
 

A Colored Petri Net for a Multi-Agent Application 

Danny Weyns, Tom Holvoet  

Computer Science Department, Katholieke Universiteit Leuven 

Celestijnenlaan 200A, B-3001 Leuven, Belgium 

http://www.cs.kuleuven.ac.be/~danny/home.html 

{danny,tom}@cs.kuleuven.ac.be 

  

Abstract 

 

In this paper we present a Colored Petri Net (CPN) for a multi-agent application. In particular we modeled 

the Packet-World. In our research we use the packet-world as a case to study the fundamentals of agents' 

social behavior. Our approach is to combine experiments with conceptual modeling. We start from a very 

basic model and then add social skills in a modular way. Integrating new social skills by means of adding 

new modules offers us a clear conceptual view on the evolution of agents and the environment. With a 

conceptual view we mean: (i) which concepts does an agent need in order to acquire a new kind of social 

ability, (ii) which infrastructure is necessary in the environment to support these abilities, (iii) how do these 

concepts relate to each other? With the insights we learn from the case study, we gradually develop a 

generic conceptual model for social agents situated in a MAS. In this paper we first present a CPN for a 

basic model of the packet-world. This model consists of agents that can only interact through passive 

objects in the environment. Because interaction is the central issue of multi-agent systems, we have 

incorporated basic infrastructure for agent coordination straight away into our basic model. Then we 

extend the model, making it possible for the agents to communicate information with each other. 

Communication is the basis for social organization. Besides the concrete realization of a CPN for a multi-

agent application, the model we present in this paper has the potential to support our future research of 

agents' social behavior. Our major motives for using CPNs as modeling tool are (i) CPNs gives a clear 

conceptual view on agents and the environment wherein they live, and (ii) CPNs support neat verification 

and formalization. 

 

Keywords 

Colored Petri Nets, Multi-Agent Systems  



 

1. Introduction 
In this introduction we first situate our research goals in the domain of Multi-Agent Systems (MAS). 
Next we explain how we tackle the problems we want to solve and motivate our choice for Colored 
Petri Nets (CPN) as a tool for modeling MASs. Then we situate the subject of this paper in our 
research. We conclude with an overview of the paper.        
1.1 Fundamentals of Sociality in MASs 
The importance of MASs as a design concept for today’s software is beyond dispute. A MAS 
models a part of the world as a community of autonomous agents that interact in an environment. In 
a MAS the activity is distributed over the agents of the community. The intelligence of the systems 
comes from the interaction between the agents, rather then from their individual capabilities. This 
contrasts to the approach of the classical artificial intelligence where an agent acts as an independent  
“cognitive reasoning machine”.  
A MAS is a society of agents that live and work together. Living in a community requires a number 
of social skills. Until now the agent research community has paid little attention to the fundamentals 
of sociality in MASs. Many unanswered questions remain. The lack of insight in agents' sociality 
limits the potential of the agent-based approach. We quote N. Jennings in [6]:  

“To realize the full potential [of MASs], a better understanding is needed of the impact 
of sociality [..] on an individuals behavior and of the link between the behavior of the 
individual agents and that of the overall system.”  

Until now, research about the fundamentals of agents’ sociality can be divided into two approaches. 
In the first approach research is mainly experiment-oriented. Some references are [8][9][10][11][12]. 
These projects explore new kind of interactions and rules for setting up social structures. What we 
can see is that from the interaction of the agents new functionality's emerge that go beyond the sum 
of the capabilities of the individuals. The second approach intends to conceptualize the social aspects 
of agents in a MAS. Some examples are [6][13][14][15]. One group of researchers has integrated 
certain aspects of agents' sociality in a formal model of an agent (e.g. the BDI-model). Another 
group has set out some thoughts how agents’ sociality and the organization of a MAS might be 
structured.  
We conclude that most of the work that has been done so far, has one or more of the following 
characteristics:  

• the research focuses on one particular aspect of sociality in MAS 
• the research starts from a particular point of view    
• most of the research is done separately from one another  
• the focus is mainly directed on how social behavior could emerge in a MAS, much less 

attention is devoted to the questions why and when social behavior arises 
1.2 The goals of our research  
The goal of our research is to get a better understanding of sociality in MASs. Therefore we intend 
to build a generic conceptual model of social agents situated in a MAS. Our approach is to combine 
experiments with conceptual modeling, the two approaches we mentioned in the previous section. We 
use a case application to explore different kind of social behaviors. Parallel with experiments we 
build a conceptual model. We start from a very basic model and then add social skills in a modular 
way. Integrating new social skills by means of adding new modules offers us a clear conceptual view 
on the evolution of agents and the environment. With a conceptual view we mean: (i) which concepts 
does an agent need in order to acquire a new kind of social ability, (ii) which infrastructure is 



necessary in the environment to support these abilities, (iii) how do these concepts relate to each 
other? With the insights we learn from the case study, we gradually will develop a generic 
conceptual model for social agents situated in a MAS. Therefore we have to generalize the insights 
we learned from the case application in order to build abstract models for different classes of social 
skills.  
1.3 Modeling MASs with Colored Petri Nets 
When we set out our approach the question arises how we should model the case application. Since 
Petri nets [1] have a long tradition to describe and analyze concurrent processes, they where 
excellent candidates. Colored Petri Nets (CPN) [2] combine the best of classical Petri nets and high 
level programming languages, and are for that very popular. CPNs have an intuitive graphical 
representation that paves the way for clear conceptual modeling of complex systems. The behavior 
of a system modeled with a CPN can be analyzed, not only by means of a simulation but also on a 
formal base. It is remarkable that CPNs, which offer most of the ingredients to tackle the complexity 
of multi-agent systems, are little used to model and study them. Some interesting references are  
[16][17][18][19][20][21][22]. The most far-reaching use of CPNs for modeling MASs is from 
Ferber. Ferber developed a formalism called “Basic Representation of Interactive Components” 
(BRIC). BRIC is based on a component approach, each of the primitive components (“bricks”) 
described with a CPN. In his standard work “Multi-Agent Systems” [3], Ferber proposes an 
extensive set of BRIC components, each of them representing a generic model for a specific part of a 
MAS. Inspired by his ideas we decided to use CPNs in our research. In contrast with Ferber, who 
uses CPNs for an operative representation of the functioning of a MAS we use CPNs for a 
conceptual modeling of sociality in MASs.  
1.4 Situating the paper in our research, overview of the paper  
The multi-agent application we use in our research is that of the Packet-World. Originally, Huhns 
and Stephens proposed this application in [7] as a research topic to investigate sociality in MASs. 
The packet-world consists of a number of different colored packets that are scattered over a 
rectangular grid. Agents that live in this virtual world have to collect those packets and bring them to 
their corresponding colored destination. The agents have only a limited view on the world. The 
packet-world offers a rich set of fundamental characteristics for a broad range of multi-agent 
systems. E.g., agents may perform better their job when they share their information or when they set 
up a form of cooperation. In this paper we describe two models of the packet-world. These two 
models form a solid basis for our future research of agents’ social behavior. After an intuitive 
description of the packet-world, in section 3 we present a CPN for a basic model. This model 
consists of agents that can only interact through passive objects in the environment. Next in section 
4, we extend the model, making it possible for the agents to communicate information with each 
other. Communication is the basis of social organization. In section 5 we give results of our first 
experiments with the two models. Finally, we conclude and look to future work in section 6.  
The CPNs that we present in this paper are designed with the Design/CPN tool [4][5]. In order to 
keep a clear view on the models, we limit the number of agents to two.  

2. The packet-world  

2.1 Introduction 
Consider a rectangular grid of size S. The grid contains a number of colored packets and agents. It is 
the agents’ job to collect the packets and bring them to their corresponding colored destinations. The 
grid contains one destination for each color. Figure 1 shows an example of a packet-world of size 8 
with 3 agents.  
In the packet-world agents can interact with the environment in a number of ways. We allow agents 
to perform a number of basic interactions with the passive objects of the environment. First, an agent 



can make a step to one of the free neighbor fields around him. Second, if an agent is not carrying any 
packet, he can pick up one from one of his neighbor fields. Third, an agent can put down the packet 
he carries on one of the free neighbor fields around him or of course on the destination field of that 
particular packet. Finally an agent may wait for a while and do nothing.  

