
Regional Synchronization for Simultaneous

Actions in Situated Multi-agent Systems

Danny Weyns and Tom Holvoet

AgentWise, DistriNet, Department of Computer Science
K.U.Leuven, B-3001 Heverlee, Belgium

{danny.weyns,tom.holvoet}@cs.kuleuven.ac.be

Abstract. Agents of a multi-agent system (MAS) must synchronize
whenever they want to perform simultaneous actions. In situated MASs,
typically, the control over such synchronization is centralized, i.e. one
synchronizer has the supervision on all agents of the MAS. As a conse-
quence, all agents are forced to act at a global pace and that does not fit
with autonomy of agents. Besides, global synchronization implies central-
ized control, in general an undesirable property of MASs. In this paper
we present an algorithm that allows agents to synchronize with other
agents within their perceptual range. The result of the algorithm is the
formation of independent groups of synchronized agents. The composi-
tion of these groups depends on the locality of the agents and dynami-
cally changes when agents enter or leave each others perceptual range.
Since in this approach agents are only synchronized with colleagues in
their region, the pace on which they act only depends on the acting
speed of potential collaborating agents. The price for decentralization of
synchronization is the communication overhead to set up the groups. In
the paper, we discuss experimental results and compare the benefits of
regional synchronization with its costs.

1 Introduction

Whenever agents of a multi-agent system (MAS) interact by performing simul-
taneous actions they need to synchronize. With simultaneous actions, we mean
a set of interfering actions that are executed together and that produce a com-
pound result1. We distinguish between three kinds of simultaneous actions: joint
actions, influencing actions and concurrent actions. Joint actions are actions
that must be executed together in order to produce a successful result. An ex-
ample of joint actions is two or more agents that pick up an object that none of
them can pick up by itself; or agents that carry such object to a certain location
together. Influencing actions are actions that positively or negatively affect each
other. An example of influencing actions is two agents that push together the
same object. When they push the object in the same direction it likely moves
faster, however when they push it in opposite directions the object might not
1 We do not take independent actions that happen together into account. Independent
actions do not interfere with one another and as such do not affect each other.

V. Mař́ık et al. (Eds): CEEMAS 2003, LNAI 2691, pp. 497–510, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



498 Danny Weyns and Tom Holvoet

move at all. Finally, concurrent actions are simultaneously performed actions
that conflict. An example of concurrent actions is two or more agents that try
to pick up the same object at the same time. When only one of the involved
agents can get the packet, synchronization resolves which of the agents this will
be, i.e. typically a non-deterministic selection. Other researches make a similar
distinction between different types of interacting actions. We give a number of
examples. Allen and Ferguson [1] differentiate between ’actions that interfere
with each other’ and ’actions with additional synergistic effects’. Bornscheuer
and Thielsher [3] define the notion of ’compound actions’, i.e. ’a non empty, fi-
nite subset of a given set of unit actions’. The execution of a compound action is
modeled as the manipulation of the composing subset of unit actions. Boutilier
and Brafman [4] distinguish ’concurrent actions with a positive or negative in-
teracting effect’. Griffiths, Luck and d’Iverno [6] introduce the notions of a ’joint
action that a group of agents perform together’ and ’concurrent actions, i.e.
a set of actions performed at the same time’. These definitions are build upon
the notions of ’strong and weak parallelism’ described by Kinny [8].

Most of the work regarding simultaneous actions in MAS is done in the con-
text of languages for action description and planning for agents. In this paper we
focus on simultaneous actions for situated MASs, where agents execute situated
actions. A situated action is an action selected by an agent on the basis of the po-
sition of the agent, the state of the world which he perceives and limited internal
state2. For planning–agent systems, simultaneity of actions is realized through
planning. In situated MASs however, agents do not coordinate through plan-
ning but select their actions according to the actual situation. In order to allow
agents to coordinate their interactions, support for synchronization is required.
Such synchronization guarantees, that simultaneous actions that conceptually
must happen together, but that are executed separated in time3, are treated as
if they happened together.

