
Model for Simultaneous Actions in Situated
Multi-agent Systems

Danny Weyns and Tom Holvoet

AgentWise, DistriNet, Department of Computer Science,
K.U.Leuven, B-3001 Heverlee, Belgium

{danny.weyns,tom.holvoet}@cs.kuleuven.ac.be

Abstract. The main focus of multi-agent research so far has been on
concepts and techniques to analyze and specify multi-agent systems.
Much less attention has been devoted to the implementation of the con-
cepts and techniques. This paper intends to bridge the gap between the
mere concept of simultaneous actions and its implementation. Simultane-
ous actions are actions that are executed by different agents at the same
time. We study simultaneous actions in the context of situated multi-
agent systems where agents and objects have an explicit position in the
environment. To clarify the concept of simultaneous actions, first we
propose a classification for simultaneous actions and illustrate each type
with examples. Then we present a generic model for simultaneous actions
that is independent of the applied agent architecture. Support for simul-
taneous actions involves two aspects: first it must enable agents to act
together and second, it must ensure that the outcome of a combination of
simultaneously performed actions is in accordance with the domain that
is modeled. In the model, acting together is established through synchro-
nization, while the domain requirements are ensured through reification
of actions and subsequently combining the simultaneously performed ac-
tions in accordance with the valid laws. We used the model to implement
the Packet–World with centralized as well as with regional synchroniza-
tion. In the paper we illustrate the model for both approaches and discuss
the implications for the complexity of implementation, the autonomy of
agents and the scalability of the multi-agent system.

1 Introduction

Interaction is a central issue of multi-agent systems (MAS). An interaction occurs
whenever two or more agents come into contact with each other. The focus
of this paper is on interactions in situated MASs. In particular we focus on
infrastructure to support the implementation of simultaneous actions, i.e. actions
performed by different agents at the same time.

Situated Multi-Agent Systems. In situated MASs, agents as well as ob-
jects have an explicit position in the environment. Situatedness reflects the local
relationships between agents and objects. Through its situatedness, a situated
agent is placed in a local context that he is able to perceive and in which he can

M. Schillo et al. (Eds.): MATES 2003, LNAI 2831, pp. 105–118, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

106 D. Weyns and T. Holvoet

act. The model for simultaneous actions we discuss in this paper is independent
of the applied architecture of the agents in the MAS.

Model for Action. For actions, we use a model that is based on the theory
of influences and reactions to influences, proposed by J. Ferber [4]. Roughly spo-
ken, this theory separates what an agent wants to perform from what actually
happens. Agents produce influences into the environment and subsequently the
environment reacts by combining the influences to deduce a new state of the
world from them. The reification of actions as influences enables the environ-
ment to combine simultaneously performed activity in the MAS. Based on this
theory, J. Ferber and J.P. Müller developed a model for action with central-
ized synchronization that is described in [5]. In [13], we extended this model for
regional synchronization.

Support for Simultaneous Actions. Simultaneous actions are actions
that conceptually happens at the same time, but physically are executed sepa-
rated in time, e.g. on a single or sequential processor system. Support for simul-
taneous actions involves two aspects: first such support must enable agents to
act together and second, support must ensure that the outcome of a combina-
tion of simultaneously performed actions is in accordance with the domain that
is modeled.

Outline of the Paper. To clarify what simultaneous actions are, we first
propose a classification for simultaneous actions and illustrate each type with
examples. Then, in section 3, we present a generic model for simultaneous ac-
tions in situated MASs. This model functionally describes how simultaneous
actions can be treated towards implementation. Section 4 illustrates the model
for centralized and regional synchronization and discuss the implications for both
approaches with respect to the complexity of implementation, the autonomy of
agents and the scalability of the MAS. Finally, in section 5 we conclude and look
at future work.

2 Simultaneous Actions

In this section we elaborate on simultaneous actions. First we present a classifi-
cation for simultaneous actions and then we illustrate each type of simultaneous
actions with examples in the Packet-World.