 
Figure 1. The packet-world (squares are packets, circles are delivering points) 

It is important to notice that each agent has only a limited view on the world. This view covers only a 
small part of the environment around the agent. This property of limited knowledge is typical for the 
agents of a multi-agent system. In our model, the view-size of the world expresses how far (i.e. how 
many squares) an agent can “see” around him.   
In our model we use a simple measure to indicate how efficient the agents perform their job. Each 
time an agent makes a step or moves a packet (by picking it up, putting it down or step with it) a 
counter is incremented. At each point in time the value of this counter indicates how much energy the 
agents have invested in their work so far.  
In the basic model for the packet-world we limit the agents possible interactions with the 
environment to the basic set we mentioned above. We modeled the basic agents without any social 
skills. Their goal is to collect the packets of the world and bring them to their destinations. This 
general goal can be divided into a set of primary goals. In short, those agents act in a repeating cycle 
driven by two primary goals: look for a packet and pick it up, look for the destination and deliver the 
packet.  
In the extended model, agents can interact with each other. This interaction is the foundation of 
cooperation between the agents. For the packet-world one can imagine different kinds of cooperation. 
Agents can for example agree on a plan to form a chain and pass on packets to each other. We 
modeled another form of cooperation. In the extended model we present in this paper, we integrated 
facilities into the basic model to let agents communicate with each other. In particular, agents are 
extended with functionality to request information from each other.  Instead of exploring the world to 
find a target an agent does not see, the agent now can ask a visible colleague for the desired 
information. If the requested agent knows or sees the asked information he can respond the query 
with the information. This allows the requesting agent to act more efficient.  
2.2 Actions, influences and reactions   
Agents of a multi-agent system are endowed with autonomy. They are driven by a set of goals. In 
order to achieve those goals agents undertake actions. When an agent acts in the environment, e.g. he 
picks up a packet next to him he has no full guarantee that this action will succeed. Another agent 
might be trying to pick up the same packet at about the same time. As a consequence only one of 



them will get the packet leaving the other with empty hands. Therefore we say that an action of an 
agent results in an influence in the environment. Influences result in reactions from the environment. 
Each influence can succeed or fail. For example if an agent performs the action “pick” he invokes 
the influence “perform pick” on the environment. If the action succeeds, the environment reacts with 
the reaction “do pick”, if the action fails the reaction will be “can’t pick”. So it is only after the 
reaction of the environment to all the performed influences (at about the same point of time) that the 
agents actually experience the result of their intended actions. When an agent is notified about the 
result of the action he undertook, we say that the agent consumes the result of his produced 
influence.  
2.3 Agent state   
An agent can only decide to perform an action if he is endowed with some attitudes and has some 
information at his deposal. In section 2.1, we mentioned an agent is driven by a set of primary goals. 
Agents act to achieve those goals. Therefore they perform influences into the environment, as 
described in section 2.2.  
When an agent selects an action, he has to take the state of the world into account. If an agent for 
example decides to pick up a packet, first of all, he must be aware of the fact he actually does not 
carry a packet. In general this means the agent must possess some state of his own. In our model of 
the packet-world an agent maintains the state of his position and whether he actually carries a packet 
or not. Further, the agent must "see" the packet near to him. He needs some information about the 
environment around him in order to act. We call this information the view of the agent. In our model, 
regularly each agent gets an update of its own view on the world. As mentioned in section 2.1, this 
view covers only a small part of the environment around the agent. A special synchronization module 
is responsible for the timing of the updates of the agents’ views. We explain this synchronization 
process in detail later.  
As an alternative, the agent might “know” something about the world in order to take a decision 
what to do. It is for example not necessary that an agent “sees” the destination for his packet if he 
“knows” the location of the destination. In our model we therefore endowed an agent with a belief 
base. This belief base contains records with information that the agent has collected in the past. It is 
clear that some of this information is volatile. A destination for a particular color of packets will 
never change, but a packet located at a certain field might have disappeared after a while. In our 
model agents “know” which beliefs unconditionally can be trusted and which are not trustable. 
Agents revise suspicious beliefs as soon as they get information about them from their percept 
update, i.e. as soon as the subject of the belief comes inside a certain range of their vision. 
2.4 A job and the states of the world   
At start time the packet-world is in an initial state. Packets are scattered over the grid, and the agents 
are located between them. The counter that measures the agents’ performance is initialized to zero. 
We define a job as the task of the agents to collect all the packets and deliver them at the right 
destinations. A job starts when a synchronization module triggers the environment to send the agents 
their view. Driven by their goals, agents select an action to perform. These actions result in a 
transformation of the state of the packet-world. This cycle repeats until the whole grid is cleared. 
Each time the action of an agent modifies the state of the world the performance counter is increased. 
As soon as all packets are delivered at their destination the synchronization module stops the process 
of updating the view of the agents. This informs the agents that the job has come to an end. The 
packet-world is then in the end state. The transformation of the world can be described as a dynamic 
process that transforms the initial state of the world along a sequence of discrete states into the final 
state by means of performing synchronized actions of the agents.  
2.5 Conflict resolution and synchronization   
When the agents act, the environment reacts. Thereby it takes the influences of the agents into 
account and produces a new consistent world. In our model we distinguish between two levels of 



synchronization. First we have synchronization at the level of concurrent actions. We call this system 
synchronization. This level of synchronization guarantees that the "laws of the world" are respected. 
For example, only one agent at a time can step to a particular free field. System synchronization is 
implicitly integrated into a CPN. A second level of synchronization is situated at a higher level of 
interaction between agents. We call this the level of functional synchronization. Functional 
synchronization offers support for coordination of actions between agents. All actions of the agents 
are synchronized in action cycles as shown in Figure 2.  
A cycle starts with updating the perception of each agent. Based on its state and the new percept he 
receives, each agent then can reason about what he wants to do. The agent selects an action and 
produces an influence invoked on the environment. The environment calculates the reactions of all 
performed influences and notifies the agents by means of a consumption for each of them. As soon 
as all reactions are completed the environment will be triggered to calculate a new percept for each 
agent, and that starts a new action cycle. In our model functional synchronization is realized by 
means of the synchronization module. 

percept synchronization

percept calculation 

reasoning  

1 action cycle

sync module

agent 1 

agent 2  

consumption 

percept update 

reactions  

environment

influences 

 
Figure 2. Functional synchronization. 

One might wonder why we decided to introduce functional synchronization. After all it limits the 
freedom of action of the agents. Agents are no longer allowed to handle on their own rhythm. But 
this is just the point. The problem solving power of a multi-agent system arises from the interaction 
between the agents of the system. In order to cooperate, agents have to coordinate their actions. 
Coordinating actions between two (or more) autonomously running agents is hard to achieve. 
Therefore we introduced functional synchronization. For the price of some individual freedom we 
offer the agents a clean framework to coordinate their interactions. We fit in communication into this 
model. This means that sending a question or responding to it by means of sending an answer, are 
both integrated into the extended model as first class actions.  

3. Modeling the basic components of the packet-world 

In this section we discuss how we modeled the basic model of the packet-world by means of a CPN. 
First we give a high level overview of the model. This identifies the different modules of the multi-
agent system. Next we discuss the CPN for each separated module.  
We bring the separated modules together in a global net after discussing the integration of 
communication into the basic model in section 4.  



3.1 High level model 
We have divided the basic model for the packet-world into three separated modules, each 
representing one fundamental component of the packet-world. We distinguish between the 
environment (box), the agents (rounded boxes) and the synchronization module (diamond).  
As shown in Figure 3 agents in the basic model only interact with the environment. The white arrows 
represent the influences performed by the agents. The gray arrows represent the consumptions and 
percepts for the agents. The synchronization module regulates the updates of the latter.   

 
 

Agent 1
 

Agent 2

 
Environment Sync 

Module

 
Figure 3. High level basic model with 2 agents. 

Before we go into the separate CPNs for the different modules we first have to tell something about 
our approach for modeling modularity. In each module there are two kinds of places. There are 
circles that represent internal places and ovals that represent interface places. Interface places are 
similar to the notion of fusion places as defined in [4]. 
Different modules can be combined with each other by merging overlapping interface places. Note 
that we distinguished only between internal and interface places to indicate that some places of a 
module will overlap with similar places of other modules when a global CPN is composed. The 
graphical distinction has no particular semantic meaning related to places of a CPN in general.  
3.2 Model of the environment  
The environment models the world in which the agents live. For our packet-world we modeled the 
environment as one centralized entity. The agents can interact with the environment by means of a 
set of actions. The concurrent actions of the agents lead to the modification of the world. Agents are 
notified of those transformations by means of (i) consumptions (i.e. what they get from their invoked 
influences) and (ii) percepts (i.e. a partial view of the state of the world around the agent). The 
environment keeps track of how efficient the agents perform their job. We have modeled this 
efficiency tracker as a simple counter that is incremented each time an agent invests a relevant 
portion of energy, i.e. makes a step or moves a packet. Figure 4 shows the CPN for the environment. 
The data of the environment is modeled as a token of the colorset World, located in the place 
ENVIRONMENT. This token is a list of Item, each item being a record with two components:  

color Item = record name:Name * coord:Coordinate; 

color World = list Item with 1..(worldsize*worldsize);  

The performance efficiency of the agents at a certain point in time is modeled as a set of anonymous 
tokens collected in the place COUNT.  
The reactions of the environment are modeled as transitions. A reaction takes an influence and the 
state of the world as input. In case the reaction produces a successful action the involved part of the 
world is modified. Otherwise the world is left untouched.  
Furthermore a reaction produces a consumption for the agent that is sent to the corresponding 
interface place and a synchronization token that is sent to the synchronization module. 