The focus of this paper is on the achievement of synchronization. The forma-
tion of groups of synchronized agents determines the granularity of synchronized
groups, i.e. the number of agents that belong to a group of synchronized agents.
Typically, synchronization for simultaneous actions is organized for the entire
group of agents of the MAS, examples are Ferber’s synchronizer [5] or Look,
Talk and Do Synchronization [12]. The major advantage of this approach is its
simplicity: there is no overhead to setup synchronization, a single synchronizer
controls the synchronization of all agents. However centralized synchronization
has a number of disadvantages. A single synchronizer centralizes control and
that conflicts with the distributed nature of MAS. Since all agents are synchro-
nized with one another, the activity in the MAS evolves at the pace of the
slowest agent. Agents that have concluded their action selection are blocked by
2 Wavish and Connah [10] adopted the concept of situated action in MAS for the
stimulus/response–like actions of an agent that are only related to the agent’s ex-
ternal perception. In this paper we allow a situated action to be influenced also by
limited internal state of the agent, e.g. a commitment in an ongoing collaboration.

3 E.g. on a single/sequential processor system.



Regional Synchronization for Simultaneous Actions 499

the synchronizer until all other agents of the MAS have concluded, even if their
current state or situation does not require synchronization with the other agents.
Besides, centralization of control makes the system more vulnerable to errors.
When e.g., the synchronizer invokes the agents to select their next action, and
for some reason one of the agents fails, without special provisions the synchro-
nizer waits for the completion of the action selection of the failing agent for ever,
leaving the system in a deadlock. In this paper we present an algorithm that al-
lows agents to dynamically synchronize with other agents only if they are located
within each others perceptual range. Agents organize themselves in synchronized
groups, resulting in a much finer grained synchronization. The composition of
the groups depends on the locality of the agents and dynamically changes when
agents enter or leave each others perceptual range. Since in this approach agents
are only synchronized with colleagues in their region, the pace on which they
act only depends on the neighboring and thus potential collaborating agents.

The price for decentralization of synchronization is an overhead of communi-
cation to set up groups of regional synchronized agents. In the paper, we discuss
experimental results and compare the gain stemming from decentralizing the
synchronization with its costs.

The rest of the paper is structured as follows. In section 2 we discuss the
algorithm for regional synchronization in detail. Section 3 reports simulation
results and evaluates the algorithm. Finally, we conclude and look to future
work in section 4.

2 Discussion of the Algorithm

In this section we discuss the algorithm for regional synchronization. First we
give a high–level overview of the algorithm and zoom in on the goal of the
algorithm. Then we discuss the main challenges we have to deal with. Next, we
introduce a number of definitions for the major concepts used in the algorithm.
Finally we present the algorithm and discuss each step in detail.

2.1 Goal of the Algorithm

Synchronization of simultaneous actions must ensure that conceptually simul-
taneous actions are treated as if they happened together. Typically, the syn-
chronization of simultaneous actions follows two major phases: the phase of syn-
chronization setup and the acting phase. During synchronization setup, an agent
synchronizes with all agents within his perceptual range. When no other agent
is visible at that moment, the agent can act asynchronously with respect to all
other agents. Otherwise the agent starts synchronizing with the visible agents.
During synchronization setup, the agent blocks his activity until all agents in
his region are synchronized. Agents synchronize by exchanging synchronization
messages. When all agents within their perceptual range have concluded syn-
chronization, they act together during the acting phase. Fig. 1 illustrates some
synchronization situations. The left part of the figure depicts a snapshot of the



500 Danny Weyns and Tom Holvoet

Fig. 1. Examples of synchronization situations in the Packet–World

Packet–World, i.e. a simple MAS we use as a case in our research4. In the Packet–
World agents have to bring colored packets (rectangles) to their corresponding
colored destination (circles). Agents are allowed to make one step at a time to
a free neighboring field or pick up a packet from a neighboring field. An agent
is able to carry one packet that he can deliver at any free field or at the desti-
nation of the packet. The job of the agents is to deliver all packets efficiently,
i.e. with a minimum steps, packet manipulations and message exchanges. In the
Packet–World each agent has only a limited view on the world. In the example,
we suppose a view size of 2, illustrated for agent 8 in the right part of Fig. 1. To
optimize the job execution agents can cooperate in different ways. They can for
example, request each other for information or set up a chain to pass packets.
For more information about the Packet–World we refer to [11].

