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Abstract. In this paper, we study the problems of thread identity that arise with 
adapting a local Java program for execution in a distributed environment. When 
using a distributed control flow programming model like Java RMI or OMG 
CORBA, the programmer should take into account an inherent shift of 
semantics. We experienced a particular problem with shift of thread semantics 
when extending a serialization mechanism for JVM threads to a distributed 
setting. More specific, we encountered the problem of losing logical thread 
identity when the control crosses system boundaries. We solved this problem by 
introduced the generic notion of distributed thread identity in Java 
programming. Propagation of a globally unique, distributed thread identity 
provides a uniform mechanism by which all the program’s constituent objects 
involved in a distributed control flow can uniquely refer to that distributed 
thread as one and the same computational entity. We have implemented 
distributed thread identity by means of byte code transformation of application 
programs. In the paper, we will use the serialization of a distributed execution 
state as a case to illustrate the value of our Java extension.   
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1. INTRODUCTION 

Different distributed programming models exist, such as asynchronous messaging, 
publish/subscribe systems, blackboard/tuple spaces (e.g. Linda, JavaSpaces). 
However the mainstream of intra-domain distributed systems are developed using an 
object-based control flow programming model such as Java RMI or OMG CORBA 
(method invocation between objects). This model is popular because it inherits some 
of the benefits of object-oriented programming languages such as Java and C++ and 
is similar to the ‘good old’ RPC inter-process communication style. Another 
advantage is that control flow programming models provide a good level of location 
transparency.  
However, using an object-based control flow programming model has a number of 
consequences too. Remote method invocations involve blocking calls on remote 
objects and that is only feasible on a reliable, high-bandwidth and secure network. 



Besides this dependability, writing distributed applications or adapting a local 
program1 for execution in a distributed environment remains difficult because of the 
inherent shift of paradigms and semantics [4]. In Java RMI, well-known differences 
with ‘normal’ Java programming are the separation between class and interface of a 
remote object, the pass-by-copy semantics of non-remote arguments to a remote 
method invocation and the inherently more complicated failure modes of remote 
method invocation. The shift makes it necessary to re-engineer large parts of existing 
centralized programs. Shift of semantics potentially leads to unexpected execution 
results or run-time errors, if the programmer did not take these differences into 
account. Some of these problems are well studied and practical solutions have been 
worked out that make the implementation of distribution-related aspects more 
transparent to the programmer [4][1].  
In this paper, we study a very particular shift of semantics, namely the shift of thread 
semantics that arises when adapting a local Java program for execution in a 
distributed environment.  A thread is the unit of computation. It is a sequential flow of 
control within a single address space (i.e. JVM). More specifically we focus on 
distributed applications that are developed by means of an object-based control flow 
programming model like Java RMI. As we stated above, the nature of this 
programming model require a high-performance network. It is important to note that 
our work is situated in this kind of environments. Computational entities of this kind 
of applications execute as flows of control that may cross physical node boundaries, 
contrary to how conventional Java threads are confined to a single address space. In 
the remainder of this paper we refer to such a distributed computational entity as a 
distributed thread of control, in short distributed thread [2]. A distributed thread is a 
logical sequential flow of control that may span several address spaces (i.e. JVMs). 
As shown in Figure 1, a distributed thread τ is physically implemented as a 
concatenation of local (per JVM) threads [t1,...,t4] sequentially performing remote 
method invocations when they transit JVM boundaries.  
The semantics of distributed threads differs from local JVM threads. The programmer 
has to take these differences into account.  
In this paper we extend Java programs with the notion of distributed thread identity in 
order to reduce the shift of threading semantics between local and distributed 
programming. Propagation of a globally unique distributed thread identity provides a 
uniform mechanism by which all the program’s constituent objects involved in a 
distributed thread can uniquely refer to that distributed thread as one and the same 
computational entity. 
We have implemented this Java extension by means of byte code transformation of 
application programs. As such the mechanism of propagation can be added to existing 
applications and is reusable on top of different middleware platforms. 
This paper is structured as follows: first, in section 2 we introduce a problem of shift 
of thread semantics we encountered in a project we are working on. In section 3 we 
give a definition of distributed thread and distributed thread identity. In section 4 we 
describe the implementation of distributed thread identity in Java. Section 5 illustrates 
the benefits of distributed task identity and explains how we used it as the key  

                                                           
1 A local program executes completely within the boundaries of one logical address space, e.g. 

Java Virtual Machine (JVM) 
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Figure 1. A Distributed Thread. 

mechanism to solve the problems mentioned in section 2. Finally we conclude in 
section 6.  