2.1 Classification of Simultaneous Actions

In the literature, several researchers distinguish between different kinds of simul-
taneously performed actions. Some examples: Allen and Ferguson [1] differentiate
between ’actions that interfere with each other’ and ’actions with additional syn-
ergistic effects’. Boutilier and Brafman [2] distinguish ’concurrent actions with a
positive or negative interacting effect’. Griffiths, Luck and d’Iverno [6] introduce
the notions of a ’joint action that a group of agents perform together’ and ’con-
current actions, i.e. a set of actions performed at the same time’. These latter

Model for Simultaneous Actions in Situated Multi-agent Systems 107

Fig. 1. Classification of Simultaneous Actions.

notions are build upon the concepts of ’strong and weak parallelism’ described
by Kinny [8].

We propose a classification for actions that happen at the same time as
depicted in Fig. 1. We use the common name of simultaneous actions as general
designation for actions that happen together. Further, we make a distinction
between two kinds of simultaneous actions: independent actions and interfering
actions. Independent actions are actions that do not interfere with one another.
Interfering actions on the other hand, bring two or more agents directly in contact
with each other. Depending on the nature of these interactions, we distinguish
between concurrent actions, influencing actions and joint actions. Concurrent
actions are of a conflicting nature. The result is typically non-deterministic, e.g.
one arbitrary agent of the set of involved agents succeeds in his action while
the other agents fail. Influencing actions are actions that positively or negatively
affect each other. For this kind of interaction the outcome of the simultaneous
actions is the resultant of the individual actions. Joint actions are actions that
must be executed together in order to produce a successful joint result. In joint
actions agents typically play complementary roles in a compound interaction.

This classification for simultaneous actions takes the viewpoint of the ob-
server of the actions. An observer interprets the interactions as a whole and dis-
tinguish types on the basis of the possible outcomes of the interactions. Whether
or not the individual agents intend to, or are aware of their participation in the
interaction is independent of the classification.

2.2 Examples of Simultaneous Actions

Before we illustrate the different types of simultaneous actions, we first introduce
the the example case: the Packet–World.

The Packet–World. The Packet–World1 consists of a number of different
colored packets that are scattered over a rectangular grid. Agents that live in this
virtual world have to collect these packets and bring them to their corresponding
colored destination. The left part of Fig. 2 shows an example of a Packet–World
1 The Packet–World is based on an exercise proposed by Huhns and Stephens in [7]

as a research topic to investigate the principles of sociality in MASs.

108 D. Weyns and T. Holvoet

with size 10 in which 10 agents live. Small squares symbolize packets that can
be manipulated by one agent, larger rectangles symbolize packets that must be
manipulated by two agents and circles symbolize delivery points.

Fig. 2. The Packet–World.

In the Packet–World agents can interact with the environment in a number
of ways. An agent can make a step to one of the free neighbor fields around him.
If an agent is not carrying any packet, he can pick up a small packet from one
of his neighbor fields. An agent can put down a small packet he carries at one of
the free neighbor fields around him, or of course at the delivering point of that
particular packet. In addition, we allow agents to transfer small packets directly
to one another. During such a transfer, the agent that carries the packet passes
it to the receiver, while the receiver simultaneously accepts the packet. Agents
can also push small packets to a neighboring square. A push only succeeds when
there is no obstacle on the destination square of the pushed packet. In case two
agents simultaneously push the same packet, the packet moves according to the
resultant of both actions. Contrary to small packets, to pick up a large packet
two agents have to lift up the packet together, each of them on one short side of
the packet. Agents that carry a large packet can only move together in the same
direction. Large packets too can be put down at any free field or at the delivering
point of the packet. However, to put down a large packet, both agents have to
release the packet simultaneously. Finally, when there is no sensible action for
an agent to perform, he may wait for a while and do nothing.

Besides acting into the environment, agents can also send messages to each
other. Conversations between agents follow a specific protocol. Examples are: a
request for information followed by an answer or a refusal; a request to set up
a form of cooperation followed by an acceptance to cooperate and later on a
notification of the end of the cooperation, or a refusal to cooperate.

It is important to notice that each agent of the Packet–World has only a
limited view on the world. The view–size of the world expresses how far, i.e. how

Model for Simultaneous Actions in Situated Multi-agent Systems 109

many squares, an agent can ’see’ around him. The right part of Fig. 2 illustrates
the limited view of agent 8, in this example the view–size is 2.

We monitor the Packet–World via a number of counters that measure the
efficiency of the agents in performing their job. There are counters to measure the
energy invested by the agents, the message transfer between the agents and the
number of conflicts that happens between two agents. The overall performance
can be calculated as a weighted sum of this counters. For more details about the
Packet-World we refer to [11].

