correspondence constraint between two roles A
and B, it means that an agent who plays A will automatically play B. In its turn, a
dependence constraint between A and B means that playing A is a prerequisite to play
B.

Finally, it is stated in the description of this model that it is possible to define inter-
action relationships between roles, in order to constrain the communication performed
by agents. However, no detailed explanation about the nature of these interactions is
provided, leaving it as an open aspect for implementation.

In the case of AGR, two dimensions were identified in the analysis presented in
[4]. First, the notions of groups and roles compound the structural dimension. Fur-
thermore, the definition of interactions between agents forms the dialogical dimen-
sion.

2.3 OPERA

OperA is a model devised to describe open MAS using formal logical semantics and
aims to ensure interaction and collaboration among its members while maintaining
autonomy between society design and agent design [6]. The structure of the model is
split into three separate sub models: the Organizational Model, the Interaction Model
and the Social Model.

The Organizational Model is a description of the system itself, that is to say, it de-
scribes how the system is organized. This description is further segmented into four
components: social, communication, interaction and normative structures. The Social
Structure specifies the existing roles, as well as the goals and relations associated with
them. The Communication Structure defines the ontology and communication lan-
guage used in the system. The Interaction Structure contains the possible system
states (interaction scenes) and describes the allowed transitions between them. Fi-
nally, the Normative Structure describes norms imposed upon the roles and interac-
tion scenes’ norms.

The two remaining sub models regulate behavior within the MAS. The Social
Model manages agents’ enactment of roles whereas the Interaction Model serves to
adjust role-enacting agents’ actions during interaction scenes.

The analysis done in [4] identified five different modeling dimensions in OperA
model. They are the structural dimension, encompassed by the social structure and
social model; the functional dimension, represented by the interaction structure and
the interaction model; the dialogical and ontological dimensions, both housed within
the communication structure; and the normative dimension, associated with the nor-
mative structure.

3 Artifacts and related issues

In this section we briefly describe issues that are used along the proposed step to-
wards achieving interoperability among different OC-MAS.

3.1 Artifacts

When dealing with the field of AI, it is common to make analogies to human societies
to understand and conceive how systems should work [20]. For instance, in the case
of MAS, it seems natural to compare working people to agents, given their similarities
in behavior. However, it is very clear that people, when working with others, make
use of many tools that facilitate coordination and cooperation. This concept, when
ported to the MAS domain, gives origin to the idea of working environments and
environment-oriented programming.

An artifact is the main component of a working environment. It can be defined as a
passive entity, which can be managed by agents in order to perform a function [17].
Basically, it consists of an interface that agents use either to send commands or to
receive information. An agent requests the artifact’s functionality by triggering an
operation defined in it, which is similar to a method in an object. The artifact, in its
turn, communicates with the agents by updating its observable properties (analogous
to attributes in an object) or by sending signals. The CArtAgO framework [18] im-
plements artifact-based working environments through an environment-oriented ap-
proach using Java, given its similarities with an object in the object-oriented pro-
gramming.

One of the main advantages in this approach, especially when dealing with multi-
agent systems, is that agents can now rely on the environment to get resources and
tools to promote their activities. For instance, because artifacts are easily accessible
by any agent in a workspace, they can be of great importance when coordinated
teamwork is necessary [18]. Therefore, it is possible to infer that making use of arti-
facts to implement an organizational model may bring some advantages when com-
pared to the traditional service-based OI, as discussed in the next section.

3.2 ORA4MAS

Traditionally, the implementation of OI is based on an architecture composed of serv-
ices and special agents, located in a layer inaccessible to ordinary agents and depend-
ent on its underlying organizational model [3][10]. Although this approach success-
fully achieves its goals of running an OI, it has the pitfall to be too strict and inflexi-
ble, since agents are bound to the OI as they are required to previously know the OI in
which they are running. As such, agents remain incapable of running in different OIs.

ORA4MAS (Organizational Artifacts for Multiagent Systems) [10] was proposed
as a solution to the limits imposed by the previously mentioned approach. Its goal is
to make organizations more flexible by implementing it in a layer accessible to
agents, exploiting the concept of working environments discussed in section 3.1. In
this new approach, an OI is composed of a set of organizational artifacts and agents
responsible to deal with all aspects of the organizational model they implement. It is
important to stress that ORA4MAS solution is to move the required knowledge of the
OI from the agents to the organizational artifacts.