2. THE PROBLEM OF A "LOGICAL" THREAD IDENTITY IN 
A DISTRIBUTED CONTEXT  

In this section we briefly describe a new project we are working on and situate the 
problem of shift of thread semantic we encountered in it. We will use this problem as 
a case to illustrate the value of distributed thread identity. 

2.1. Introduction to the project  

The goal of the project is the development a mechanism for serializing the execution 
state of a distributed Java application that is programmed by means of an Object 
Request Broker like Java RMI. Such a mechanism can serve many purposes like for 
example migrating execution state over the network or storing it on disk. To validate 
our research we build a prototype for repartitioning distributed Java applications at 
runtime. This mechanism enables the applying of existing partitioning methods at any 
point in an on-going distributed computation. Runtime repartitioning aims to improve 
the global load balance or network communication overhead of a running application 
by repartitioning the object configuration of the application dynamically over the 
available physical nodes at run-time. Existing work offers this support in the form of 
new middleware platforms with a dedicated execution model and object migration 
support that aligns well with run-time repartitioning [8][11]. A disadvantage of this 
approach is that existing ordinary RMI-based applications, which have obviously not 
been developed with support for repartitioning in mind, must partially be rewritten 
such that they become compatible with the programming model of the new 
middleware platform.  



The approach of our project is to develop a byte code transformer that transparently 
adds new functionality to an existing Java application such that this application 
becomes automatically repartition-able by the external monitoring and management 
architecture.  
The run-time repartitioning process consists of 4 successive phases. In the first phase, 
the management architecture allows an administrator to monitor the application’s 
execution and specify a specific request for repartitioning the application over the 
available physical nodes. In the second phase, the application takes a snapshot of its 
own global execution state, capturing the state of all threads that are executing in the 
application. After this, the execution of all application objects is temporarily 
suspended and the corresponding thread states are stored as serialized data in a global 
thread context repository. In the third phase, the management architecture carries out 
the initial request for repartitioning by migrating the necessary objects over the 
network. In the final and fourth phase, the execution of the application is resumed. 
Before the execution can be resumed, the execution state of all threads is first 
reestablished from the stored data in the global thread repository. 
The advantage of having the phases two and four is that execution and object 
migration are kept completely orthogonal to each other, avoiding race conditions and 
tricky problems with migration. For example a typical problem, solved in this way, is 
that an object waiting on a pending reply of a (remote) method invocation can anyway 
be migrated.  
In this paper we will focus only on phases two and four, i.e. on the serialization of the 
execution state. For more information about runtime repartitioning we refer to [12].   
Current Java technology completely don't support the serialization of execution state. 
However, we already had implemented a portable mechanism for serialization of local 
JVM threads, called Brakes [10]. This thread serialization mechanism is implemented 
by instrumenting the original application code at the byte code level, without 
modifying the Java Virtual Machine.  

2.2. Brakes for capturing JVM threads 

In Brakes the execution state of a thread is extracted from the application code that is 
executed in that thread. For this, a byte code transformer (i.e. the Brakes transformer) 
inserts capture and reestablishing code blocks at specific code positions in the 
application code. 
With each thread three flags (called isSwitching, isRestoring, isRunning) are 
associated that represent the execution mode of that specific thread. When the 
isSwitching flag is on, the thread is in the process of capturing its state. Likewise, a 
thread is in the process of reestablishing its state when its isRestoring flag is on. 
When the isRunning flag is on, the thread is in normal execution.  
Each thread is associated with a separate Context object into which its state is 
switched during capturing, and from which its execution state is restored during 
reestablishing.  
The process of capturing a thread’s state (indicated by the empty-headed arrows in 
Figure 2) is then implemented by tracking back the control flow, i.e. the sequence of 
nested method invocations that are on the stack of that thread. For this the byte code 



transformer inserts after every method invocation instruction a code block that 
switches the stack frame of the current method into the context and returns control to 
the previous method on the stack, etc. This code block is only executed when the 
isSwitching flag is set.  
The process of reestablishing a thread’s state (indicated by the full-headed arrows in 
Figure 2) is similar but restores the stack frames in reverse order on the stack. For 
this, the byte code transformer inserts in the beginning of each method definition a 
code block that restores stack frame data of the current method and subsequently 
creates a new stack frame for the next method that was on the stack, etc. This code 
block is only executed when the isRestoring flag is set.  
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Figure 2. Thread Capturing/Reestablishing in Brakes. 