2.3 Examples

Now we illustrate the different types of simultaneous actions in the Packet–
World.

An example of independent actions are two neighboring agents that make a
step to a different location. When in the depicted situation agent 3 decides to
step in the direction NE2 while agent 4 simultaneously decides to step SE, both
these actions can happen independent of one another.

An example of concurrent actions are two agents that simultaneously try
to pick the same small object. Which of the involved agents gets the packet is
not determined. When for example in the situation of Fig. 2 agent 5 picks up
the packet positioned E to him while agent 6 simultaneously picks up the same
packet, one randomly selected agent of the two gets the packet while the other
misses it.

When two agents in the Packet–World push the same object at the same
time then these are influencing actions. If for example in Fig. 2, agent 9 pushes
the packet N to him while agent 0 pushes the same packet at the same time,
the packet will move on to the square NW to its depicted position. Whether or
not this resulting movement is profitable for the individual agents depends on
their possible intentions. But in case two agents push the same packet at the
same time in opposite directions both will be frustrated since the result of such
interaction is that the packet will not move at all.

Finally, in the Packet–World different kinds of joint actions are possible. A
first example in Fig. 2 is agent 1 who passes the small packet he carries to agent
8. As stated above, such transfer only succeeds when the involved agents act
together, i.e. agent 1 has to pass the packet while agent 8 simultaneously has
to accept the packet. Another example of joint actions are agents 2 and 7 who
make a step with the large packet they carry. Such a step only succeeds when
both agents step in the same direction, in the situation of Fig. 2 for example, in
the direction SW toward the destination of the packet they carry.

2 We denote each neighboring field of a field with the first capital letter(s) of the
direction from the field to that neighboring field.

110 D. Weyns and T. Holvoet

3 A Generic Model for Simultaneous Actions

In this section first we give a high level description of the model for simultaneous
actions. Subsequently we discuss each layer and the flow between layers in detail.
At the end, we reflect on issues with respect to the implementation of the model.

Fig. 3. High level model for simultaneous actions.

3.1 High Level Description of the Model

Fig. 3 gives a graphical description of the model. As stated in section 1, sup-
port for simultaneous actions must: (1) enable agents to act together and (2)
ensure that the outcome of a combination of simultaneously performed actions
is in accordance with the domain that is modeled. Different layers in the model
take care of these requirements. At the top we have the synchronization layer
that accounts for the first requirement: enabling agents to act together. This
layer is responsible for composing sets of synchronized agents, i.e. sets of agents
that act together. The second layer contains the agents of the MAS. The two
lowest layers are responsible for the second requirement to support simultane-
ous actions: combining simultaneously performed actions in accordance with the
domain laws. The third layer has a double functionality spread over two com-
ponents. First this layer contains the collector which is responsible for collecting
influences and composing sets of influences for simultaneously acting agents. The
second component is the effector that must ensure that the consequences of the
activity of the agents are realized, keeping the state of the environment up to
date and bringing the effects of their actions to the agents. The fourth, bottom
layer contains the reactor. It is the reactor’s responsibility to calculate the effects
of the influences of simultaneously acting agents according to the actual state of
the environment and the laws of the modeled MAS.

3.2 Layers and the Flow between Layers

A detailed overview of the model for simultaneous actions is depicted in Fig. 4.
To explain the different layers of the model and the flow amongst the layers,

Model for Simultaneous Actions in Situated Multi-agent Systems 111

we follow one action cycle for a particular agent, say Ai. Note that since the
model of Fig. 4 is a generic model, several aspects remain abstract. Concrete
interpretations of these aspects are discussed in the next section.

Fig. 4. Detailed model for simultaneous actions.

The cycle starts when agent Ai of the agent layer triggers the synchroniza-
tion layer to compose a new set of synchronized agents. This request is denoted
as T . Depending on the synchronization algorithm implemented by the synchro-
nization layer, T may just be a signal, possibly containing the identity of agent
Ai or it may contain more required information, e.g. the set of visible agents
of Ai at that moment. As soon as the synchronization algorithm completes, the
synchronization layer sends the set of synchronized agents, denoted as {A}, to
agent Ai. Now the agent starts decision making, resulting in the selection of an
action. This action is sent as an influence, together with the set of synchronized
agents to the environment, denoted as (I, {A}).