Whether an action ends successfully or not depends on the actual state of the world. This is tested by 
means of the guards of the transitions. Let us look at one example. 

Performstep

Move

DO_STEP

[canStep(w,m),w1=updateWorldStep(w,m),a=updateCoord(m)]

Percept

View

1‘view1 ++ 1‘view2

PRODUCE_PERCEPT

CANT_STEP

[not (canStep(w,m)),a=getMAgent(m)]

Performpick

Move

DO_PICK

[canPick(w,m),w1=updateWorldPick(w,m),a=updateCarry(w,m)]

CANT_PICK

[not(canPick(w,m)),a=getMAgent(m)]

Consume 
position

Agent

Performput MoveConsumepacket

Agent

DO_PUT

[canPut(w,m),w1=updateWorldPut(w,m),a=updateCarry(w,m)]

CANT_ PUT

[not(canPut(w,m)),a=getMAgent(m)]

Performskip T

DO_SKIP

[true]

T

nbPackets‘token

PACKET
_COUNT

COUNT

T

syncIn

T

syncout

T

SE

ENVIRONMENT

World
world

T

SYNC

CPN for the environment of the Packet-world

m

1‘getView1(w) ++ 1‘getView2(w)

m m

m

aa

a

a m m 1‘token
aa

1‘t 1‘t

1‘token

1‘token

1‘token

1‘token

1‘token

1‘t

1‘w 1‘w1

1‘w1‘w

1‘w1
1‘w 1‘w

1‘w

1‘w1
1‘w

1‘w
1‘w

1‘token

1‘token

1‘token1‘token

1‘token

1‘token

1‘token

1‘token

1‘w1‘w

 
Figure 4. CPN for the environment of the packet-world. 

Suppose an agent intends to make a step. Therefore he puts a token m of the colorset Move into the 
interface place “Performstep“. The token m contains information about the identity of the agent and 
the coordinate of the square that he wants to step to. The reaction of the world will be one of the two 
following possibilities: 
1. If the action succeeds the transition DO_STEP with the following guard will fire:    

(*w models the world, m the invoked influence and a the consumption *) 

[canStep(w,m),w1=updateWorldStep(w,m),a=updateCoord(m)] 

2. If the action fails the transition CANT_STEP will fire: 
[not(canStep(w,m)),a=getMAgent(m)] 

In the first case the condition canStep(w,m) is fulfilled and the state of the world as well as the 
position for the agent are updated. In the second case canStep(w,m) fails. In this case the original 
location of the agent is copied into the consumption for the agent.  
The last part of the environment concerns the production of the agents’ percepts, modeled as the 
transition PRODUCE_PERCEPT. As soon as  a token arrives at the "syncout" place of the 
synchronization module, this transition fires. It reads the world, produces the agents’ updated views 
and puts them in the interface place “Percept”. There the agents can pick them up. Note that the 
environment only produces percepts as long as the produce percept transition can read a token from 
the PACKET_COUNT place. Initially this place contains one anonymous token for every packet on 
the grid. Later on, each time an agent delivers a packet on its destination, one token is consumed 
from the packet count place. Finally when the latest packet is delivered there remain no longer tokens 
in the packet count place and that ends the production of new percepts.  
3.3 Model of a basic agent   
Agents are the active entities of the packet-world. Each agent is endowed with a number of 
operations in order to act in the environment. He can perceive information and use it instantly or 



register it for later use. He can act in the environment and manipulate things. The CPN model for a 
basic agent is shown in Figure 5.  

Performstep

Move

Percept

View

1‘view1 ++ 1‘view2

Performpick

Move

Consume 
position

Agent

Performput

Move

Consumepacket

Agent

Performskip

T

startup

[n=getAName(a)]

lookforP

Agent

stepP

[not(atP(v)) andalso pRec(r),m=stepP(a,v,r)]

ready

Agent

1‘ agent1

pick

[atP(v),m=pickP(a,v),rout=revise(rin,v)]

updateview[agentsView(n,v)]

View

View

[n=getAName(a)]

lookforD

Agent

put

[atD(v) andalso dRec(r),m=putP(a,v,r)]

[n=getAName(a)]

stepD

[not(atD(v)) andalso dRec(r),m=stepD(a,v,r)]

skipD [surrounded(v)]

skipP

[surroundedByAgents(v)]

beliefbase

Belief 1‘Prec1 ++ 1‘Drec1

T

skip [true]

Move

step [true]

identity

Name

CPN for a basic agent of the Packet-world

a

a

a

v

v

a

if carry(a) then empty else 1‘a aif carry(a) then 1‘a else empty

if carry(a) then 1‘a else emptyif carry(a) then empty else 1‘a

v

v

a

v

1‘a
1‘a

1‘a
1‘a

v

v

r
rr

r

v
a a mm

1‘token

1‘token

1‘token

m

m

m

m 1‘token

n

n
n

n
n

n
n

r
r

rout rin

 
Figure 5. CPN for a basic agent of the packet-world. 

All actions an agent undertakes are driven by a set of goals. The goals of our basic agent are quite 
limited. In case the agent hands are free he will look for a packet and pick it up. As soon as the agent 
holds a packet he will look for the destination and deliver it there. All actions available for an agent 
to fulfill its first goal (go for a packet) can only be started when a token of the colorset Agent is 
located in the place "lookforP". Performing one of the actions available to fulfill the second goal 
(deliver a packet) requires an Agent token in the "lookforD" place. An Agent token contains the state 
of the agent he maintains about himself. Such a token consists of three parts:  

color Agent = record name:Name * coord:Coordinate * carry:Name; 

Initially the Agent token is located in the place “ready”. When the execution starts, the “startup” 
transition fires. This passes the Agent-token to the “lookforP” place. At the same time the name of 
the agent is placed in the “identity” place. The agents’ identity will be used later on to dispatch the 
percepts of the environment to the various agents.    
The state an agent maintains about the world around him is modeled as tokens of the colorset Belief 
stored in the place “beliefbase”:   

color BeliefSubj = with pRec | dRec; 

color Belief = record subj:BeliefSubj * item:Item; 

In our basic model a belief contains information about an item of the world (for the definition of an 
Item, see section 3.2). We have provided two kind of beliefs, one for a packet (subj = pRec) and one 
for a destination (subj = dRec).  Our basic agents actually use their belief base only passive and in a 
limited way. In fact they will only look for a packet or the destination of a packet in the base when 
they do not see it. So only when the programmer has given the agents some initial information (by 



means of an initial marking of the belief base) they take profit of their belief base, otherwise it is of 
no help.  
An agent trusts the beliefs about a destination but he revises beliefs about a packet as soon as he 
approaches the subject of the belief. This is done by means of the revise(Belief,View)function in 
the guard of the transition “pick”. 
The agents view on the world is modeled as tokens of the colorset View:  

color View = list of Item with 1..(worldsize*worldsize); 

In practice this list never contains all items of the world. The head of the list is always the item that 
corresponds to the agent himself. Thereafter the environment copies only the items around the agent 
in a range defined by the variable “view-size”. Figure 6 illustrates the limited view an agent has on 
the world. In this example the size of the view is 2.      

 
Figure 6. View on the world of Agent 2. 