In Brakes context objects are managed on a per thread basis by the context manager. 
So every thread has its own Context object, exclusively used for switching the state of 
that thread. The right context object is looked up by the context manager using the 
thread identity as hashing key. 
Capturing (and reestablishing) the execution state of a distributed application, 
developed with a distributed control flow programming model such as Java RMI, 
requires however a mechanism for serializing (and de-serializing) a distributed 
execution state. Reusing Brakes for this required a complete redesign of the Brakes 
byte code transformer. In section 5 we will show how we integrated distributed thread 
identity into the byte code transformation scheme and solved this problem in an 
elegant way.  

3. DISTRIBUTED THREADS AND DISTRIBUTED THREAD 
IDENTITY 

The notion of distributed thread has already been introduced in the Alpha distributed 
real-time OS kernel at CMU [2]. D. Jensen has identified the notion of distributed 
thread as a powerful basis for solving distributed resource management problems. We 
borrow the definition of distributed threads from this work: 



“A distributed thread is the locus of control point movement among objects via 
operation invocation. It is a distributed computation, which transparently and 
reliably spans physical nodes, contrary to how conventional threads are confined to a 
single address space.” 
As such a distributed thread is a sequential flow of control that can cross physical 
node boundaries. Opposite to this, a conventional thread is a sequential flow of 
control that remains within the boundaries of its local address space. 
With respect to the subject of this paper, a distributed thread can be implemented by 
the concatenation of local (per node) threads sequentially performing remote method 
invocations when they transit nodes. Distributed control flow programming models, 
such as Java RMI or OMG CORBA, naturally support this. By remote method 
invocations and returns, a distributed thread can extend and retract its locus of control 
point movement among a program’s constituent methods in object instances that may 
be dispersed across a multiplicity of physical computing nodes.  
“A distributed thread carries attributes related to the nature, state and service 
requirements of the computation it represents. These attributes may be inspected by 
the kernel and its clients.”  
Distributed thread attributes are thus propagated with the locus of execution point 
movement and can be inspected by a kernel object and the application objects 
executing in the environment provided by that kernel. A kernel object is here referred 
to as the whole of protocols and run-time data structures that support the execution of 
applications. Examples of kernel objects in the context of this paper are the JVM and 
middleware platforms with a distributed control flow programming model (e.g. Java 
RMI). Kernel objects can also be external control instances that provide non-
functional services to applications such as load balancing or fault tolerance. 
With respect to the subject of this paper, we claim that distributed thread identity, 
implemented as an attribute, provides the basis for "logical" thread identity in a 
distributed context. A distributed thread identity provides a uniform mechanism by 
which all the program’s constituent objects involved in a distributed thread can 
uniquely refer to that distributed thread as one and the same computational entity. 
Propagation and inspection of distributed thread identity enables kernel object as well 
as application objects to access the currently executing distributed thread.  
 “A distributed thread’s attributes may be modified and accumulated (created) in a 
nested fashion as it executes operations within objects.” 
A programming model for distributed threads sets out the rules for a valid creation 
and modification of attributes during the distributed thread’s life.  
With respect to the subject of this paper, two simple rules should be enforced for 
distributed thread identities: 
1. A distributed thread identity must be created once, more specifically when the 

distributed thread is scheduled for the first time.  
2. A distributed thread identity must not be modified after its creation. This is because 

it must provide physically dispersed objects with a unique and immutable reference 
to a distributed thread. 

With support for distributed thread identification, we will solve the problem described 
in section 2 in an elegant way. The key is to save executed state on the base of 
distributed thread identities.  