It is the influence collector who collects such tuples. The collector maintains
sets of pending influences, each set representing the influences produced by one
group of simultaneously acting agents. Each element of a set is a tuple (A, I),
where A represents an agent and I is the influence produced by A. However, as
long as A has not yet produced its influence, I is registered as I0 denoting that
the influence is expected to be produced soon. Based on the set of synchronized
agents passed by agent Ai, the collector first searches for a set of pending influ-
ences that corresponds to the agents in set {A}. This functionality is represented

112 D. Weyns and T. Holvoet

as the encircled S in the model. A set matches if at least one of the agents of
{A} belongs to the set. If the collector found such a set he updates it, based
on the (I, {A}) tuple. If no set is found, a new set is composed with (I, {A})
and added to the repository of sets of pending influences. The update of a set
of pending influences with the (I, {A}) tuple is denoted as the encircled U . For
each agent of {A} that does not belong to the selected set of pending influences,
U adds a new entry in the set, initialized as (A, I0). Other members are left
untouched. Finally, U updates the entry of the invoking agent with its actual
influence, thus for invoking agent Ai the entry (Ai, I

0) is update to (Ai, Ii), with
Ii the influence of the tuple (I, {A}) invoked by Ai.

As soon as the collector detects that a set of pending influences is completed,
he passes the set of corresponding influences, denoted by {I}, to the reactor. A
set of pending influences is completed if all agents of the set have produced their
influences, i.e. no tuple in the set contains an initial I0. Together with passing
the set of influences, the collector removes the corresponding set of pending
influences from its repository.

In the reactor the set of influences {I} is composed with a set of applicable
laws, denoted as {L}, given the current state of the environment denoted as S.
This composition is represented by the encircled P . P results in a tuple (dS, {C}),
whereof dS denotes the state changes in the environment, while {C} denotes the
set of consumptions. A consumption is an element from the environment reserved
for a particular agent. When an agent ’consumes’ a consumption, the consumed
element can be absorbed by the agent (e.g. food that is turned into energy) or
the agent may simply hold the element (e.g. a packet he has picked up in the
Packet–World).

The reactor passes the tuple (dS, {C}) to the effector. With dS, the effector
updates the environmental state. This update is represented by the encircled
U . Furthermore, the effector adds the set of consumptions {C} it has received
from the reactor to the repository of pending consumptions it maintains. Pending
consumptions are consumptions that have not yet been picked up by the agents.
A pending consumption is a tuple (A, C) whereof C is a consumption intended
for agent A.

Subsequently agent Ai can perceive the updated environment and consume
the results of its previous action, denoted as (P, C). Since agents have only a
limited view on the world, P is only a segment of S. The demarcation of S is
represented as the encircled D. Finally, the agent triggers the synchronization
layer to produce the next set of synchronized agents for him, starting a new
action cycle.

It is important to notice that from the point of view of the agents, the
model for simultaneous actions offers implicit support for simultaneous actions.
Whether the agents are aware of the possible simultaneity of their actions is
unimportant for the model. To put it another way, this model enables simulta-
neous actions in situated MASs, however the model does not offer support for
the agents to decide about what actions they should perform simultaneously.
Some agents may follow complex negotiation protocols to agree about the kind

Model for Simultaneous Actions in Situated Multi-agent Systems 113

of simultaneous actions they perform, other may simply act based on local per-
ception.

3.3 Issues with Respect to the Implementation of the Model

The layered model presented in the previous section is a generic, conceptual
model for simultaneous actions that abstracts from concerns such as scheduling,
distribution or fault-tolerance. This model is suitable to guide an implementa-
tion of simultaneous actions, e.g. with a framework [9], or even with language
technology [10]. As such the reader should be aware that the model only gives
a conceptual view on support for the implementation of simultaneous actions.
While for example, conceptually the collector layer is accessible for all agents in
the MAS, physically the collector layer may be distributed over different hosts
and contains one collector for each location where the MAS is deployed. When
distribution is required, it should be implemented as a separate concern using
available middleware support.

4 Centralized versus Regional Synchronization

In this section we illustrate the generic model for simultaneous actions for two
concrete synchronization approaches: centralized and regional synchronization.
Since our focus is on infrastructure for simultaneous actions, we do not go into
details of the synchronization algorithms. The interested reader is referred to
the references in the text.