Synchronization is necessary if we allow agents to interact by means of si-
multaneous actions, e.g. when we allow direct transfer of packets between agent
1 and agent 8 in Fig. 1. Synchronized agents are able to execute simultaneous
actions since they act together, i.e. during the same acting phase. Applied to the
example: the packet transfer only succeeds when agent 1 passes a packet and
agent 8 accepts that packet during the same acting phase. With the synchro-
nization algorithm we present in this paper, agents synchronize with colleagues
within their perceptual range. With a view size of 2 we have, besides agents 1
and 8, two other groups of synchronized agents in Fig. 1: agents 5 and 6, and
agents 3 and 4. Each group of synchronized agents act on its own pace. For
the first group with agents 5 and 6, synchronization benefits as soon as agent
5 makes a step in the direction South–East (SE5), after which he can transfer

4 The Packet–World is based on an exercise proposed by Huhns and Stephens in [7]
as a research topic to investigate the principles of sociality in MASs.

5 We denote a particular neighboring field of a field with the first capital letter(s) of
the direction from the field to that neighboring field. E.g., agent 8 is positioned NW
to agent 1.



Regional Synchronization for Simultaneous Actions 501

a number of packets to agent 6 for direct delivering. For the third group with
agents 3 and 4, the actual synchronization contributes little since both have no
collaborating intentions (they carry a packet of different color). Anyway, as soon
as agent 3 steps NE toward the delivering field of the packet he carries, he will
no longer be synchronized with agent 4, but synchronizes with agent 5 and 6
enabling collaboration between these three agents. The other agents in Fig. 1,
agents 2 and 7, are not synchronized with any agent (there is no other agent
inside their perceptual range), so they act asynchronously.

Summarizing, the goal of the synchronization algorithm is to ensure that: (1)
during the synchronization setup each agent synchronizes with the colleagues
inside his perceptual range and hence also with all agents within the perceptual
range of the latter, and so on; and (2) during the action phase, synchronized
agents act together, allowing them to perform simultaneous actions.

2.2 Main Challenges of the Algorithm

The algorithm to set up regional synchronization is not trivial. To illustrate the
complexity we briefly discuss the main challenges. Since agents have only a lim-
ited view on the environment it may be the case that two agents positioned
inside each others perceptual range see different candidates to synchronize with.
So at the end of synchronization setup an agent typically knows only a limited
number of the agents of the synchronized group to which he belongs. This prop-
erty hides a hard problem the algorithm has to tackle: avoiding deadlock when
a sequence of overlapping perceptual regions of agents form a cycle. An example:
in Fig. 1 agent 8 and agent 1 have overlapping perceptual regions and so they
act synchronized. Suppose that in the given situation agent 2, (who act in the
depicted situation asynchronously, remember the view size is 2) decides to make
a step in the direction S and agent 7 (also acting asynchronously) makes a step
in the direction NW. Now the perceptual regions of the agents 1, 8, 2 and 7 form
a loop. The algorithm must ensure that, in whatever order the involved agents
in such a loop enter synchronization setup, synchronization of the next action
may not lead to deadlock. Note that since the synchronization between agents is
reached by message exchange and the agents of a MAS run in separate processes
there is no guarantee for the algorithm when these message are delivered.
Another problem the algorithm has to deal with, arises when an agent A requests
two agents, X and Y, of a group of synchronizing agents of which one, e.g. X,
has concluded synchronization, while the other, Y, is still busy with synchroniza-
tion. If the conditions for synchronization between A and Y are satisfied, the two
synchronizers establish synchronization. However, since synchronized agent X is
unable to handle incoming messages, agent A will not receive an answer to his
request from X and so he is unable to conclude synchronization. Since agents A,
X and Y belong to the same group of synchronizing agents, this scenario leads
to deadlock. Therefore the algorithm must offer requesting agents a mains to
detect and handle such blockades.



502 Danny Weyns and Tom Holvoet

2.3 Definitions for the Algorithm

In order to cope with the problems discussed in the previous section we developed
an algorithm that combines a distributed 2-phase commit protocol with a logical
clock. Before we discuss the different steps of the algorithm in detail, we first
give an overview of the definitions we use in the remainder of the paper and then
explain them in an intuitive description of the algorithm.