The role of artifacts in this context is to provide operations and information regard-
ing the organization to any agent that participates in it. For instance, if an agent wants

to adopt a role, he must trigger the correspondent operation on the artifact. Moreover,
he can easily get information about the organization state (for example, the available
roles) by inspecting the artifact’s observable properties. Organizational agents are
proposed in ORA4MAS to deal with aspects that require reasoning. For instance,
whenever an agent triggers a forbidden operation, one of two actions can be taken. If
the violation brings a result that must be reverted, a regimentation mechanism is ap-
plied directly in the artifact, blocking that operation. However, when this is not the
case (the violation brings no harm to the system), the artifact only communicates the
occurrence to the organizational agent, who in turn decides on what action to take.

3.3 JACAMO

JaCaMo is a platform for programming MAS. However, it innovates and differenti-
ates itself from other such platforms as it combines agent, organization and environ-
ment programming into a single framework.

This multiple approach is possible due to integration of several technologies into
JaCaMo: (i) Jason [2], a platform for programming MAS using an agent-oriented
approach; (ii) CArtAgO for an environment-oriented approach; and (iii) MOISE+, for
an organizational-oriented approach. In addition, ORA4MAS provided the means to
integrate MOISE+ organizational model through organizational artifacts provided by
CArtAgO framework.

During runtime, agents in JaCaMo have direct access to the environment, by means
of manipulating artifacts in the same way as described in CArtAgO (section 3.1).
Concurrently, their actions are actively monitored by an organization, modelled in
accordance to Moise+ and implemented in the environment as proposes ORA4MAS.
An important feature in JaCaMo, which will be explored in this paper, is the presence
of an NPL interpreter in the organizational artifacts to efficiently run the organization.
As expected, this requires the organization description to be translated into NPL be-
fore it is loaded by the organizational artifacts.

3.4 Normative Programming Language

A Normative Programing Language (NPL) is, as the name implies, a programming
language based on norms. In general, a norm is a statement that describes an expected
pattern of behavior and the consequences of disregarding it. In addition, the language
also utilizes facts, which are statements of information, and inference rules.

Usually these norms can be one of three types: obligation, permission or prohibi-
tion and are enforced by either sanctions or regimentations [11]. An obligation consti-
tutes a behavior that must be complied; permission refers to an allowed behavior and,
of course, a prohibition is a disallowed behavior.

In the case a violation to a norm occurs, the appropriate enforcement strategy
should activate. Regimentations are strategies to prevent a norm infringement in the
first place; therefore, no actions that would result in regiment infraction are possible.
Meanwhile sanctions are punitive strategies that become effective after an infraction,
so actions that fall under a sanctioned norm are indeed possible. Regimented norms

are primarily designed as means to preserve the system from otherwise harmful ac-
tions. Sanctioned norms, on the other hand, should encourage desired behavior with-
out effectively compromising autonomy of the concerning party.

Fig. 2: NPL syntax (source [11]) - non-terminals atom, id, var and number corresponds, respec-
tively, to predicates, identifiers, variables, and numbers, as used in Prolog.

In conclusion, the NPL serves to regulate behavior and, specifically in the case of
MAS, it may be used to regulate agent behavior. Nevertheless, to make this possible,
it is necessary [11]: (i) an interpreter capable of running the NPL; and (ii) the transla-
tion of the organizational specification into a normative specification.

A successful implementation of MOISE+ by means of translating it to a simplified
NPL containing only two constructs, obligation and regimentation, is described in
[11]. This approach used the aforementioned ORA4MAS platform and had the NPL
engine embedded in the organizational artifacts. A program described in the NPL
consists of (i) a set of facts and inference rules and (ii) a set of norms. Norms have
unique identifiers, activation condition and consequence. Consequence could be of
types fail or obligation. Fig. 2 shows the syntax of the NPL, where np is a program in
NPL. Two organizational models are described in section 4 using the NPL. Consider-
ing the implementation of JaCaMo and the fact that organizational constraints are
embedded in an NPL program, having such a description is an important step towards
achieving interoperability among organizational models during runtime. This is so
because the NPL could be used as a common language to describe the organizational
models.