4.1 Centralized Synchronization

With centralized synchronization, all agents act at one global pace. Synchro-
nization is regulated by one central synchronizer. An example of centralized
synchronization is discussed in [3]. Fig. 5 depicts the model for simultaneous ac-
tions applied for centralized synchronization. The major advantage of centralized
synchronization is simplicity. The synchronization layer contains a collection to
store synchronization requests T . Each entry is reserved for a particular agent
of the MAS. Initially all entries are set to the initial state, i.e. (A, T 0) for each
agent A in the MAS. When an agent Ai sends a request T to synchronize, the
synchronizer replaces the corresponding entry to (Ai, T). When all agents have
sent their request, the synchronizer triggers the agents to act by means of send-
ing them the complete set of synchronized agents. Simultaneously, the collection
for synchronization requests is re-initialized. This functionality is represented in
the model as the encircled R.

Subsequently, the agents send their influences to the collector. For centralized
synchronization the repository of influences is a simple data structure, contain-
ing one entry for each agent of the MAS. A start each entry is initialized to
(A, I0). When an agent sends his influence to the collector, the corresponding
entry is updated with the passed influence. Only when all agents have sent their

114 D. Weyns and T. Holvoet

influences, the collector passes the complete set of influences {I} to the reactor
and re-initializes the influence repository. This functionally of the collector is
represented as R in Fig. 5.

Fig. 5. Model for simultaneous actions with centralized synchronization.

Then the reactor handles the influences and passes the state changes and
consumptions to the effector. This latter updates the state of the environment,
composes a new set of consumptions and makes them available for the agents.
When the agents start a new cycle they perceive the new local state of the
environment, and consume the available consumptions from the effector.

Evaluation. The implementation of simultaneous actions with centralized
synchronization is rather straightforward. The synchronization layer and influ-
ence collector have a simple structure. However, with respect to the acting pace,
the autonomy of the agents is a serious problem. Centralized synchronization
implies centralized control. All agents act at one global pace, and that ignores
the opportunity costs of agents waiting while other agents spend time for deci-
sion making. Especially for MASs populated with heterogeneous agents this can
be a serious disadvantage. For scalability we have to weigh the cost for collecting
influences against the cost of reacting to influences and this in relation to the
number of agents in the MAS. With centralized synchronization no search is
needed to find the right set of pending influences. However, since the influences
for all agents are passed together to the reactor, and since each influence can
possibly interfere with any other influence in the set, the complexity to calculate

Model for Simultaneous Actions in Situated Multi-agent Systems 115

the reaction of the influences is O(n2) for a MAS with n agents. Therefore we
have to conclude that centralized synchronization scores poorly for scalability of
the MAS.

Fig. 6. Model for simultaneous actions with regional synchronization.

4.2 Regional Synchronization

With regional synchronization agents themselves take care of their synchroniza-
tion. Each agent of the MAS is equipped with a personal synchronizer. Before
acting, each agent triggers his synchronizer to synchronize with the agents within
his perceptual range. The result of the synchronization process is the formation
of independent groups of synchronized agents. The composition of these groups
depends on the actual locality of the agents. When agents enter or leave each
others perceptual range, the composition of synchronized groups dynamically
changes at the same time. For a detailed description of regional synchroniza-
tion, we refer to [12]. Fig. 6 depicts the model for simultaneous actions applied
for regional synchronization. The synchronization layer with regional synchro-
nization is populated with synchronizers S, each synchronizer connected to an
agent. Before an agent Ai acts, he sends a request T to his synchronizer Si to
establishing synchronization with his neighboring colleagues. To do so, T must
contain the set of agents visible to Ai. Ai deduces this set from his last percep-
tion P . Then Si starts synchronization by requesting the set of visible agents to

116 D. Weyns and T. Holvoet

synchronize. Synchronization messages are represented by N . Only when nego-
tiation is concluded and a mutual agreement is reached with the synchronized
agents, Si informs his agent Ai to proceed, sending him the set of synchronized
agents {A}.