Now we discuss the action set of the agent. Each action is modeled as a transition. Such a transition 
consumes at least one token of the colorset Agent and one of the View set. Optionally the belief base 
is consulted. If the Agent token is located in the “lookforP” place the agent can make a step, pick up 
a packet or skip. If the token is in the “lookforD” place the agent can make a step, put its packet 
down or skip. In each case, the selection of the action is based on the criteria described in the guards 
of the transitions. We illustrate this for the action “put”: 

(* v models the view of the agent, a the intern data of the agent, r   

one of the beliefs of the agent and m the invoked influence *) 

[atD(v) andalso dRec(r),m=putP(a,v,r)] 

The action “put” will be selected only if the agent is next to the destination of the packet he carries, 
i.e. the atD(v) condition. The record with possible information about the destination is selected 
from the belief base with the dRec(r) condition. If this record contains the coordinate of the 
destination, the agent creates an influence m at once, delivering its packet. If the destination is 
unknown he searches it from its actual view and creates a similar influence. The influence m is sent 
to the “Performput” interface place, where the environment takes it up for handling. An influence is 
modeled as a token of the colorset Move:  

color Move = product Agent * Coordinate; 

This tuple contains the Agents’ identification (see section 3.3) and the coordinate (i.e. a tuple (x,y)) 
of the square where he intends to perform some influence. A Move token together with the place 
where it lands offers the environment enough information to determine the action an agent intends to 



perform.  The percepts from the environment come from the interface place “Percept”. As soon as a 
new percept arrives the agent must identify himself in order to obtain the new information. Therefore 
the “updateview” transition reads the agents’ identity. If there is a match, the view will be accepted 
and broadcast over the possible actions of which one is selected for execution during the next action 
cycle. The reactions to the influences are consumed from “Consumeposition” and “Consumepacket”.  
Here a similar identification scenario is used. After accepting a consume the Agent token is directed 
to one of the main places “lookforP” or “lookforD” according to the fact the agent carries a packet 
or not.    
3.4 Model for the synchronization module       
The synchronization module models the notion of functional synchronization as we already 
described in section 2.5. It offers the agents an implicit framework for coordinating their 
interactions. Figure 7 shows the module with its connections to the environment.  

Percept

View

1‘view1 ++ 1‘view2

PRODUCE_PERCEPT
T

nbPackets‘token

PACKET
_COUNT

syncin

T

syncout T

syncaccumul

T

SE

ENVIRONMENT

World

world

T

SYNCE

CPN for the sync module of the Packet-world

1‘getView1(w) ++ 1‘getView2(w)

1‘t 1‘t

1‘token

1‘token

1‘token

nbAgents‘t

1‘t

1‘t

1‘token

1‘w1‘w

 
Figure 7. Synchronization module for the packet-world. 

The behavior of the module is straightforward. Each time the agents performs their actions, the 
environment will react on them. For each reaction in particular, an anonymous synchronization token 
is produced and placed in the “SYNCE” place. These tokens are sent to the “syncin” interface place 
of the synchronization module. From there on, the tokens are collected in the “syncaccumul” place. 
When the actions for all agents are handled this place contains a number of tokens equal to the 
number of agents living in the packet-world. This triggers the output transition to fire, placing an 
anonymous token in the “syncout” place. On his turn this enables the PRODUCE_PERCEPT 
transition of the environment, such that new percepts can be calculated and sent to the agents. This 
starts a new action cycle (see section 2.5).   
3.5 Complete CPN for the basic version of the packet-world    
With de separated modules we now can compose the complete CPN for the packet-word. This 
model, depicted in Figure 8, gives a detailed picture of the high level model we presented in Figure 3. 
All interface places are combined according to the techniques we mentioned earlier in the paper. To 
keep a clear overview we limited the number of agents to two. In general however, a MAS may be 
composed of much more agents. In our model each agent has its own CPN module.  



P
er

fo
rm

st
ep

M
ov

e

D
O

_S
T

E
P

[c
an

S
te

p(
w

,m
),

w
1=

up
da

te
W

or
ld

S
te

p(
w

,m
),

a=
up

da
te

C
oo

rd
(m

)]

P
er

ce
p

tV
ie

w

1‘
vi

ew
1 

+
+

 1
‘v

ie
w

2

P
R

O
D

U
C

E
_P

E
R

C
E

P
T

C
A

N
T

_S
T

E
P

[n
ot

 (
ca

nS
te

p(
w

,m
))

,a
=

ge
tM

A
ge

nt
(m

)]

P
er

fo
rm

p
ic

k

M
ov

e D
O

_P
IC

K

[c
an

P
ic

k(
w

,m
),

w
1=

up
da

te
W

or
ld

P
ic

k(
w

,m
),

a=
up

da
te

C
ar

ry
(w

,m
)]

C
A

N
T

_P
IC

K

[n
ot

(c
an

P
ic

k(
w

,m
))

,a
=

ge
tM

A
ge

nt
(m

)]

C
o

n
su

m
e 

p
o

si
ti

o
n

A
ge

nt

P
er

fo
rm

p
u

t
M

ov
e

C
o

n
su

m
ep

ac
ke

t

A
ge

nt

D
O

_P
U

T

[c
an

P
ut

(w
,m

),
w

1=
up

da
te

W
or

ld
P

ut
(w

,m
),

a=
up

da
te

C
ar

ry
(w

,m
)]

C
A

N
T

_P
U

T

[n
ot

(c
an

P
ut

(w
,m

))
,a

=
ge

tM
A

ge
nt

(m
)]

P
er

fo
rm

sk
ip

T

D
O

_S
K

IP

[tr
ue

]

Tnb
P

ac
ke

ts
‘to

ke
n

P
A

C
K

E
T

_C
O

U
N

T

C
O

U
N

T

T

sy
n

ci
n

T

sy
n

co
u

t
T

sy
n

ca
cc

u
m

u
l

T

S
E

st
ar

t 
u

p
2

[n
=

ge
tA

N
am

e(
a)

]

lo
o

kf
o

rP
2

A
ge

nt

st
ep

P
2

[n
ot

(a
tP

(v
))

 a
nd

al
so

 p
R

ec
(r

),
m

=
st

ep
P

(a
,v

,r
)]

re
ad

y2 A
ge

nt

1‘
ag

en
t2

p
ic

k2

[a
tP

(v
),

m
=

pi
ck

P
(a

,v
),

ro
ut

=
re

vi
se

(r
in

,v
)]

u
p

d
at

ev
ie

w
2

[a
ge

nt
sV

ie
w

(n
,v

)]
V

ie
w

V
ie

w
2

[n
=

ge
tA

N
am

e(
a)

]

lo
o

kf
o

rD
2

A
ge

nt

p
u

t2

[a
tD

(v
) 

an
da

ls
o 

dR
ec

(r
),

m
=

pu
tP

(a
,v

,r
)]

[n
=

ge
tA

N
am

e(
a)

]

st
ep

D
2

[n
ot

(a
tD

(v
))

 a
nd

al
so

 d
R

ec
(r

),
m

=
st

ep
D

(a
,v

,r
)]

sk
ip

D
2[s
ur

ro
un

de
d(

v)
]

sk
ip

P
2

[s
ur

ro
un

de
dB

yA
ge

nt
s(

v)
]

b
el

ie
fb

as
e2

B
el

ie
f

1‘
P

re
c2

 +
+

 1
‘D

re
c2

st
ar

t 
u

p
1

[n
=

ge
tA

N
am

e(
a)

]

lo
o

kf
o

rP
1

A
ge

nt

st
ep

P
1

[n
ot

(a
tP

(v
))

 a
nd

al
so

 p
R

ec
(r

),
m

=
st

ep
P

(a
,v

,r
)]

re
ad

y1

A
ge

nt

1‘
 a

ge
nt

1

p
ic

k1

[a
tP

(v
),

m
=

pi
ck

P
(a

,v
),

ro
ut

=
re

vi
se

(r
in

,v
)]

u
p

d
at

ev
ie

w
1

[a
ge

nt
sV

ie
w

(n
,v

)]
V

ie
w

V
ie

w
1

[n
=

ge
tA

N
am

e(
a)

]

lo
o

k\
fo

rD
1

A
ge

nt

p
u

t1

[a
tD

(v
) 

an
da

ls
o 

dR
ec

(r
),

m
=

pu
tP

(a
,v

,r
)]

[n
=

ge
tA

N
am

e(
a)

]

st
ep

D
1

[n
ot

(a
tD

(v
))

 a
nd

al
so

 d
R

ec
(r

),
m

=
st

ep
D

(a
,v

,r
)]

sk
ip

D
1

[s
ur

ro
un

de
d(

v)
]

sk
ip

P
1

[s
ur

ro
un

de
dB

yA
ge

nt
s(

v)
]

E
N

V
IR

O
N

M
E

N
T

W
or

ld
w

or
ld

T

sk
ip

1
[tr

ue
]

M
ov

e

st
ep

1
[tr

ue
]

M
ov

e

st
ep

2
[tr

ue
]