4. DISTRIBUTED THREAD IDENTITY FOR JAVA 

We implemented a generic Java extension that implements a simple programming 
model for distributed threads, in particular distributed thread identity. However before 
extending distributed Java programming with this notion, the question arises how to 
do this best. We propose three requirements that must be fulfilled by the chosen 
implementation strategy. 
• It must be possible to integrate the functionality transparently into existing Java 

applications.  
• The implementation of distributed threads must be portable across different 

heterogeneous platforms. 
• The mechanism of distributed threads should be dynamically integrate-able with 

the existing middleware platforms such as Java RMI, OMG CORBA, and 
Microsoft DCOM. 

4.1. Byte code transformation 

Byte code transformation [3] is an excellent candidate that satisfies all three 
requirements. First, it extends Java language features in a user transparent way. For 
example, a custom class loader can automatically perform the byte code 
transformation at load-time. Second, the functionality of distributed threads can be 
added without modifying the JVM, as such it is portable on any system, as long as a 
standard JVM is installed on that system. Dynamic integration with a distributed 
control flow programming mechanism is possible if done carefully. In the remainder 
of this section, we will occasionally point out in more detail how dynamic integration 
can be achieved.  
We used M. Dahm's tool for byte code transformation, BCEL [3] to develop a byte 
code transformer that extends Java programs with the notion of distributed threads, 
more specifically distributed thread identity.  In the rest of this paper we refer to this 
transformer as the DTI transformer. 

4.1.1. Propagation of distributed thread identity 
To achieve propagation of distributed thread identities, the DTI transformer extends 
the signature of each method with an additional argument of class D_Thread_ID. 
D_Thread_ID is a serializable class that implements an immutable, globally unique 
identifier. The signature of every method invoked in the body of the methods must be 
extended with the same D_Thread_ID argument type too. For example, a method f() 
of a class C is rewritten as: 

 
//original method code 

f(int i, Bar bar) {  
…    
bar.b(i);   
…  

     } 

//transformed method code   

f(int i, Bar bar, D_Thread_ID id) {  
…  
bar.b(i, id);   
…     

} 
 



When f() is called the D_Thread_ID is passed as an actual parameter to f(). Inside the 
body of f(), b() is invoked on bar. The body of f() passes on its turn the D_Thread_ID 
it received as an extra argument to b(). This way the distributed thread identity is 
automatically propagated with the control flow from method to method. Dynamic 
integration with a distributed object-based middleware such as Java RMI is simply 
achieved if the stub classes for the different remote interfaces are generated after the 
DTI transformation has been performed. 

4.1.2. Creation and modification of a distributed thread  
The Java thread programming model offers the application programmer the 
possibility to start up a new thread from within the run() method of a class that 
implements the java.lang.Runnable interface.  
The DTI transformer will instrument this kind of classes such that they will 
implement the D_Runnable interface instead. D_Runnable is defined as follows:  
 

interface D_Runnable { 
    void run(D_Thread_ID id); 
} 

 
The example class Bar that originally implements the Runnable interface illustrates 
the transformation: 

 
//original class definition 

class Bar implements  
java.lang.Runnable  

{   … 
void run() {…}  

} 

//transformed class definition  

class Bar implements  
D_Runnable  

{  …  
   void run(D_Thread_ID id) {…} 
} 

 
As stated in section 3, the identity of a distributed thread must be created at the 
moment the distributed thread is created. This behavior is encapsulated in the 
D_Thread class, which serves as an abstraction for creating a new distributed thread. 
A new distributed thread can simply be started with: 

 
Bar b = new Bar(); 
D_Thread dt = new D_Thread(b);  
dt.start(); 

 
The D_Thread class itself is defined as:  

 
class D_Thread implements java.lang.Runnable { 
   public static D_Thread_ID getCurrentTheadID() { 
   } 
   public D_Thead(D_Runnable o) { 
     object = o;  
     id = new D_Thread_ID(); 
   } 
   public void run() {  
     object.run(id); 



   } 
   public void start() { 
     new Thread(this).start(); 
   }     
   private D_Runnable object;  
   private D_Thread_ID id;   
} 

 
As stated in section 3, distributed thread identities may never be modified. As such, 
D_Thread does not provide any method operations for this. Furthermore, 
D_Thread_ID objects are stored either as a private instance member of class 
D_Thread or as a local variable on a JVM stack. Nonetheless it remains possible for a 
malicious person to modify distributed thread identities. For example it is possible to 
corrupt D_Thread_ID’s when they are sent over the physical network. Or a byte code 
transformer could be written that inserts malicious code for modifying the value of the 
local variable pointing to a D_Thread_ID object. It’s clear that additional security 
measures are necessary. This is subject to further research. 