– Si is the synchronizer of agent Ai of the MAS with view size V S
– V ti

Si
is the view–set of Si composed by the environment at logical clock time ti:

V ti

Si
= {Sj : dist(Ai, Aj) ≤ V S at time ti}; we call ti the synchronization–

time of Si during synchronization setup with the synchronizers of V ti

Si

– msetti

i is the member–set of Si: msetti

i ⊆ {Mj≺i : Mj≺i.Sj ∈ V ti

Si
}

where Mj≺i = (S, s, t) is a member j of Si, i.e. the representation of Sj

that is maintained by Si with S = Sj , s ∈ {ini, req, ack, com, sync} and
t ∈ {t0, tj} (t0 = 0, and we denote Sj of Mj≺i as Mj≺i.S etc.)

– ssetti

i is the synchronization–set of Si: ssetti

i = (Si, msetti

i , ti)
– synchronizedWith is the equivalence relation over a set S of synchronizers:

∀ Si, Sj ∈ S : ((∃p ∈ N : S0, . . . Sp ∈ S) :
(∃Mi≺0 : Mi≺0.S = Si ∧ Mi≺0.s = sync) ∧ (∃M0≺1 : M0≺1.S =
S0 ∧ M0≺1.s = sync) ∧ . . . ∧ (∃Mp≺j : Mp≺j.S = Sp ∧ Mp≺j.s = sync))

– regionti

Si
is the region of Si based on the view–set composed at time ti, i.e.

the equivalence class of synchronizers related with the equivalence relation
synchronizedWith whereof Si is a representative.

– msgfrom→to = (from, to, perform, time) is a synchronization message sent
from Sfrom to Sto with perform ∈ {req, ack, nack, com, sync} and time ∈
{t0, tfrom}

Each agent is equipped with a synchronizer who is responsible for handling syn-
chronization. Synchronization setup starts when the synchronizer receives its
view–set, together with the synchronization–time from the environment. The
view–set is the initial set of candidates for synchronization, containing all syn-
chronizers within the perceptual range of the associated agent. The synchroniza-
tion–time is the value of the logical clock when the synchronizer’s view-set was
composed. This logical clock is a counter maintained by the environment6. Each
time a group of synchronized agents has concluded the acting phase, the value
of the logical clock is incremented and new view–sets for the agents are com-
posed. With the information the synchronizer receives from the environment
it composes a synchronization–set. Besides its own name and synchronization–
time, such synchronization–set contains a member–set. In the member–set each
synchronizer in the view–set of the synchronizer is represented by a member.
A member is a triplet, containing the name of the candidate for synchroniza-
tion, a state and a time stamp. Initially each member of the member–set is in the
initial state denoted by ini, while the time stamps have the value t0 that stands
6 Notice that the value of the logical clock is not a global variable. In a distributed
setting, the local environment of the MAS on each host maintains its own local clock.



Regional Synchronization for Simultaneous Actions 503

for the initial value, zero. During the execution of the algorithm, synchronizers
progressively try to synchronize with the members7 of their synchronization–set
by means of sending messages back and forth. During this interaction, negotiat-
ing synchronizers pass two phases. During the first phase they decide whether
they agree about synchronization and subsequently during the second phase they
mutually commit to the agreement. During this process, synchronizers exchange
the value of there synchronization–time and mutually register the received values
for the member of that particular synchronizer. Throughout the algorithm, the
state of each member evolves from ini to ack (synchronization accepted), com
(committed) and finally sync (mutually synchronized). The decision whether
a synchronizer continues synchronization with a particular synchronizer depends
on (1) the membership of a requesting synchronizer; and (2) the comparison be-
tween the value of the synchronization–time of the member and the value of
the synchronizers own synchronization–time; and finally (3) the combination of
states of all members of the member–set. In case synchronization can not be
achieved, the rejecting synchronizer informs its colleague. As far as they belong
to each others member–set, both synchronizers then remove the corresponding
member from their member–set. As soon as all members of the member–set of
a synchronizer have reached the state sync, the synchronizer concludes synchro-
nization setup and activates its associated agent to enter the acting phase.

2.4 The Algorithm in Detail

In this section, first we describe the algorithm in Java–liked code and elabo-
rate on each step in the algorithm. Then we discuss an example scenario in the
Packet–World, and show how the algorithm deals with the challenges described
in section 2.2. We conclude with a brief discussion how our algorithm integrates
existing mechanisms from distributed algorithms.