T

sk
ip

2
[tr

ue
]

id
en

ti
ty

1

N
am

e

id
en

ti
ty

2

N
am

e

T

S
Y

N
C

E

C
P

N
 f

o
r 

th
e 

b
as

ic
 v

er
si

o
n

 o
f 

th
e 

P
ac

ke
t-

w
o

rl
d

b
el

ie
fb

as
e1

B
el

ie
f

1‘
P

re
c2

 +
+

 1
‘D

re
c2

m

1‘
ge

tV
ie

w
1(

w
) 

+
+

 1
‘g

et
V

ie
w

2(
w

)

m
m

m

a
a

a

a
m

m
1‘

to
ke

n
a

a

1‘
t

1‘
t

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

nb
A

ge
nt

s‘
t

1‘
t

1‘
t

a

a

a

v

v
a

if 
ca

rr
y(

a)
 th

en
 e

m
pt

y 
el

se
 1

‘a

a

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y
if 

ca
rr

y(
a)

 th
en

 e
m

pt
y 

el
se

 1
‘a

v v

a
v

1‘
a

1‘
a

1‘
a

1‘
a

v v

rr
rr

a

a

a

v

v

a

if 
ca

rr
y(

a)
 th

en
 e

m
pt

y 
el

se
 1

‘a
a

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y
if 

ca
rr

y(
a)

 th
en

 e
m

pt
y 

el
se

 1
‘a

v v

a

v

1‘
a

1‘
a

1‘
a

1‘
a

v v

1‘
w

1‘
w

11‘
w

1‘
w

1‘
w

1
1‘

w
1‘

w1‘
w

1‘
w

1
1‘

w

1‘
w

1‘
w

v

v

a
a

a
a

m
m

m
m

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

m

m m m

m m

m

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

m

1‘
to

ke
n

1‘
to

ke
n

n

n n

n

nn

nn

n
n

n
n

n
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
w

1‘
w

r r

ro
ut

rin

r r

r r

rin
ro

ut

rr

 
Figure 8. CPN for the basic model of the packet-world. 



If we want to model a MAS with more agents we can combine the modules in a hierarchical CPN. 
However we do not discuss this further in this paper. To illustrate the purposes of this paper a model 
with two agents is sufficient. 

4. A CPN for communicating agents  

In this section we extend the basic model of the packet-world in a way the agents can communicate 
information with each other. Communication enables agents to coordinate their actions and behavior, 
resulting in a multi-agent system that is more coherent. Agents can use their abilities to communicate 
to better achieve the goals they are driven by.  
Communication is part perception (the receiving of messages) and part action (the sending of 
messages). The conversation between two agents follows a protocol. A protocol enables agents to 
exchange and understand messages. To extend a basic agent with functionality for communication 
we build a “communication module” that can be plugged into the basic model of that agent. 
Furthermore the environment must be equipped with infrastructure to handle messages (mail). 
Therefore, we build a “postal service module” that can be plugged into the environment. 
In this section we first introduce the communication protocol for our agents. Then we give a high 
level overview of our extended model for the packet-world, including communication. Next, we 
present the new modules necessary for communication and conclude with the complete CPN for the 
extended model.  
4.1 Communication protocol 
Basically the agents in our packet-world all have the same capabilities. This is reflected in the roles 
they play in a dialogue. As long as an agent “sees” another agent he is capable of sending a message 
to that peer colleague. For the moment we only model question/answer types of messages. In 
particular we limit the subject of the messages to requests for information. Figure 9 shows the 
different steps in a dialogue. The syntax of the protocol is described in section 4.3. 

 
questioner addressee 

compose msg 
send msg 

accept msg 

look for info 
send reply 

process answer 

other activities 

 
Figure 9. Communication among the agents. 

An agent delivers a composed message at the “inbox” of the postal service. This service has 
knowledge of the mailboxes of the agents and routes the message to the mailbox of the addressee. As 
soon as the message arrives, the addressee can pick it up from his mailbox. In our model an agent is 
not obliged to handle an incoming message at once.  
When the addressee decides to read the message, he will look for the requested information. If he 
knows the information he sends an answer, otherwise he informs the requester he can’t help him for 



the moment. When the reply arrives the information will be processed and possibly update the belief 
base of the requester. 
4.2 High level model of the packet-world with communication extension   
Figure 10 shows a high level model for the packet-world in which agents are equipped with 
functionality to communicate. The basic agents of our basic model are now extended with a 
communication module. This module permits an agent to interact with a colleague. 

Basic
agent 1

Basic
agent 2

EnvironmentSync
Module

Communication
module

Communication
module

Postal Service

 
Figure 10. High level model of with functionality for inter-agent communication. 

The arrows above the agents model the communication channels with the postal service module. This 
latter is responsible for delivering posted messages in the mailboxes of the addressees. Note that the 
postal service module too can produce functional synchronization pulses. 
4.3 Model of the communication module for the agents    
The communication module assembles functionality for an agent to send requests, respond to 
questions and process answers. The CPN for such a module is depicted in Figure 11.  
In our model, agents can gather information from a colleague about the location of a packet or a 
particular destination according to its actual state. Asking for information is modeled as a transition, 
respectively “askforP” and “askforD”. To fire one of these transitions (i.e. compose a message) a 
number of conditions must be fulfilled. 
These conditions are described in the guards of the transitions. Let us look to one example, the 
“askforD” transition:  

(* a models the internal state of the agent, v its current view *)  

[canCallD(a,v),question=askForD(a,v)] 

The function canCallD(a,v) returns true only if (i) the agent actually does not see the destination 
of its packet and (ii) he sees a colleague on which he can ask the information. If canCallD(a,v) 
succeeds, the function askForD(a,v) produces a question that as a token of the colorset Message 
is delivered in the inbox of the communication module.  
A Message has the following structure: 

color Performative =  

with questP | answP | noanswP | questD | answD | noanswerD; 

color Message =  

record from:Name * to:Name * perform:Performative * content: Item; 



lookforP

Agent

View

View

lookforD
Agent

processanswer

[isAnAnswer(msg) ,rightRec(msg,rin) ,rout=updateRecord(rin,msg)]

askforD

[canCallD(a,v),question = askForD(a,v)]

inbox

Message

mailbox

Message

queueD
regulation

QT
1‘qt1

response

[isAQuestion(msg), rightRec(msg,r),,answer = composeAnswer(v,r,msg)]

beliefbase

Belief 1‘Prec1 ++ 1‘Drec1

CPN for the communication module of the Packet-world

askforP

[canCallP(a,v),question = askForP(a,v)]

queueP
regulation

QT

1‘qt1

msg

1‘a

question

v

msg

answer

v

1‘qt

if dRec(rin) then 1‘qt1 else empty

1‘rout
1‘rin

1‘arr

if pRec(rin) then 1‘qt1 else empty

1‘qt

1‘a
1‘a

question

v

 
Figure 11. Communication module for an agent. 

The performative informs the addressee about the type of message that is been sent. The content of a 
question is an item structure that has to be completed by the addressee. If for example an agent “a1” 
asks an agent “a2” for the location of the destination for yellow packets he will compose the 
following message:  
{from=”a1”,to=”a2”,perform=questD,item={name=”yellowDest”,coord=null}}; 

When agent “a2” receives this message he knows exactly what “a1” is asking for.  He will uses his 
belief base and actual view to find the coordinate of the “yellowDest”. If he finds e.g. at coordinate 
(4,3) the yellow destination, he replies the following message :  
{from=”a2”,to=”a1”,perform=answD,item={name=“yellowDest”,coord=(4,3)”}}  

Replying to a message is performed in the transition “response”. To fire this transition a view is 
consumed together with the message from the mailbox. The information in the believe base is only 
consulted as an extra information source.  
The model prevents an agent to send messages for information over and over again. The 
“queueregulation” places contain a limited number of tokens that are consumed each time a question 
is sent and only restored when the answer is processed. Processing an answer comes down to update 
the belief base for the case the answer contains new information, otherwise the answer is thrown 
away.  
4.4 Model of the posting service module     
The postal service is responsible for delivering the mail of the agents at the right mailbox.  Figure 12 
shows the CPN for this module. The postal service has one “inbox” place where agents can leave 
their messages. Each message is accepted in the transition “acceptmsg”. This transition puts the 
message in the “msgbuffer” place and produces three other tokens. The first token goes to the 
“msgcount” place where the user can read the total number of messages the postal service has 
handled so far. The second token goes to the “msglog” place, where a log of all messages is saved. 
The third token is sent to the “syncP” place from where it is directed to the “syncin” place of the 
synchronization module. This means that in our model, sending messages is coordinated with the 



other actions agents can perform.  This fits in our concept of functional synchronization, offering a 
solid base for the agents to coordinate their activities.  

syncin

T

mailbox2

Message

acceptmsgdeliver msg
[d = destination(msg)]

inbox

Message

msgbuffer

Message

mailbox1

Message

sP

addresses

MailBox

1‘mailbox1 ++ 1‘mailbox2

T

msgcount

CPN for postal service of the Packet-world

syncP

T

msglog

Message

msg

msgmsg

if d = mailbox1 then 1‘msg else empty

if d = mailbox2 then 1‘msg else empty

1‘token

d
d

1‘token

1‘token

1‘token

msg

 
Figure 12. Postal service module. 