Then the agent decides about his next action and sends an influence, to-
gether with the set of synchronized agents to the collector. Based on this latter
set, the collector searches for a matching set of pending influences. Now there
are three possible scenario’s: (1) the collector can not find a matching set, (2)
he finds one such a set or (3) he finds more sets. In case he did not found any
set he adds a new set to the repository of sets of pending influences according to
(I, {A}). For the case he found just one set he updates this set. We explain the
third scenario (with more then one matching set) by means of an example. Such
scenario occurs when a set of regional synchronized agents is composed of dif-
ferent subsets whereof at least two subsets have no agents in common3. Suppose
that the collector receives the tuple (I1, {A1, A11, A6, A9}) sent by A1. Further,
we suppose there are two sets of pending influences, S1 = {(A7, I7), (A11, I

0)}
and S2 = {(A9, I9), (A14, I

0)}. Now there is a match of the set of synchro-
nized agents sent by A1 with both S1 and S2. In this case the collector com-
bines all the sets to one resulting set. For the example, the resulting set is
{(A7, I7), (A11, I

0), (A9, I9), (A14, I
0), (A6, I

0), (A1, I1)}. As soon as the collec-
tor detects that a set of pending influences is completed, he removes this set
from the repository and passes the set of corresponding influences {I} to the
reactor.

The reactor composes the influences with the current state of the environment
S and the applicable laws {L}. The resulting state changes dS and the set of
consumptions {C} are passed to the effector who updates with them the state
of the environment and the repository of pending consumptions. Subsequently
the agent can perceive the updated state and consume its consumption to start
a new action cycle.

Evaluation. The implementation of simultaneous actions with regional syn-
chronization is more complicated than with centralized synchronization. The
synchronization layer must implement a non–trivial synchronization algorithm
to set up regional synchronization, for details see [12]. Further, the influence
collector must provide a dynamic data structure for sets of pending influences.
This structure must be maintained in a consistent manner, including possible
merges of sets as the one discussed in the example above. Contrary to cen-
tralized synchronization, the approach with regional synchronization guarantees
much better autonomy for the agents. Since agents only synchronize with their
direct neighbors (these are exactly the candidates for simultaneous actions), the
pace at which they are able to act only depends on this set of synchronized
agents. The price that is paid for this gain is the communication overhead to
establish regional synchronization. [12] reports simulation results that compares

3 For regional synchronization each agent establishes synchronization with only the
agents visible to him, so when not all agents of a set of regional synchronized agents
see each other, each agent only passes a subset of synchronized agents to the collector.

Model for Simultaneous Actions in Situated Multi-agent Systems 117

the pros and cons. Collecting influences is clearly more expensive for the re-
gional synchronization approach. Selecting matching sets of pending influences
requires a search through the repository of the collector. In addition, if more
then one set is found these sets have to be merged into one compound set. On
the other hand, the cost to calculate reaction is much lower than for centralized
synchronization. Since only sets of influences on a per region basis are passed
to the reactor, the cost for calculating reaction only depends on the size of
such sets. Therefore, regional synchronization scales much better then central-
ized synchronization. Agents that have no colleagues to synchronize with can act
asynchronously, while the calculation of the reaction for a group of synchronized
agents only depends on the size of the group. This makes the complexity to react
to the influences O(n ∗ r) for a MAS populated with n agents that synchronize
in clusters with an average size r. As explained in section 4.1, the complexity of
the reaction to the influences for centralized synchronization is O(n2).

Contrary to centralized synchronization where all agents simply act together,
with regional synchronization, the possibility for acting together is established
as a natural consequence of the situatedness of the agents. In other words, agents
that are in each others neighborhood are able to perform simultaneous actions.
Such support for simultaneous actions can be implemented in a meta–layer,
where synchronizers are meta–agents that act on behalf of their associated agents
to establish synchronization at the beginning of each action cycle.

5 Conclusion and Future Work

The objective of this paper was to present a model that can bridge the gap
between the concept of simultaneous actions and its implementation. To bring
order in the range of simultaneous actions we first proposed a classification. This
classification takes the viewpoint of the observer, i.e. it distinguishes between dif-
ferent kinds of simultaneous actions based on the way how such actions interfere
with one another. To underpin the different types of simultaneous actions, we
illustrated each of them with examples in the Packet–World.