The Algorithm. Fig. 2 depicts the algorithm for regional synchronization in
Java–liked code. When a synchronizer enters synchronization setup, he first exe-
cutes makeSynchronizationSet(), composing a new synchronization–set with the
last received view–set and synchronization–time. Next, the synchronizer checks
his mailbox, verifying whether there are pending requests, i.e. requests received
by the synchronizer during the previous acting phase. In handleMail() the syn-
chronizer handles requests according to the following rule:

R1. A request is accepted (i.e. an ack message is sent and the state
as well as the synchronization–time of the corresponding member is up-
dated with the received information in the message) if the requesting
synchronizer belongs to the synchronizer’s member–set; otherwise the
request is rejected (a nack message is sent).

7 In the remainder of the paper we use the term member for the concept we formally
have defined as well as for the synchronizer of a member that belongs to a particular
member–set. The interpretation follows from the context where we use the term.



504 Danny Weyns and Tom Holvoet

private void setupSynchronization() {

makeSynchronizationSet();

if(not mailbox.isEmty())

handleMail();

if(not toActAsynchronously()) {

sendRequests();

while(not synchronized()) {

handleMail();

if(blockedToCommit())

unBlock();

sendCommits();

if(readyToSendSyncs())

sendSyncs();

}

}

}

private void handleMail() {

while(not mailbox.isEmty()) {

Message msg = mailbox.pickMessage();

Performative perform = msg.getPerformative();

Synchronizer from = msg.getFrom();

int time = msg.getTime();

if(isRequest(perform)) {

if(belongsToSynchronizationSet(from)) {

sendAck(from,synchronizationTime);

updateMember(from,"ack",time);

} else

sendNack(from);

}

else if(isAcknowledge(perform))

updateMember(from,"ack",time);

else if(isNack(perform))

removeMember(from);

else if(isCommit(perform))

updateMember(from,"com");

else if(isSync(perform))

updateMember(from,"sync");

}

}

Fig. 2. The algorithm for regional synchronization in Java–liked code



Regional Synchronization for Simultaneous Actions 505

R1 ensures that a pending request is rejected if a synchronizer detects that,
since the time of the request, he has left the requesting synchronizer’s percep-
tual range. Furthermore, R1 ensures that a synchronizer only synchronizes with
known colleagues, i.e. the synchronizers belonging to its member–set.
After the pending requests are handled, the synchronizer verifies toActAsyn-
chronously(). This method returns true if the member–set of the synchronizer
is empty. In that case the remainder of the algorithm is skipped and the agent
immediately enters the acting phase to act asynchronously. Otherwise the syn-
chronizer sends requests to the members of his member–set according to the
second rule:

R2. To every member of the member–set in the state ini, the synchro-
nizer sends a request to synchronize, i.e. a req message.

Subsequently, the synchronizer enters a while loop in which he stays until syn-
chronized() returns true. This condition is determined by rule 3:

R3. As soon as all members of member–set of a synchronizer have
reached the state sync, the synchronizer concludes synchronization setup
and activates its associated agent to enter the acting phase.

Inside the loop, the synchronizer starts checking his mail. Besides requests (R1),
the synchronizer handles the other messages according the following rules:

R4. For every received ack message the state as well as the
synchronization–time of the corresponding member is updated with the
received information in the message.

R5. Every member from which the synchronizer receives a nack message
is removed from the member–set.

R6. For every received com or a sync message, the state of the member
is updated according to the information of the received message.

After handling mail, the synchronizer verifies whether he is blockedToCommit().
This state is described by rule 7:

R7. A synchronizer is blockedToCommit if (1) there is at least one
synchronizer in his member–set in the state com; and (2) there is at
least one synchronizer in his member–set in the state req; and (3) all
other members are in the state sync.

In this state the synchronizer is allowed to remove blocking members of his
member–set, described in rule 8:

R8. If a synchronizer is blockedToCommit, he is allowed to eliminate
the blocking synchronizers of his member–set; blocking synchronizers are
in the state req; during unblocking a synchronizer removes subsequently
these blocking members from his member–set and informs them with
a nack message.