When a message resides in the “msgbuffer” it is delivered to the addressee by firing the “delivermsg” 
transition. This transition consults the “addresses” place where the references to the different 
mailboxes are stored. Based on the mapping between the addressee indicated in the message and the 
information of the mailbox references, the message is delivered in the mailbox of the addressee where 
he can pick it up later on. 

4.5 Complete CPN for the packet-world with communicating agents     
With de separated modules we have proposed in the previous sections, we now can compose the 
complete CPN for the packet-word with communicating agents. This model, depicted in Figure 13, 
gives a detailed picture of the high level model we presented in Figure 10. 

5. First experiments  

In this section we briefly give an overview of the results of our first experiments with the CPNs for 
the basic version of the packet-world and the extended version with functionality for communication. 
We first discuss results of simulations; next we look to a number of verifications.  
5.1 Simulations     
With the Design/CPN tool a CPN can be executed, automatically or interactive.  This allows us to 
follow the successive actions of the agents. We did tests on a world with size 5 and one with size 8. 
For both we changed the view-size for the agents. Table 1 gives an overview of the results. The 
numbers are rounded averages for 5 jobs.  

Table 1. Simulation results. 
World view-size Kind of model COUNT % gain msgcount 

basic 26 -- 2 
communication 18 

31 
4 

basic 15 -- 

world-size = 5 

nbAgents = 2 

nbPackets = 5 3 
communication 14 

7 
2 

basic 167 -- 3 
communication 129 

23 
16 

basic 110 -- 

world-size = 8 

nbAgents = 2 

nbPackets = 16 4 
communication 108 

2 
2 

 



P
er

fo
rm

st
ep

M
ov

e

D
O

_S
T

E
P

[c
an

S
te

p(
w

,m
),

w
1=

up
da

te
W

or
ld

S
te

p(
w

,m
),

a=
up

da
te

C
oo

rd
(m

)]

P
er

ce
p

tV
ie

w

1‘
vi

ew
1 

+
+

 1
‘v

ie
w

2

P
R

O
D

U
C

E
_P

E
R

C
E

P
T

C
A

N
T

_S
T

E
P

[n
ot

 (
ca

nS
te

p(
w

,m
))

,a
=

ge
tM

A
ge

nt
(m

)]

P
er

fo
rm

p
ic

k

M
ov

e D
O

_P
IC

K

[c
an

P
ic

k(
w

,m
),

w
1=

up
da

te
W

or
ld

P
ic

k(
w

,m
),

a=
up

da
te

C
ar

ry
(w

,m
)]

C
A

N
T

_P
IC

K

[n
ot

(c
an

P
ic

k(
w

,m
))

,a
=

ge
tM

A
ge

nt
(m

)]

C
o

n
su

m
e 

p
o

si
ti

o
n

A
ge

nt

P
er

fo
rm

 p
u

t
M

ov
e

C
o

n
su

m
ep

ac
ke

t

A
ge

nt

D
O

_P
U

T

[c
an

P
ut

(w
,m

),
w

1=
up

da
te

W
or

ld
P

ut
(w

,m
),

a=
up

da
te

C
ar

ry
(w

,m
)]

C
A

N
T

_P
U

T

[n
ot

(c
an

P
ut

(w
,m

))
,a

=
ge

tM
A

ge
nt

(m
)]

P
er

fo
rm

 s
ki

p
T

D
O

_S
K

IP

[tr
ue

]

Tnb
P

ac
ke

ts
‘to

ke
n

P
A

C
K

E
T

_C
O

U
N

T

C
O

U
N

T

T

sy
n

ci
n

T

sy
n

co
u

t
T

sy
n

ca
cc

u
m

u
l

T

S
E

st
ar

t 
u

p
2

[n
=

ge
tA

N
am

e(
a)

]

lo
o

kf
o

rP
2

A
ge

nt

st
ep

P
2

[n
ot

(a
tP

(v
))

 a
nd

al
so

 p
R

ec
(r

),
m

=
st

ep
P

(a
,v

,r
)]

re
ad

y2 A
ge

nt

1‘
ag

en
t2

p
ic

k2

[a
tP

(v
),

m
=

pi
ck

P
(a

,v
),

ro
ut

=
re

vi
se

(r
in

,v
)]

u
p

d
at

ev
ie

w
2

[a
ge

nt
sV

ie
w

(n
,v

)]
V

ie
w

V
ie

w
2

[n
=

ge
tA

N
am

e(
a)

]

lo
o

kf
o

rD
2

A
ge

nt

p
u

t2

[a
tD

(v
) 

an
da

ls
o 

dR
ec

(r
),

m
=

pu
tP

(a
,v

,r
)]

[n
=

ge
tA

N
am

e(
a)

]

st
ep

D
2

[n
ot

(a
tD

(v
))

 a
nd

al
so

 d
R

ec
(r

),
m

=
st

ep
D

(a
,v

,r
)]

sk
ip

D
2

[s
ur

ro
un

de
d(

v)
]

sk
ip

 P

[s
ur

ro
un

de
dB

yA
ge

nt
s(

v)
]

p
ro

ce
ss

an
sw

er
2

[is
A

nA
ns

w
er

(m
sg

),
rig

ht
R

ec
(m

sg
,r

in
),

ro
ut

=
up

da
te

R
ec

or
d(

rin
,m

sg
)]

as
kf

o
rD

2

[c
an

C
al

lD
(a

,v
),

qu
es

tio
n 

=
 a

sk
F

or
D

(a
,v

)]

m
ai

lb
o

x2

M
es

sa
ge

q
u

eq
u

eD
2

re
g

u
la

ti
o

n Q
T

1‘
qt

2

re
sp

o
n

se
2

[is
A

Q
ue

st
io

n(
m

sg
),

rig
ht

R
ec

(m
sg

,r
),

an
sw

er
 =

 c
om

po
se

A
ns

w
er

(v
,r

,m
sg

)]

b
el

ie
fb

as
e2

B
el

ie
f

1‘
P

re
c2

 +
+

 1
‘D

re
c2

st
ar

t 
u

p
1

[n
=

ge
tA

N
am

e(
a)

]

lo
o

kf
o

rP
1

A
ge

nt

st
ep

P
1

[n
ot

(a
tP

(v
))

 a
nd

al
so

 p
R

ec
(r

),
m

=
st

ep
P

(a
,v

,r
)]

re
ad

y1

A
ge

nt

1‘
 a

ge
nt

1

p
ic

k1

[a
tP

(v
),

m
=

pi
ck

P
(a

,v
),

ro
ut

=
re

vi
se

(r
in

,v
)]

u
p

d
at

ev
ie

w
1

[a
ge

nt
sV

ie
w

(n
,v

)]
V

ie
w

V
ie

w
1

[n
=

ge
tA

N
am

e(
a)

]

lo
o

kf
o

rD
1

A
ge

nt

p
u

t1

[a
tD

(v
) 

an
da

ls
o 

dR
ec

(r
),

m
=

pu
tP

(a
,v

,r
)]

[n
=

ge
tA

N
am

e(
a)

]

st
ep

D
1

[n
ot

(a
tD

(v
))

 a
nd

al
so

 d
R

ec
(r

),
m

=
st

ep
D

(a
,v

,r
)]

sk
ip

D
1

[s
ur

ro
un

de
d(

v)
]

sk
ip

P
1

[s
ur

ro
un

de
dB

yA
ge

nt
s(

v)
]

p
ro

ce
ss

an
sw

er
1

[is
A

nA
ns

w
er

(m
sg

),
  r

ig
ht

R
ec

(m
sg

,r
in

) 
,r

ou
t=

up
da

te
R

ec
or

d(
rin

,m
sg

)]

ac
ce

p
t 

m
sg

as
kf

o
rD

1

[c
an

C
al

lD
(a

,v
),

qu
es

tio
n 

=
 a

sk
F

or
D

(a
,v

)]

d
el

iv
er

 m
sg

[d
 =

 d
es

tin
at

io
n(

m
sg

)]

in
b

o
x

M
es

sa
ge

m
sg

b
u

ff
er

M
es

sa
ge

m
ai

lb
o

x1

M
es

sa
ge

q
u

eu
eD

1
re

g
u

la
ti

o
n

Q
T

1‘
qt

1

re
sp

o
n

se
1

[is
A

Q
ue

st
io

n(
m

sg
),

rig
ht

R
ec

(m
sg

,r
),

an
sw

er
 =

 c
om

po
se

A
ns

w
er

(v
,r

,m
sg

)]

b
el

ie
fb

as
e1

B
el

ie
f

1‘
P

re
c1

 +
+

 1
‘D

re
c1

sP

E
N

V
IR

O
N

M
E

N
T

W
or

ld
w

or
ld

T

sk
ip

1
[tr

ue
]