4.1.3. Inspection of distributed thread identity 
Since distributed thread identities are propagated with method invocation as an 
additional, last argument, it is possible to compute for every method definition which 
local variable on the JVM stack points to the corresponding D_Thread_ID object. 
Based on this information specific byte codes can inspect the value of the local 
D_Thread_ID variable at any point in the method code.  
As stated in section 3, as well application objects as kernel object must be able to 
inspect the distributed thread identity. Different approaches for implementing 
inspection must be followed for the two kinds of objects. 
D_Thread_ID inspection by application object. The application’s constituent 
methods are the locus of control point movement of a distributed thread. Therefore, 
every application object is able to inspect the identity of the distributed thread that is 
currently executing one of its methods. To support this in the distributed thread 
programming model, the D_Thread class defines a static operation 
getCurrentThreadID(). The implementation of this method is encapsulated in the DTI 
transformer, which transparently replaces all invocations of this operation with a code 
block that returns the value of the local D_Thread_ID variable. 
D_Thread_ID inspection by a kernel object can be supported by a kernel-defined 
(static method, transformer) pair. First, a kernel object’s class implements a kernel-
defined interface for accepting notification of the event when a distributed thread 
passes by a specific marked point in the program. This event listener-style interface 
defines in particular one or more static ‘bottleneck’ methods [9] for passing the 
identity of that distributed thread to the kernel object. Second, a kernel-defined byte 
code transformer inserts on the marked points in the program, a code block for 
invoking this static method with the current D_Thread_ID. As such the kernel is 
notified when a distributed thread’s locus of movement passes by that specific point. 
The strong combination of a kernel-defined bottleneck interface plus a conforming 
transformer makes it easy to replace JVM mechanisms (e.g. monitors) or augment 
existing middleware implementations (e.g. mobile object platforms) with new kernel-



defined functionality acting upon whole distributed threads as individual 
computational entities. 

4.2. Implementation of the DTI transformer 

At byte code level each method has an indexed list of local variables. For each non-
static method the local variable with index 0 is the this-reference. Thereafter follows 
the arguments as defined in the signature. For static methods the first argument of the 
argument list gets the index 0. Furthermore the list of non-abstract methods is 
extended with the 'classic' local variables as defined in the body of the method. Thus 
extending the signature of a method with the D_Thread_ID argument constructs an 
additional entry in the list of the local variables of that method.  This must be done in 
a fully consistent way, as well for all references to local variables in the code of the 
method, as for the Constant Pool references of the class file. The signature of all 
invoked methods in the body of each method is extended with the D_Thread_ID 
variable, so we have to put this local variable as an extra argument on the JVM stack 
before the method is invoked.   
Replacing the Runnable interface with the D_Runnable interface is quite easy. We 
only have to screen the implemented interfaces of each application class and change 
the corresponding entry in the Constant Pool.  
Note that the byte code transformer rewrites the byte code in a selective way. The 
current implementation does not rewrite calls on methods of the JDK classes. This 
choice is basically made for practical reasons. This is however subject to further 
research, because for certain applications or requirements of kernel objects it may be 
necessary to rewrite the JDK libraries. 

5. DISTRIBUTED THREAD IDENTITY AT WORK 

In this section we illustrate the benefits of distributed threads and distributed thread 
identity. We illustrate how we extend Brakes, a mechanism for the serialization of a 
local execution state, to a tool for the serialization of a distributed execution state by 
means of distributed thread identity.   