506 Danny Weyns and Tom Holvoet

This rule is necessary to deal with the blocking situation we briefly discussed in
section 2.2. We discuss a concrete example of R8 below.
An interesting side effect of R8 is that it gives the algorithm some degree of
robustness. Since synchronizers, due to R8, reject colleagues that do not react to
a request in time, they also reject synchronizers that have failed and no longer
are able to react to requests.
Subsequently, the synchronizer sends commits, according to rule 9:

R9. To every member in the state ack with a synchronization–time
younger or equal to the synchronizer’s own synchronization–time, the
synchronizer is allowed to send a commit, i.e. a com message.

In the last step of the loop, the synchronizer verifies whether he is able to con-
clude synchronization with the members of his member–set. The conditions are
described in rule 10:

R10. A synchronizer is allowed to confirm a commitment with the mem-
bers of his member–set (by means of sending them a sync message and
updating their state) if all the members of his member–set are synchro-
nizable, i.e. their state is (1) com or sync; or (2) the state is ack and the
synchronizer’s synchronization–time is younger or equal to the member’s
synchronization–time.

Subsequently, the synchronizer verifies whether he has concluded synchroniza-
tion setup (R3). If this is the case, he activates its associated agent to enter the
acting phase, otherwise he starts a new cycle in the loop.

Discussion. We now apply the algorithm to an example situation in the Packet–
World that deals with the challenges described in section 2.2. Suppose in Fig. 1,
agents 8, 1, 7 and 2 all are executing the acting phase. Now agent 7 makes a step
NW, entering the perceptual range of agents 1 and 2. S7 starts synchronization
setup by requesting S1 and S2 for synchronization. Subsequently, agent 1 and 8
conclude their action (suppose they transferred a packet) and enter synchroniza-
tion setup. Now things can evolve in different ways. We look to three scenarios:

– Agent 2 steps W and enters synchronization setup before S7, S1 and S8 have
concluded synchronization setup.

– Agent 2 steps S and enters synchronization setup when S8 already has con-
cluded synchronization setup, while S7 and S1 are still busy synchronizing.

– Agent 2 steps S and enters synchronization setup while S7, S1 and S8 are
still busy synchronizing.

First scenario. This scenario is rather simple. When S2 enters synchronization
setup, he detects that S7 do not belongs to his member–set and according to
R1, he rejects the pending request of S7, sending him a nack message. Since S2’s
member–set is empty, no further synchronization is required and A2 immediately
can enter the acting phase. When S7 receives the rejection, he removes S2 from
his member–set (R5) and subsequently concludes synchronization setup with S1.



Regional Synchronization for Simultaneous Actions 507

Second scenario. In this scenario, S2 confirms the pending request of S7. Sub-
sequently, S2 synchronizes with S8 and S7 (R9, R10). In the end S8, S1 and S7

have concluded synchronization setup, while S2 still waits for a response of S8.
Fortunately, in this blocked situation (R7), S2 can apply R8, liberating himself
from the non-responding S8 and subsequently conclude synchronization setup.
Third scenario. If in this scenario S8 receives S2’s request too late (i.e. S2’s re-
quest message is scheduled after S8 concludes synchronization setup) we have
the previous case. Otherwise S8 rejects, according to R1 (S2 does not belongs
to S8’s member–set), the request. S2 then removes S8 from his member–set, after
which the four synchronizers normally can conclude synchronization setup. Note
that in this case, S2 and S8 not have synchronized directly, although in the end
they are indirectly synchronized via the chain of synchronizers between them.

Integration of Existing Mechanisms from Distributed Algorithms. To
conclude this section, we briefly discuss how our algorithm for distributed syn-
chronization integrates the two building blocks we have used to design it: two-
phase commit (2PC) and a logical clock (LC). The goal of standard 2PC is to
reach a full agreement between a set of processes (participants) whether or not
to perform some action. The result is all–or–nothing, i.e. if a commitment is
reached the action should be executed by all participants, otherwise the oper-
ation as a whole is aborted. The protocol is normally initiated by one process,
i.e. the coordinator. The coordinator collects votes from the participants and
decides about the outcome of the interaction. For a detailed description of 2PC,
see [2]. On the other hand we use a logical clock. Lamport [9] invented logical
clocks to capture numerically causal ordering of events within process groups.