4 Translating Organizational Models to the NPL

4.1 AGR

In order to describe the AGR model in terms of normative language, it is necessary
first to obtain facts and rules that are inherent to the model, and then define the corre-
spondent norms in terms of them.

Facts.
The following facts describe the structural dimension of AGR. Some of the nota-

tions used here are suggested in [7].

─ member(x,g): represents that agent x is member of group g;
─ plays(x,r,g): agent x plays role r in group g;
─ GStruct(g,gs): group g is described by group structure gs;
─ roleIn(r,gs): r is a role defined in group structure gs;
─ correspondence(role1, gs1, role2, gs2): there is a correspon-

dence constraint between role1 defined in gs1, and role2 defined in gs2,
meaning that an agent who plays role1 will be obligated to play role2;

─ dependence(role1, gs1, role2, gs2): there is a dependence con-
straint between role1 in gs1 and role2 in gs2, meaning that playing role2
is a prerequisite for assuming role1.

The next facts relate to the dialogical dimension of AGR.

─ interact(role1,role2): role1 has an interaction relationship with
role2, meaning that an agent playing role1 can send messages to another agent
playing role2. Thus, an interaction is a directed relation;

─ msg(x,y,content): agent x has sent to agent y a message content.

Rules.
Next, inference rules that help describe the state of the organization will be pre-

sented. Both rules shown here relate to the structural dimension of AGR.
The first rule tells whether a certain role is defined in a group instantiated in the

organization. Remember that roles are described directly in a group structure.

rdefined(g,r) :- Gstruct(g,gs) & roleIn(r,gs)

The second one informs if two agents are members of the same group, i.e. whether
there is a group g in which both agents participate.

samegroup(x,y) :- member(x,g) & member(y,g)

Norms.
Finally, it is possible to define the set of norms that characterize this model, start-

ing with the ones related to the structural dimension.

─ Norm role_member: if an agent x plays a role r in a group g, he must be a member
of this group.

role_member: plays(X,R,G)& ¬member(X,G)->
fail(role_member).

─ Norm role_corresp: implements the correspondence constraint between roles.

role_corresp: plays(X,Role1,G1)& GStruct(G1,GS1)&
GStruct(G2,GS2)&
correspondence(Role1,GS1,Role2,GS2)->
obligation(X,role_corresp,plays(X,Role2,G2),now+t).

─ Norm role_dep: implements the dependence constraint between roles

role_dep: plays(X,Role1,G1)& ¬plays(X,Role2,G2)&
GStruct(G1,GS1)& GStruct(G2,GS2)&
dependence(Role1,GS1,Role2,GS2)->
fail(role_dep).

The next norms are related to the dialogical dimension of AGR.

─ Norm group_comm: two agents can communicate with each other only if they are
members of at least one group in common.

group_comm: msg(X,Y,C)& ¬samegroup(X,T)->
fail(group_comm)

─ Norm inter_comm: two agents may communicate only if there is an interaction
defined between them.

inter_comm: msg(X,Y,C) & ¬interact(X,Y)->
fail(inter_comm)

4.2 OPERA

The following facts and rules are related to the structural dimension of the OperA
model.

Facts.

─ plays(x,r): indicates that agent x plays (enacts) role r;
─ objective(obj,r): indicates that objective obj is an objective of role r;
─ sub-objective(sobj,obj): indicates that objective sobj is a sub-objective

of objective obj;
─ contains_sub-objectives(obj): indicates that objective obj has sub-

objectives;
─ right(rt,r): indicates that rt is a right of role r;
─ completed(obj): indicates that requirements of objective obj have been ful-

filled.

Rules.
This rule indicates whether an objective has been achieved. An objective is

achieved if all of its sub-objectives are achieved or if, in the case it has no sub-
objectives, it has been completed.

achieved(obj):-[contains_sub-objectives(obj)
&[achieved(sobj1) &achieved(sobj2) & … &
achieved(sobjN)]]|[¬contains_sub-objectives(obj) &
completed(obj)]

In sequence, the facts, rules and norms related to the OPERA functional dimension
are presented.