5.1. The problem for Brakes with capturing Distributed Threads 

This section describes the problem that we encountered when trying to reuse Brakes 
for capturing distributed threads without underlying support for distributed thread 
identity. In order to implement phases two and four of the repartitioning process (see 
section 2.1) robustly, such distributed threads should be captured/reestablished as 
whole entities in one atomic step.  
However, we developed Brakes without having anticipated the need for capturing 
distributed threads. In Brakes execution state is after all saved on per local JVM 
thread basis. This works well for capturing local control flow but not for capturing a 
distributed thread of control. Figure 3 illustrates the problem for an example 



distributed thread τ, implemented by a concatenation of multiple local (per JVM) 
threads, sequentially performing remote method invocations when they transit JVMs. 
For example, once thread ti reaches method b() on object bar, the call p() on object 
poe is performed as a remote method invocation. This remote call implicitly starts a 
new thread tj at host multi. 
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Figure 3. Context per JVM. 

Physically, the threads ti and tj hold their own local subset of stack frames, but 
logically the total set of frames belongs to the same distributed thread. The context 
manager is however not aware of this logical connection between threads ti and tj. As 
a consequence contexts and flags of these JVM threads will be managed as separate 
computational entities, although they should be logically connected. Without this 
logical connection, it becomes difficult to robustly capture and reestablish a 
distributed thread as a whole entity in one atomic step. For example, it becomes quasi 
impossible for the context manager to determine the correct sequence of contexts that 
must be restored for reestablishment of a specific distributed thread. Of course we 
could modify the Brakes transformer with support for capturing distributed thread of 
controls, but this involves huge changes in the design of the Brakes transformer.  

5.2. Distributed thread identity to the rescue 

Distributed thread identity provides an elegant solution to this problem. More 
specifically if we augment the Brakes transformer with functionality for 
D_Thread_ID inspection by a kernel object (i.e. the context manager) via a bottleneck 
interface, it is possible to implement a context manager that manages contexts on a 
per distributed thread basis (see Figure 4). This update to the Brakes transformer 
entails only slight modification. 
The local implementation of the context manager must be adapted in two ways: 
New static bottleneck interface for inspecting distributed thread identity. As 
stated in the description of Brakes, JVM thread stack frames are switched into the 
associated Context object via a static bottleneck interface defined by the context 
manager.  For example, switching an integer from the stack into the context is done 



by inserting in the method’s byte code at the appropriate code position an invocation 
of the following static method:   
 

  

barf() b()

Contextτ

foo
thread ti

//multi :8000//media :7000

poe
p()

thread tj
r()

p()

r()

f()

call stack τ

b()

RMI

τ

τ

τ

stub

 
Figure 4. Context per Distributed Thread. 

public static curPushInt(int i) { 
Context c = getContext(Thread.currentThread()); 
c.pushInt(i); 

}  

The appropriate Context object into which to switch is looked up with the current 
thread identity as hashing key. Such push-methods are defined for all basic types as 
well as for object references. Complementary, there are pop-methods for restoring 
execution state from the context. Crucial in the push and pop methods is the 
identification of the Context object for the actual thread.  
However, in order to allow the context manager to manage Context objects on a per 
distributed thread basis, this static bottleneck interface must be changed such that the 
context manager can inspect the identity of the current distributed thread.  

 
public static pushInt(int i, D_Thread_ID id) { 

Context c = getContext(id); 
c.pushInt(i); 

} 

 
As such the Brakes byte code transformer must only be modified to support 
“D_Thread_ID inspection by a kernel object” (see section 4.1.3). Propagation of 
D_Thread_ID along the call graph is guaranteed by DTI transformation of the 
application classes (see section 4.1.1). 
Distributed Architecture. Figure 4 motivates clearly that the implementation of the 
context manager must become distributed now. Figure 5 sketches the architecture of 
such a distributed implementation. Capturing and restoring code blocks still 
communicate with the bottleneck interface of the local context manager, but the 
captured execution state is now managed per distributed thread by a central 
distributed thread manager. 



The distributed thread manager manages global flags that represent the execution state 
of the distributed application as a whole. These global flags are kept synchronized 
with the flags of the local context managers. 
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Figure 5. Distributed Architecture of the Context Manager. 