M
ov

e

st
ep

1
[tr

ue
]

M
ov

e

st
ep

2
[tr

ue
]

T

sk
ip

2
[tr

ue
]

id
en

ti
ty

1

N
am

e

id
en

ti
ty

2

N
am

e

ad
d

re
ss

es

M
ai

lB
ox

1‘
m

ai
lb

ox
1 

+
+

 1
‘m

ai
lb

ox
2

T

S
Y

N
C

E

T

m
sg

co
u

n
t

C
P

N
 f

o
r 

th
e 

P
ac

ke
t-

w
o

rl
d

sy
n

cP

T

as
kf

o
rP

1

[c
an

C
al

lP
(a

,v
),

qu
es

tio
n 

=
 a

sk
F

or
P

(a
,v

)]  q
u

eu
eP

1
re

g
u

la
ti

o
n

Q
T

1‘
qt

1

 q
u

eu
eP

2
re

g
u

la
ti

o
n

Q
T

1‘
qt

2

as
kf

o
rP

2

[c
an

C
al

lP
(a

,v
),

 q
ue

st
io

n=
as

kF
or

P
(a

,v
)]

m
sg

lo
g

M
es

sa
ge

m

1‘
ge

tV
ie

w
1(

w
) 

+
+

 1
‘g

et
V

ie
w

2(
w

)

m
m

m

a
a

a

a
m

m
1‘

to
ke

n
a

a

1‘
t

1‘
t

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

nb
A

ge
nt

s‘
t

1‘
t

1‘
t

a

a

a

v

v
a

if 
ca

rr
y(

a)
 th

en
 e

m
pt

y 
el

se
 1

‘a

a

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y
if 

ca
rr

y(
a)

 th
en

 e
m

pt
y 

el
se

 1
‘a

v v

a
v

1‘
a

1‘
a

1‘
a

1‘
a

v v

m
sg

1‘
a

v

m
sg

v

1‘
qt

if 
dR

ec
(r

in
) 

th
en

 1
‘q

t2
 e

ls
e 

em
pt

y

rr
rr

1‘
ro

ut
1‘

rin

1‘
a

a

a

a

v

v

a

if 
ca

rr
y(

a)
 th

en
 e

m
pt

y 
el

se
 1

‘a
a

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y

if 
ca

rr
y(

a)
 th

en
 1

‘a
 e

ls
e 

em
pt

y
if 

ca
rr

y(
a)

 th
en

 e
m

pt
y 

el
se

 1
‘a

v v

a

v

1‘
a 1‘

a
1‘

a
1‘

a

v v

m
sg

m
sg

m
sg

m
sg

1‘
a

qu
es

tio
n

v

m
sg

an
sw

er

v

1‘
qt

if 
dR

ec
(r

in
) 

th
en

 1
‘q

t1
 e

ls
e 

em
pt

y

rr
r

r

1‘
ro

ut
1‘

rin

1‘
a

if 
d 

=
 m

ai
lb

ox
1 

th
en

 1
‘m

sg
 e

ls
e 

em
pt

y

if 
d 

=
 m

ai
lb

ox
2 

th
en

 1
‘m

sg
 e

ls
e 

em
pt

y

an
sw

er
qu

es
tio

n

1‘
to

ke
n

1‘
w

1‘
w

11‘
w

1‘
w

1‘
w

1
1‘

w
1‘

w1‘
w

1‘
w

1
1‘

w

1‘
w

1‘
w

v

v

a
a

a
a

m
m

m
m

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

m

m m m

m m

m

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

m

1‘
to

ke
n

1‘
to

ke
n

n

n n

n

nn

n n

n
n

dd

nn

n
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
to

ke
n

1‘
w

1‘
w

1‘
to

ke
n

r
r

r
r

1‘
to

ke
n

1‘
to

ke
n

if 
pR

ec
(r

in
) 

th
en

 1
‘q

t1
 e

ls
e 

em
pt

y

1‘
qt

1‘
a

1‘
a

r r

qu
es

tio
n

v

r r

if 
pR

ec
(r

in
) 

th
en

 1
‘q

t2
 e

ls
e 

em
pt

y

1‘
qt

qu
es

tio
n

1‘
a

1‘
a

v

ro
ut

rin
ro

ut
rin

m
sg

 
Figure 13. Complete CPN for the packet-world with two communicating agents. 

 
 



 
 

If we compare the results for one kind of model (basic or communication), we see that increasing the 
view-size significantly reduces the number of steps the agents need to complete a job. The obvious 
explanation is that a greater view-size increases the information for the agents, so they can act more 
efficiently. When we compare the results between the two kinds of models for one view-size we 
notice that for small view-sizes the communicating model scores significantly better then the basic 
version. For greater view-sizes the gain is only marginal. In the first case agents communicate 
information to each other, so they can act more efficiently.  In the latter case the view of the agents 
covers a great part of the world, so they mostly “see” what they are looking for, and there is no need 
to request information from each other. Our first tests confirm the value of information interchange 
between agents, but for better-founded conclusions we need to do more tests, especially with greater 
worlds and more agents. 

5.2 Verifications      
Besides simulation, the Design/CPN tool offers support for formal verifications of CPNs by means 
of the Occurrence Graph Tool [4]. An occurrence graph is a directed graph with a node for each 
reachable marking and an arc for each occurring binding element. With such occurrence graphs we 
did a number of formal verifications for the CPNs of the packet-world. We discuss here some results 
for the basic version of a world of size 5 with 2 agents that have to collect 5 packets.  
The tool generates a standard report (for more information see [5]) that already gives a lot of 
information. E.g., the “Liveness Properties” gives the “Dead Transitions Instances” for the 
occurrence graph. If e.g. CANT_PICK is such a dead transition instance this means that for the 
given packet-world there where no conflicts between the agents with picking up packets. Contrary if 
e.g. CANT_STEP is not a dead transition instance we are sure both agents must have stepped at 
least once to the same square. To investigate the CPN in more detail the occurrence graph tool offers 
a lot of standard query functions. Besides, users can formulate their own customized queries too. To 
do a number of formal verifications, we extended the CPN for the packet-world with an extra “test-
module”, depicted in Figure 14. 
We added four more places to the Petri Net, PACKETS_ON_GRID, CARRIED_PACKETS, 
DELIVERED_PACKETS and FINISCH_JOB, as well as two more transitions FINISH_JOB and 
TEST_END_JOB. Initially PACKETS_ON_GRID contains nbPackets anonymous tokens, while 
CARRIED_PACKETS and DELIVERED_PACKETS are empty. 
When an agent picks up a packet (i.e. DO_PICK fires) one token from PACKETS_ON_GRID is 
passed to CARRIED_PACKETS. When an agent delivers a packet at its destination (i.e. DO_PUT 
fires) the token is further passed from CARRIED_PACKETS to DELIVERED_PACKETS. At the 
end of the job all packets are delivered, so PACKETS_ON_GRID and CARRIED_PACKETS are 
empty, while DELIVERED_PACKETS contains nbPackets anonymous tokens. When for each 
agent (during the final action cycle) the Agent token reaches the “lookforP” place and a new 
synchronization token reaches the “syncout” place, the FINISH_JOB transition is enabled and will 
fire. This clears the Petri Net and an anonymous token arrives in the END_JOB place. This enables 
the TEST_END_JOB transition that from then on will fire forever. 
The packet-world is free of deadlocks. To prove that no deadlock appears we have to prove that 
there exists a path from each node in the occurrence to the node that represents the final marking, 
representing the state in the END_JOB place. That particular node, the leaf node of the occurrence 
graph, is shown with its predecessors in Figure 14. The proof is straightforward. The SearchNodes 
function “PROOF 1” in Figure 14 searches the number of nodes that have no path to the leaf node. 
Since this number is zero we have proven that the packet-world is deadlock free. 