Facts.

─ in_progress(s): indicates that scene s is in progress;
─ finished(s): indicates that scene s has finished;
─ start(s,x): indicates that agent x has initiated scene s;
─ end(s,x): indicates that agent x has terminated scene s;
─ scene_manager(x): indicates that agent x may initiate and terminate scenes;
─ from(t,s): indicates that scene s transits from transition t;
─ to(s,t): indicates that scene s transits to transition t;
─ and(t): indicates that scene transition t is an AND operator;
─ or(t): indicates that scene transition t is an OR operator;
─ xor(t): indicates that scene transition t is a XOR operator;
─ part(l,s): landmark l is part of scene s;
─ order(l1,l2): landmark l1 is ordered before landmark l2;
─ state_requirement(obj,l): landmark l requires that objective obj is

achieved.
─ state_negative_requirement(obj,l): landmark l requires that objec-

tive obj is not achieved.
─ scene_requirement(l,s): scene s requires that landmark l has been

reached for before starting.

Rules.
Scene transitions are valid when the transition requirement is satisfied. The re-

quirement depends on the transition type: AND transitions require that all scenes
leading to the transition be finished, OR transitions require that at least one scene
leading to the transition be finished and XOR transitions require that one, and only
one, scene leading to the transition be finished.

Valid(t) :- [and(t)&[[to(s1,t)&finished(s1)]& …
&[to(sN,t)&finished(sN)]]]
|[or(t)&[[to(s1,t)&finished(s1)]|…|[to(sN,t)&finished(sN)
]]
|[xor(t)&[[to(s1,t)&finished(s1)]& ¬… &
¬[to(sN,t)&finished(sN)]]| …
|¬[to(s1,t)&finished(s1)]& ¬… & [to(sN,t)&finished(sN)]]]

A landmark is considered reached if all state requirements and state negative re-
quirements are met, and all previous landmarks have also been reached.

reached(L) :- [state_requirement(obj1,L)&achieved(obj1)]
& … & [state_requirement(objN,L)&achieved(objN)] &
[state_negative_requirement(nobj1,L)&¬achieved(nobj1)] &
…&[state_requirement(nobjN,L)&¬achieved(nobjN)]
& Order(L0,L)&reached(L0) & … & Order(LN,L)&reached(LN)

Norms.

ended_without_permission: end(S,X) & ¬scene_manager(X) ->
fail(ended_without_permission)

started_without_permission: start(S,X) &
¬scene_manager(X) -> fail(started_without_permission)

started_at_inappropriate_time: start(S,X) & from(S,T) &
¬valid(T) -> fail(started_at_inappropriate_time)

and_transition: valid(T) & from(S,T) & and(T) &
scene_manager(X) ->
obligation(X,and_transition,start(S,X), now+Ts)

xor_transition: xor(T) & [in_progress(S1) | finished(S1)
& from(T,S1] & [in_progress(S2) | finished(S2) &
from(T,S2] -> fail(xor_transition)

started_without_requirements: start(S,X)
&scene_requirement(L,S) & ¬reached(L) ->
fail(started_without_requirements)

Finally, the model’s explicit norms are described. Each of these explicit norms has
a unique id and can either be active or inactive depending if the activation and termi-
nation conditions are met or not. They also have a maintenance condition that refers
to the behavior regulated.

Norms.

obligation_norm_id: (activation condition) &
¬(termination condition) & (maintenance condition(R)) ->
obligation(X, obligation_norm_id, action, deadline)

permission_norm_id: (activation condition) &
¬(termination condition) & (maintenance condition(R)) &
¬right(RT,R) -> fail(permission_norm_id)

prohibition_norm_id: (activation condition) &
¬(termination condition) & (maintenance condition(R)) ->
fail(prohibition_norm_id)

The following assumptions were made in the OperA’s translation to the normative
language:

─ Group notion is not present in the OperettA framework and therefore was not in-
cluded in this description.

─ Links existing between roles have also not been included here as they can be ex-
pressed through explicit norms.

─ An action constitutes of any behavior that causes an observable change in the sys-
tem (such as choosing to enact a role, achieving an objective or initiat-
ing/terminating a scene).