In our algorithm, synchronizers are peers and can play both the role of par-
ticipant as well as coordinator during one ongoing synchronization setup. Which
role one synchronizer plays with respect to the other depends on the comparison
of the values of both their synchronization–time, i.e. the value of the logical clock
they received when they entered synchronization setup. As for 2PC, the result
of our algorithm is a set of synchronizers that have reached an agreement, i.e.
execute their next action phase synchronized. However, during synchronization
setup, some of the candidates for synchronization might be shut out from the
synchronizing group.

3 Evaluation

Evaluation compares the gain from regional synchronization with its costs. The
major advantage of the algorithm is that agents, after regional synchronization,
only need to wait for agents of the region to which they belong. The algorithm
tunes the granularity of synchronized groups to the number of agents that are
candidates for simultaneous interaction. For centralized synchronization, agents
act on the pace of the slowest agent of the entire MAS. Thus the size of the
region in comparison with the total number of agents in the MAS is a measure
for the gain of the algorithm. The cost of using the algorithm is an overhead



508 Danny Weyns and Tom Holvoet

Fig. 3. Quantitative simulation results for populations of 50, 100 and 150 agents

to setup the groups of synchronized agents. This cost includes three parts: (1)
the number of sent messages; (2) the cost for sending the messages; and (3) the
computational overhead induced by handling the messages.

We did a great number of tests on a MAS with a 2D–grid environment,
sized 100x100. First, we selected one number of agents of the set {50,100,150},
with one view size of the set {4,7,10}8. For each such combination, we did three
separated tests. In the first test we used random moving agents, in the second
test the agents attracted each other and in the third test we used agents that
repulsed each other. Each test started with a random distribution of the agents,
and subsequently the agents run for 1000 cycles through the algorithm. Each
time a region was composed, the agents of that region acted simultaneously, i.e.
each agent made a step according to its behavior. During the runs, agents are
randomly scheduled. Fig. 3 depicts the results of our measurements. The left
graph depicts the average number of sent messages per agent and per step, for
different numbers of agents and different view sizes. The right graph shows the
average size of regions for the same parameters. Both graphs combine the results
for the three kinds of agents used in the tests. The results of the right graph
confirm the intuitive expectation that regions grow with (1) increased density
of agents in the MAS and (2) increased view size of the agents. The results of
the left graph show that the number of exchanged synchronization messages for
the algorithm is proportional to the size of the regions. Moreover, the results for
our tests show that an agent sends as an average about one message for each
agent of the region to which he belongs for each action he performs. Note that
a higher average number of synchronization messages is not a disadvantage on
itself, since more sent messages corresponds to higher sizes of regions and thus
increased possibilities for simultaneous interaction.
Whether the gain of the algorithm, for a particular MAS, outweighs the costs,
is application dependable. For example, for a MAS populated with 150 agents
with a view size 7, the average number of sent messages is 6, while the average
size of the region is about 4, see the upper points for view size 7 in Fig. 3.
8 The view size is the number of squares and agent is able to perceive in each direction,
similar to the view size in the Packet–World, see Fig. 1.



Regional Synchronization for Simultaneous Actions 509

Fig. 4. Simulation results for success of synchronization

For this particular MAS, the pace on which agents are able to act depends
on only 3 neighboring agents. In comparison with centralized synchronization,
where the pace of each action for each agent depends on the entire population,
in this case 150 agents, this gain appears to be very significantly. In practice
however, the order of this gain will be influenced by the heterogeneity of agent
activity in the MAS. If some of the agents act quickly while others are very
slow, the first will be no longer concerned about the latter. Opposite to the
gain, there is for each agent the cost associated with the handling of an average
of 6 messages for every performed action. Since the communication between the
synchronizers is defacto regional, the cost induced by synchronization will mainly
be computational. Fig. 4 gives an idea about how successful the agents establish
synchronization. The graphs depict for the three kinds of agents in the tests, in
a MAS populated with 150 agents for view sizes 4, 7 and 10, how much requests
lead to synchronization. The results show that most of the communication lead
to synchronization. For the depicted results, an average of 80 % of the requests
finally result in synchronization.

