
How to Get Multi-Agent Systems Accepted in Industry?
Danny Weyns, DistriNet Labs, Katholieke Universiteit Leuven, Belgium

We share the sigh with many researchers in the multi-agent system (MAS) community that
too much of the quality and relevant research in the area of MAS is under represented in the
development of complex distributed systems in practice / in industry today. MAS research has
developed a wide body of knowledge on foundations and engineering principles for designing
and developing complex distributed systems. Despite the enormous research efforts and a
number of successful industrial applications, the state-of-the-art in MAS research and
engineering is insufficiently reflected in state-of-the-practice in complex distributed systems.

In our experience, a babylonic mismatch is a crucial factor in this fact – research in MAS
profiles itself as an isolated community, and as such may create artificial thresholds to
convince mainstream software engineers of its merits. A poignant example of the isolation is
the lack of any reference to results from MAS research in the paper collection of the track on
the future of software engineering at the International Conference on Software Engineering
2007 [1]. We argue that grounding agent-oriented software engineering in mainstream
software engineering can amplify industrial adoption of MAS. Although this may sound as a
self-evident claim, the question remains how this can be put into practice.

To underpin our claim, we show how the integration of our MAS expertise in mainstream
software architecture was crucial for developing an industrial automated transportation
system [2]. In this application, we applied a MAS for decentralized control of automatic
guided vehicles (AGVs) that transport loads in an industrial environment. The application was
developed in a joint R&D project between DistriNet Labs and Egemin, a leading
manufacturer of industrial logistic systems.

Dealing with stakeholders’ requirements
The general motivation to apply a MAS in the AGV control system were new and future
quality requirements, in particular flexibility (deal autonomously with dynamic operating
conditions) and openness (deal autonomously with AGVs entering and leaving the system).
However, for a complex system such as the AGV control system the stakeholders have
various, often conflicting requirements. E.g., performance is a major requirement for
customers, configurability is important for deployment engineers, while budget is a prime
concern of the project leader. To clarify system requirements before starting architectural
design, we organized a four days Quality Attribute Workshop (QAW). A QAW is an
established method to identify and prioritize important quality attributes in terms of concrete
scenarios. The highest ranked quality scenarios are the main drivers for architectural design.
The QAW enabled us (1) to precisely specify the qualities addressed by adopting a MAS, and
(2) to determine their importance relative to other qualities. This was important for preventing
the industrial partner from overestimating or underestimating agent technology.

Managing complexity
AGV control systems are very complex software systems. The design and implementation of
the MAS-based AGV control system needed +8 man-years of effort. The delivered code base
consists of about 100,000 lines of C# code. Such complexity can only be managed through
abstraction. Software architecture is centered on the idea of reducing complexity through
abstraction and separation of concerns. In the AGV control system, software architecture
allowed us to manage the complexity of the MAS at different levels of abstraction (intra-agent
and inter-agent structures, behavior, and hardware/software allocation).

Integrating MAS with its software environment
In an industrial setting, systems are not built in isolation. When introducing a MAS, it must be
integrated with its environment (common frameworks, legacy systems, etc.). In Egemin,
.NET is the standard environment and the company uses an in-house developed framework
called E’pia that provides common middleware services to support inter-node
communication, persistency, security, and logging. Examples of legacy systems with which
the MAS needed to be integrated are the warehouse management system that generates the
transport tasks and the low-level control software of the AGVs. Software architecture was the
key to accommodate the integration of the MAS with its environment. We integrated E'pia as
a basic layer that provides the required services to deal with various crucial requirements.
With respect to legacy systems, we were able to develop proper mediator components/agents
to integrate legacy systems with the MAS.

Architectural design and evaluation
Preceding experiences with developing MAS applications with characteristics and
requirements similar as the AGV control system yielded a set of architectural patterns for
MAS and a supporting middleware for mobile applications. Initially, we faced the problem
how we could exploit these reusable assets and integrate them in the design of the AGV
control system. The solution was the Attribute-Driven Design method (ADD). ADD is a
well-established method for architectural design that is based on understanding how to
achieve quality goals through proven architectural approaches. During the architectural
design, we employed the patterns for MAS, together with a number of common architectural
patterns, to decompose and structure the system and realize the required functionalities and
qualities. To pinpoint the qualities and tradeoffs implied by the decentralized MAS
architecture, a disciplined evaluation of the software architecture was necessary. Therefore,
we organized a one day ATAM (Architectural Tradeoff Analysis Method). During the ATAM
an external evaluation team, together with the main stakeholders, determined the trade-offs
and risks with respect to satisfying important quality attribute scenarios, particularly scenarios
related to flexibility, openness, performance, and robustness. One important outcome of the
ATAM was an improved insight on the tradeoff between flexibility and communication load.

Impact of MAS on the company’s organization
From our experience, a crucial issue with respect to industrial adoption of MAS is the impact
of MAS on the company’s organization. At Egemin, the existing AGV control system has a
centralized server-oriented architecture. The MAS-based approach on the other hand has a
decentralized architecture. Switching from a centralized toward a decentralized agent-based
architecture is a big step with far reaching effects for a company, not only for the software but
for the whole organization. To give one example: in the centralized architecture task
assignment to AVGs is based on application-specific rules that are associated with particular
locations in the environment. A team of layout engineers is responsible for defining these
rules. In the decentralized architecture, however, tasks are assigned by means of a dynamic
protocol between AGV agents and transport agents. This protocol must be tuned per project,
but this requires other skills. Our experience indicates that the integration of an agent-based
approach should be done in a controlled way, step-by-step. Software architecture is the
indispensable vehicle for stepwise integration of MAS. It provides the required level of
abstraction to reason about, and dealing with gradual integration of MAS.

Conclusion
We have put forward the position that grounding MAS in mainstream software engineering
can amplify industrial adoption of MAS. By linking MAS to software architecture, we were
able to convince the industrial partner of the benefits of MAS in the AGV control system.

Self-adaptability, scalability, and local autonomy are generally considered as key properties to
tackle the growing complexity of software. These are exactly properties that characterize

MAS. The body of knowledge developed by the MAS research community is therefore of
crucial importance. It is our firm belief that only by sharing our know-how and putting it in a
broader setting of mainstream software engineering, especially software architecture, the
fruits of our research will develop to their full abilities.

Bibliography
[1] L. Briand and A. Wolf. International Conference on Software Engineering 2007, Future of
Software Engineering. IEEE Computer Society, 2007.
[2] D. Weyns and T. Holvoet. Architectural Design of a Situated Multi-Agent System for
Controlling Automatic Guided Vehicles. Special Issue on Multi-Agent Systems and Software
Architecture, International Journal on Agent-Oriented Software Engineering, 2(1), 2008.

	How to Get Multi-Agent Systems Accepted in Industry?
	Dealing with stakeholders’ requirements
	Managing complexity
	Integrating MAS with its software environment
	Architectural design and evaluation
	Impact of MAS on the company’s organization
	Conclusion
	Bibliography