─ The requirements for a scene to be initiated are represented by a list of landmarks.

5 Discussion

The results of the work done in [11] suggest that the adoption of the proposed norma-
tive programming language and its artifact-based interpreter is a viable solution to the
interoperability problem. The key idea is to investigate the possibility of translating
different organizational models other than MOISE+ to the NPL, that was left open in
[11], and analyze whether the implemented infrastructure for the interpreter fits with
the translation.

Our initial work consisted in understanding the main aspects of two organizational
models, namely AGR and OperA, and describing them in terms of facts, rules and
norms. The results presented in section 4 shows that this translation is feasible, at
least for these two models.

However, it is necessary to check whether the artifact-based interpreter for
MOISE+, as implemented in JaCaMo, can be used with our translation in order to
effectively run the organization. This interpreter consists of two artifacts, one for each
organizational dimension in Moise+ (structural and functional - see session 2.1).
There is no dedicated artifact dealing with the normative dimension, since each orga-
nizational artifact runs a normative engine and therefore is responsible for a piece of
the normative dimension. In other words, each of the two aforementioned artifacts
deal with the set of norms related to their respective dimension.

As pointed in section 2.2, AGR allows the description of organizations with struc-
tural and dialogical dimensions, only. Thus, making an analogy to Moise+, we believe
that one artifact dealing with the dialogical dimension should be necessary, while the
one responsible for the functional dimension would not be used.

As for OperA, analyzed in section 2.3, the model incorporates both the functional
and structural dimensions, but also dialogical, normative and ontological ones. There-
fore, for this model, an additional artifact may be required to deal with dialogical
dimension; in addition, the existing structural and functional artifacts may suffer
modifications to incorporate elements not present in other organizational models.
Moreover, since the ontology is directly translated into NPL facts, there is no need of
an artifact dedicated to the ontological dimension. Finally, we presume that there is no
need for a normative artifact for the similar reasons as in Moise+. Currently we are
implementing the adaptations for the existing organizational artifacts in order to con-
firm such assumptions.

6 Conclusion and Future work

In this paper, we analyzed the use of a NPL to describe organization specifications
from two organizational models: AGR and Opera. The analysis showed that the NPL
proposed by Hübner et al in [11] could, in fact, be used as is to describe organization
specifications from the aforementioned models. Nevertheless, the possibility of in-
cluding artifacts to deal with dialogical issues must be investigated to realize the con-
crete implementation of these models through NPL. This is the first step in achieving
interoperability through an environment-oriented approach. Further work will follow
this way by analyzing organizational artifacts implementation provided by JaCaMo
concerning their conformity with other models’ specifications related to the organiza-
tional dimensions they are responsible for. After, decision about including new arti-
facts and/or modifying existing ones must be taken and implemented.

7 Acknowledgements

Fabio T. Muramatsu is partially supported by grant #013/17948-7, São Paulo Re-
search Foundation (FAPESP). Tomas A. Vitorello is partially supported by grant
013/17973-1, São Paulo Research Foundation (FAPESP). Anarosa A. F. Brandão is
partially supported by grant #010/2640-5, São Paulo Research Foundation (FAPESP).

8 References

1. Boissier, O.; Bordini, R.; Hübner, J.; Ricci, A.; Santi, A. Multi-agent oriented programming
with JaCaMo, Science of Computer Programming 78 (2013) 747–761.

2. Bordini, R.; Hübner, J.; Wooldridge, M.. Programming Multi-Agent Systems in AgentSpeak us-
ing Jason, Wiley, 2007.

3. Coutinho, L.R. ; Brandão, Anarosa A.F. ; Sichman, J.S. ; Boissier, O. . Organizational Interop-
erability in Open Multiagents Systems - An Approach based on Metamodels and Ontologies. In:
Proc.of the 2nd Workshop on Ontologies and Metamodels in Software Engineering WOMSDE
2007, 2007.

4. Coutinho, L., Sichman, J., Boissier, O., Modelling Dimensions for Agent Organizations. In
Dignum, V. (Ed.). Handbook of research on multi-agent systems: semantics and dynamics of
organizational models. Hershey: IGI Global, 2009. Cap.II, pp.18-50.