Then we presented a generic model for simultaneous actions in situated
MASs. This model is independent of the applied agent architecture. The model
functionally describes how simultaneous actions in situated MASs can be treated
towards implementation. The model is composed of four layers. The top layer
is responsible for composing sets of synchronized agents, i.e. agents that act
together. The second layer contains the agents in the MAS. The third layer
contains the collector who is responsible for composing sets of influences for
simultaneous acting agents and the effector that keeps the state of the environ-
ment up to date and brings the effects of their actions to the agents. The fourth
and final layer contains the reactor that is responsible for calculating the effects
of the influences of simultaneous acting agents according to the actual state of
the environment and the laws of the modeled MAS.

In the final section we illustrated the model for simultaneous actions for
centralized and regional synchronization. The approach with centralized syn-

118 D. Weyns and T. Holvoet

chronization is the easiest to implement, however the price is poor autonomy for
the agents and bad scalability of the MAS. With regional synchronization the
implementation is more complex, but this approach results in better autonomy
of the agents and better scalability with respect to the number of agents in the
MAS.

As a proof of concept, we have implemented the model for simultaneous
actions in the Packet–World. We applied the model for centralized and regional
synchronization. The interested reader is referred to [11]. The next step is to
integrate the experiences with simultaneous actions from the Packet–World into
a generic framework for situated MASs. Our goal is then to develop a language
to program situated MASs that can be executed on top of this framework. Such a
language can extend an existing programming language with different constructs
that capture key concepts for situated MASs such as simultaneous actions.

References

1. J. F. Allen and G. Ferguson, Actions and Events in Interval Temporal Logic,
Journal of Logic and Computation, Special Issue on Actions and Processes, 1994.

2. C. Boutilier and R. I. Brafman, Partial–Order Planning with Concurrent In-
teracting Actions, Journal of Artificial Research 14, 4-2001.

3. J. Ferber, Multi-Agent Systems, An Introduction to Distributed Artificial Intelli-
gence, Addison-Wesley, ISBN 0-201-36048-9, Great Britain, 1999.

4. J. Ferber, Un modele de l’action pour les systemes multi-agents, Journees sur les
systemes multi-agents et l’intelligence artificielle distribue, Voiron, 1994.

5. J. Ferber, and J.P. Müller, Influences and Reaction: a Model of Situated Mul-
tiagent Systems, Proceedings of ICMAS’96, AAAI Press, Nara, Japan, 1996.

6. N. Griffiths, M. Luck and M. d’Iverno, Cooperative Plan Annotation through
Trust, Workshop Notes of UKMAS’02, Eds. P. McBurney, M. Wooldridge, UK
Workshop on Multi-agent Systems, Liverpool, 2002.

7. M. N. Huhns and L. M. Stephens, Multi-Agent Systems and Societies of Agents,
G. Weiss ed., Multi-agent Systems, MIT press, 1999.

8. D. Kinny, M .Ljundberg, A. Rao et al., Planning with Team activity, MAA-
MAW’92, LNCS 830, S. Martino al Cimino, Italy, 1992.

9. M. E. Markiewicz, C. J. P. Lucena, Object Oriented Framework Development,
ACM Press, 2001. See: http://www.acm.org/crossroads/xrds7-4/frameworks.html

10. B. Robben, Language Technology and Metalevel Architectures for Distributed Ob-
jects, Ph.D, K.U.Leuven, Belgium, ISBN 90-5682-194-6, 1999.

11. D. Weyns and T. Holvoet, The Packet-World as a Case to Investigate Sociality
in Multi-agent Systems, Demo presented at AAMAS 2002, Bologna, Italy, 2002.
For information see: www.cs.kuleuven.ac.be/˜ danny/aamas02demo.html.

12. D. Weyns and T. Holvoet, Regional Synchronization for Simultaneous Actions
in Situated Multi-Agent Systems, CEEMAS 2003, LNAI 2691 pp. 497–511, Prague,
Czech Republic, 2003.

13. D. Weyns and T. Holvoet, A Model for Situated Multi-Agent Systems with
Regional Synchronization, CE/AMAS, Balkema Publishers, ISBN 90-5809-622-X
vol. I, 2th chapter, Madeira, Portugal, 2003.

	Introduction
	Simultaneous Actions
	Classification of Simultaneous Actions
	Examples of Simultaneous Actions
	Examples

	A Generic Model for Simultaneous Actions
	High Level Description of the Model
	Layers and the Flow between Layers
	Issues with Respect to the Implementation of the Model

	Centralized versus Regional Synchronization
	Centralized Synchronization
	Regional Synchronization

	Conclusion and Future Work