DistributedThreadManager offers a public interface to initiate the capturing and 
reestablishing of the distributed execution state. The capturing of the execution state 
of a distributed application is started by calling the operation captureState()on 
the distributed thread manager. This method sets the isSwitching flag on all local 
context managers by broadcast. As soon as a distributed thread detects that the 
isSwitching flag is set, the distributed thread will start switching itself into the 
context.     
Reestablishment of the distributed application is initiated by calling the operation 
resumeApplication() on the distributed thread manager. This method sets the 
isRestoring flag on each local context manager and restarts the execution of all 
distributed threads by calling the start() method defined on D_Thread. Each 
distributed thread detects immediately that the isRestoring flag is set, and thus 
restores itself from the context. 

5.3. Evaluation of the serialization mechanism 

In this section we evaluate the serialization mechanism for a distributed execution 
state. Since inserting byte code introduces time and space overhead we look to the 
blowup of the class files and give results of performance measurements. In our 
overviews we distinguished between the influence from byte code transformation to 
add distributed thread identity and the influence to add full support for serialization of 
distributed execution state.   
The blowup of the byte code for a particular class highly depends on the number and 
kind of defined methods. Since the Brakes transformer inserts code for each invoke-



instruction that occurs in the program, the space overhead is directly proportional to 
the total number of invoke-instructions that occur in the agent’s application code. Per 
invoke-instruction, the number of additional byte code instructions is a function of the 
number of local variables in the scope of that instruction, the number of values that 
are on the operand stack before executing the instruction and the number of 
arguments expected by the method to be invoked. The DTI transformer rewrites 
method and class signatures. This adds a space overhead proportional to the number 
of signature transformations.   
To get a representative picture, we measured the blowup for three kinds of 
applications:  
• Low degree of method invocation (i.e. the program has a structure main{m1;} thus 

the code is compacted in one method body) 
• Nested method invocations (i.e. the program has a structure main{m1;}; m1{m2; 

m3;}; m3{m4;} thus the code is scattered  over a number of nested methods) 
• Sequential method invocations (i.e. the program has a structure main{m1; m2; m3; 

m4;} thus the code is scattered over a number of sequential non-nested methods) 
Tabel 1 shows the results of our measurements. Functionality for distributed thread 
identity produces an average blowup of 27 % while the average blowup for full 
serialization functionality is 83 %. The expansion for Sequential is rather high, but its 
code is a severe test for blowup.  

 

Tabel 1. Byte code Blowup for Three kind of Applications. 

Code size (Bytes)  Low degree Nested Sequential 
Original 377 431 431 

DTI 399 616 524 
DTI + Brakes 573 718 991 

5.4. Performance measurements  

For performance measurements, we used a 500 MHz Pentium III machine with 128 
MB RAM with Linux 2.2 and the SUN 2SDK. We limited our tests to the overhead 
during normal execution (i.e. overhead as a consequence of the execution of inserted 
byte code). Tabel 2 shows the results of our tests. For distributed thread identity we 
measured an average overhead of only 3 %. For full serialization functionality we get 
an average overhead of 17 %.  

 

Tabel 2. Overhead for Three kind of Applications. 

Overhead (ms)  Low degree Nested Sequential 
Original 190 811 1011 

DTI 192 852 1054 
DTI + Brakes 199 949 1314 

 



From this results we may conclude that blowup and performance overhead for 
integrating distributed thread identity as well as for adding full serialization 
functionality are quit acceptable.   

6. CONCLUSION  

In this paper we integrate the notion of distributed threads into Java programs as a 
mechanism to reduce the shift of threading semantics between local and distributed 
programming. Propagation of a globally unique distributed thread identity provides a 
uniform mechanism by which all the program’s constituent objects involved in a 
distributed thread can uniquely refer to that distributed thread as one and the same 
computational entity. We have employed byte code transformation to implement this 
mechanism at the application-level. The strong combination of a middleware-defined 
bottleneck interface and a conforming byte code transformer enables also middleware 
platforms to act upon a distributed thread as one and these same computational entity. 
We verified our approach by extending Brakes, an existing tool for the serialization of 
JVM threads, to serialize a distributed executing state.  
Besides the points of attention we already mentioned in the paper, in the future we 
intend to investigate how other problems with thread identity in a distributed Java 
setting can be solved with the notion of distributed threads. Distributed threads may 
for example flattens the way for implementing a kernel object that implements a 
distributed monitor conforming the monitor semantics for local Java programs.  
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