5. Coutinho, L.R.; Brandão, Anarosa A.F.; Sichman, J.S.; Hubner, J.F.; Boissier, O.. A Model-
based Architecture for Organizational Interoperability in Open Multiagent Systems. In: Padget
et al. (Org.). Coordination, Organizations, Institutions and Norms in Agent Systems V. Berlin:
Springer, 2010, LNCS v. 6069, p. 102-113.

6. Dignum. V. A Model for Organizational Interaction: based on Agents, founded in
Logic. SIKS Dissertation Series 2004-1. SIKS, 2004. PhD Thesis.

7. Ferber, J., Gutknecht, O., Michel, F., From Agents to Organizations: An Organizational View of
Multi-agent Systems. In P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp.
214–230, 2004. Springer-Verlag Berlin Heidelberg 2004.

8. Gasser, L.. Organizations in multi-agent systems. In Pre-Proc. of the 10th European Worshop on
Modeling Autonomous Agents in a Multi-Agent World (MAAMAW’2001), Annecy, 2001.

9. Gutknecht, O. and Ferber, J. Madkit: a Generic Multi-Agent Platform (short paper). Autono-
mous Agents (AGENTS 2000), Barcelona, ACM Press, pp. 78-79, 2000.

10. Hübner, J., Boissier, O., Kitio, R., Ricci, A., Instrumenting multi-agent organisations with or-
ganisational artifacts and agents. In Auton Agent Multi-Agent Syst (2010) 20:369–400.

11. Hübner, J.F., Boissier, O., Bordini, R.H., A normative programming language for multi-agent
organizations. In Annals of Mathematics and Artificial Intelligence, v. 62, n. 1-2, pp. 27-53.
Springer Science+Business Media B.V. 2011.

12. Hübner, J. F.; Sichman, J. S.; Boissier, O. Using the MOISE+ for a cooperative framework of
MAS reorganization. In: Proc. 17th Brazilian Symposium on Artificial Intelligence (SBIA'04),
2004. A. Bazzan and S. Labidi eds. LNAI, vol. 3171, p 506-515, 2004. Springer-Verlag.

13. Hübner, J.; Bordini, R.; Picard, G.. Using Jason and MOISE+ to develop a team of cowboys. In:
Programming Multi-Agent Systems, LNCS. Volume 5442, 2009, pp 238-242.

14. Hübner, J.; Sichman, J.; Boissier, O.. A Model for the Structural, Functional, and Deontic
Specification of Organizations in Multiagent Systems. In: Proceedings of the 16th Brazilian
Symposium on Artificial Intelligence (SBIA'02). Berlin: Springer, 2002. v. 2507. p. 118-128.

15. Hubner, J; Sichman, J.; Boissier, O.. S-MOISE+: A middleware for developing Organised
Multi-Agent Systems. In. Intl Workshops ANIREM 2005 and, OOOP 2005, Revised Selected
Papers, Boissier, et al (Eds), LNCS, 3913, 2006, pp 64-78.

16. Lemaıtre, C. and Excelente, C.B. Multi-agent organization approach. In Garijo and Lemaıtre,
Eds, Proceedings of II Iberoamerican Workshop on DAI and MAS, 1998.

17. Omicini, A., Ricci, A., Viroli, M.. Artifacts in the A&A meta-model for multi-agent systems,
Auton Agent Multi-Agent Syst (2008) 17:432–456.

18. Ricci, A., Viroli, M., Omicini, A., CArtAgO: A Framework for Prototyping Artifact-Based En-
vironments in MAS. In D. Weyns, H.V.D. Parunak, and F. Michel (Eds.): E4MAS 2006, LNAI
4389, pp. 67–86, 2007. Springer-Verlag Berlin Heidelberg 2007.

19. Ricci, A.; Piunti, M.; Acay, L.D.; Bordini, R.; Hubner, J.; Dastani, M. Integrating Heterogene-
ous Agent Programming Platforms within Artifact-Based Environments, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons (eds.), May, 12-16. , 2008, Estoril – Portugal, pp. 225 – 232.

20. Wooldridge, M. An introduction to Multiagent Systems, Wiley & Sons, 2nd edition, 2009.