DO_PUT

[canPut(w,m),w1=updateWorldPut(w,m),a=updateCarry(w,m)]

syncout T

lookforP1

Agent

ENVIRONMENT

World

1‘world

Test module for the Packet-world
(* PROOF 1 *)
SearchNodes ( 
  EntireGraph,    
  fn n => not(SccReachable(n,5393)), 
  NoLimit,
  fn n => 1,
  0,
  op + ); 

val it = 0 : int

DELIVERED
_PACKETS

T

END_JOB

T

FINISH_JOB

TEST_END_JOB

5393
 

17:1

5377
 
3:1

5378
 
3:1

5379
 
3:1

5380
 
3:1

5381
 
3:1

5382
 
3:1

5383
 
3:15384

 
3:1

5385
 
3:1

5386
 
3:1

lookforP2

Agent

(* PROOF 2 *)
SearchNodes (
EntireGraph,
fn n => Mark.MAS’PACKETS_ON_GRID 1 n 
++ Mark.MAS’CARRIED_PACKETS 1 n     
++ Mark.MAS’DELIVERED_PACKETS 1 n     
    <>  (nbPackets,token)!!empty,
NoLimit,
fn n => n,
[],
op ::); 

val it = [5393] : Node list

PACKETS
_ON_GRID

T

nbPackets‘token

CARRIED_
PACKETS

T

DO_PICK

[canPick(w,m),w1=updateWorldPick(w,m),a=updateCarry(w,m)]

1‘w1
1‘w

1‘token

nbPackets‘token

1‘token 1‘token

1‘token

1‘t

1‘w

1‘a1

12345:5393->5393
MAS’TEST_END_JOB 

12329:5377->5393
MAS’FINISH_JOB 

1‘a2

1‘token

1‘token 1‘token

1‘w1
1‘w

 
Figure 14. Test module for the packet-world. 

 A job is correctly solved in a limited number of steps. To prove that a job of the packet-world is 
correctly solved in a limited number of steps we have to take two steps. First we have to prove that 
the following place-invariant holds:  

“the sum of anonymous tokens (each representing a packet) for the places 
PACKETS_ON_GRID, CARRIED_PACKERTS and DELIVERED_PACKETS is 
constant and equal to nbPackets in each node of the occurrence graph, except in the 
leaf node”  

This invariant tells us that neither strange packets enter the packet-world, nor any packet is lost 
during a job. The SearchNode function of “PROOF 2” in Figure 14 shows that the invariant holds. 
To complete the proof we must demonstrate that the number of steps to reach a solution (i.e. the 
TEST_END_JOB is enabled) is limited.  
Since “PROOF 1” tells us that there exists a path from each node in the graph to the leaf node, we 
can conclude that execution always ends in a limited number of steps.    

6. Conclusions and future work 

In this paper we presented a CPN for the packet-world, a multi-agent application. In our research we 
use this application as a case to study the fundamentals of sociality in MASs.  
Let us now reflect and verify that our expectations from using CPNs have been worked out. An 
important argument for using CPNs was its strong graphical expressiveness. We build up the 
packet-world by means of compositional modules. When we integrate communication infrastructure 
into the basic model we got a clear view on how this impacts the agents and the environment. 
Building an executable CPN leaves no escape for the designer. Every aspect must be modeled 
explicitly and unambiguously. Therefore we are forced to find concrete solutions for several 
problems. One typical example is the way we realized functional synchronization. One can talk al lot 
about such an aspect, but modeling it in a CPN brings the designer to the very essence of it. As 
such, we can state that we learned a lot about MASs, using CPNs to model them. Another argument 
why we have chosen CPNs was the possibility of simulation. Simulating a MAS like the packet-
world can be done in different ways. Executing a CPN is not always the most attractive way to 



simulate such a problem. But in fact, that is not the point. What is important is the fact that the 
execution of a CPN is a direct simulation of the model itself. So the simulation directly shows us the 
value of the model we have built. A last argument for CPNs we mention here is the possibility of 
formal verification. The MAS community has a strong tradition in formal description and 
verification of its ideas. CPNs join this approach. Formal verification lets the designer proof the 
correctness of (parts of) his model. Without the Design/CPN tool it would be very hard to prove that 
our packet-world has a correct solution in a limited number of steps. With the tool it is quite simple 
to proof this property.  
This paper reflect our first experiences with CPNs as a tool to model agents’ sociality. The model we 
have developed forms a solid basis for future research of agents' social behavior. We conclude with 
some thoughts about our future work. It is our intention to build modules for a number of other 
social skills for the agents of the packet-world. Examples are agents that cooperate by forming a 
chain and passing packets to each other, or agents that coordinate their actions avoiding future 
conflicts (e.g. 2 agents who both step a long way to the same packet). Building such models will gain 
us more in-depth knowledge about the fundamentals of sociality in MASs. To manage the 
complexity of extensive models we can use hierarchical CPNs. Later on we intend to generalize the 
insights we learned from the packet-world. We intend to build abstract models for different classes 
of social skills. The aggregate of these models can serve as a well defined and easy to communicate 
formal model for social agents in MASs. 

7. References 
[1] C.A.Petri, “Communication with Automata”, Vol.1. Applied Data Research, Princeton, AF 30(602)-3324, 1966.   
[2] K. Jensen, “Coloured Petri Nets”, Lecture Notes Comp. Science, nr. 254, Advances in Petri Nets, Bad Honnef, 

1986. 
[3] J. Ferber. “Multi-Agent Systems, an introduction to distributed artificial intelligence”, Addison-Wesley, ISBN 0-

201-36048-9, 1999. 
[4] Design/CPN, A Computer Tool for Coloured Petri Nets http://www.daimi.aau.dk/designCPN/ . 
[5] K. Jensen, Coloured Petri Nets. Basic Concepts, Springer Verlag, 1992, ISBN: 3-540-60943-1. 
[6] N. Jennings, On agent-based software engineering, Artificial Intelligence, 117 (2) 277-296, 2000. 
[7] Huhns, Stephens, Multi-agent Systems and Societies of Agents, in  G. Weiss, Multiagent Systems, MIT press, 

1999. 
[8] Y. Shoham, M. Tennenholtz, On Social Lows for Artificial Agent Societies: Off-Line Design. Agents 1998. 
[9] R. Conte, C. Castelfranchi, Simulations understanding of norm functionality's in social groups, 1993. 
[10] Goldman, Rosenschein, Emergent Coordination through the Use of Cooperative State-Changing Rules, DAI, 1994. 
[11] J. Kittock, Emergent Conventions and Structure of MAS, Complex Systems Summer School, Santa Fe 1995. 
[12] A. Walker, M. Wooldridge, Understanding the Emergence of Conventions in Muli-Agent Systems, ICMAS'95. 
[13] P.R. Cohen, H.J. Levesque, Teamwork, Special Issue on Cognitive Science and Artificial Intelligence, 1991. 
[14] P. Panzarasa, N.R. Jennings, T.J. Norman, Social Mental Shaping: Modeling the Impact of Sociality on the Mental 

States of Autonomous Agents, Computational Intelligence 17 (4) 738-782, 2000. 
[15] P. Panzarasa, N. Jennings, The organization of sociality: a manifesto for a new science of multi-agent systems, 

Proc. 10th European Workshop on Multi-Agent Systems (MAAMAW-01), Annecy, France, 2001. 
[16] T. Holvoet, An approach for open concurrent software development, PhD thesis, K.U.Leuven, Belgium 12/1997. 
[17] J. Fernandes, O. Belo, Modeling Multi-Agent Systems through Colored Petri Nets, 16th IASTED International 

Conference on Applied Informatics (AI'98), Garmisch-Partenkirchen, Germany, pp. 17-20, Feb/1998. 
[18] M. Costa Miranda, A. Perkusich, Modeling and Analyses of a Multi-Agent System using Colored Petri Nets, In 

Workshop on Applications of Petri Nets to Intelligent System Development, Williamsburg, USA, June 1999. 
[19] D. Moldt, F. Wienberg, Multi-Agent Systems based on Coloured Petri Nets, Azéma und Balbo 1997, 1997. 
[20] R. Cost et al., Modeling Agent Conversations with Colored Petri Nets, IJCAI '99, Stockholm, Sweden, 1999.  
[21] M. Duvigneau, D. Moldt, H. Rolke, Concurrent Architecture for a Multi-Agent Platform, in Proceedings of 

AOSE'02, AAMAS, Bologna Italy, July 2002. 
[22] Miyamoto et al. wrote a number of articles in Petri Nets Newsletter,     

http://www.informatik.uni-hamburg.de/TGI/pnbib/keywords/a/agent_net.html   