4 Conclusions and Future Work

In this paper we have presented an algorithm that allow agents to synchronize
with the agents in their region, enable them to perform simultaneous actions.
The algorithm combines a distributed two phase commit protocol with a logical
clock. The gain of the algorithm is a much finer grained synchronization in com-
parison with centralized synchronization, increasing the efficiency of acting for
the agents significantly. The cost for regional synchronization is an overhead of
communication to setup regional groups of synchronized agents. Since synchro-
nizing agents communicate regional, the overhead of sending messages are minor
to the computational cost. Therefore, the gain appears to outweighs the costs,
however in practice the balance must be made according to the characteristics
of the application.

Future work includes formal verification of the algorithm and integration
in a multi-agent application. Actually, we are finalizing a Colored Petri–net to
prove formally our algorithm is free of deadlock. We also are integrating the
algorithm in a full Java implementation of the Packet–World. This will allow us



510 Danny Weyns and Tom Holvoet

to investigate the value of the algorithm in the context of collaborating agents.
Another interesting issue we intend to investigate is how the algorithm can be
applied for other kinds of dynamical group formations.

Acknowledgments

We would like to thank the members of the AgentWise working group at the
K.U.Leuven for the many valuable discussions that have contribute to the work
presented in this paper. Also a word of appreciation goes to Wouter Joosen for
his useful comments to improve this paper.

References

[1] J. F. Allen and G. Ferguson, Actions and Events in Interval Temporal Logic,
in Journal of Logic and Computation, Special Issue on Actions and Processes,
1994. 498

[2] K. Birman Building Secure and Reliable Network Applications, Cornell Univer-
sity, Ithaca NY, 14853, 1995. 507

[3] S.E. Bornscheuer and M. Thielscher, Explicit and Implicit Determinism:
Reasoning about Uncertain and Contradictory Specification of Dynamic Systems,
TR–96–009, ICSI Berkeley, CA, 1996. 498

[4] C. Boutilier and R. I. Brafman, Partial–Order Planning with Concurrent In-
teracting Actions, in Journal of Artificial Research 14 p.105–136, Access Founda-
tion and Morgan Kaufmann Publishers, 4-2001. 498

[5] J. Ferber, Multi-Agent Systems, An Introduction to Distributed Artificial Intel-
ligence, Addison-Wesley, ISBN 0-201-36048-9, Great Britain, 1999. 498

[6] N. Griffiths, M. Luck and M. d’Iverno Cooperative Plan Annotation through
Trust, in Workshop Notes of UKMAS’02, Eds. P. McBurney, M. Wooldridge, UK
Workshop on Multi-agent Systems, Liverpool, 2002. 498

[7] M.N. Huhns and L.M. Stephens,Multi-Agent Systems and Societies of Agents,
in G. Weiss ed., Multi-agent Systems, ISBN 0-262-23203-0, MIT press, 1999. 500

[8] D. Kinny, M .Ljundberg, A. Rao et al. Planning with Team activity, 4th
European Workshop on Modeling Autonomous Agents in a Multi-Agent World,
LNCS 830, pp. 227–256, S. Martino al Cimino, Italy, 1992. 498

[9] L. Lamport Time, clocks and the ordering of events in a distributed system,
ACM, vol. 21, no. 7, pp.558-65, 1978. 507

[10] P. R. Wavish and D. M. Connah, Representing Multi–Agent Worlds in ABLE,
Technical Note, TN2964, Philips Research Laboratories, 1990. 498

[11] D. Weyns and T. Holvoet, The Packet–World as a Case to Investigate Sociality
in Multi-agent Systems, Demo presented at the Conference of Autonomous Agents
and Multi-Agent Systems, AAMAS 2002, Bologna, Italy, 2002. Demo available at:
www.cs.kuleuven.ac.be/~ danny/aamas02demo.html 500

[12] D. Weyns and T. Holvoet, Look, Talk and Do: A Synchronization Scheme for
Situated Multi-agent Systems, in Workshop Notes of UKMAS’02, Eds. P. McBur-
ney, M. Wooldridge, UK Workshop on Multi-agent Systems, Liverpool, 2002. 498


	Regional Synchronization for Simultaneous Actions in Situated Multi-agent Systems
	Introduction
	Discussion of the Algorithm
	Goal of the Algorithm
	Main Challenges of the Algorithm
	Definitions for the Algorithm
	The Algorithm in Detail

	Evaluation
	Conclusions and Future Work


