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Abstract. In this paper we present a mechanism for serializing the
execution-state of a distributed Java application that is implemented on
a conventional Object Request Broker (ORB) architecture such as Java
Remote Method Invocation (RMI). To support capturing and reestab-
lishment of distributed execution-state, we developed a byte code trans-
former that adds this functionality to a Java application by extracting
execution-state from the application code. An important benefit of the
serialization mechanism is its portability. It can transparently be inte-
grated into any legacy Java application. Furthermore, it does require
no modifications to the Java Virtual Machine (JVM) or to the under-
lying ORB. The serialization mechanism can serve many purposes such
as migrating execution-state over the network or storing it on disk. In
particular, we describe the implementation of a prototype for reparti-
tioning distributed Java applications at runtime. Proper partitioning of
distributed objects over the different machines is critical to the global
performance of the distributed application. Methods for partitioning ex-
ist, and employ a graph-based model of the application being partitioned.
Our serialization mechanism enables then applying these methods at any
point in an ongoing distributed computation.

1 Introduction

In this paper we present a mechanism for serializing the execution-state of a
distributed Java application. We describe this mechanism in the context of
a system for runtime repartitioning of distributed Java applications. For dis-
tributed object-oriented applications, an important management aspect is the
partitioning of objects such that workload is equally spread over the available
machines and network communication is minimized. Traditional techniques for
automatic partitioning of distributed object applications use graph-based algo-
rithms, e.g.. [7].

In a static approach an external monitor automatically determines the best
possible partitioning of the application, based on observation of behavior of the
application (i.e., the dispersal of costs) during a number of representative runs.
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This partitioning is fixed for the entire execution of the application. However
in a dynamic environment the optimal object distribution may change during
execution of the application. To cope with this, the external monitor may peri-
odically check the workload at runtime on each separate machine. Whenever the
workload on one or more machines crosses a certain threshold, e.g., following the
low-water high-water workload model as described in [11], the monitor immedi-
ately triggers the repartitioning algorithm and relocates one or more objects to
another machine.

The relocation of a running object involves the migration of its object-code,
data-state and execution-state. Conventional Java-based Object Request Bro-
kers (ORB), such as the Voyager ORB [8], support passive object migration,
i.e., migration of object-code and data-state, but no migration of execution-state.
However, runtime repartitioning doesn’t want to wait with object relocation un-
til that object and eventually all objects involved in the execution of that object
are passive. Instead it aims to handle the triggers for object repartitioning imme-
diately. As a consequence existing methods for repartitioning must be adapted
to be applied at any point in an ongoing distributed computation. As such, it
is necessary to support object relocation with migration of execution-state. Mi-
gration of execution-state is in the literature often referred to as strong thread
migration [6]. The fact that the Voyager ORB does not support strong thread
migration is not just a missing feature, but the real problem is that migration
of the execution-state is simply not supported by current Java technology.

To solve this we developed a byte code transformer and associated manage-
ment subsystem that enables an external control instance (such as the above load
balancing monitor) to capture and reestablish the execution-state of a running
distributed application. We call this (de)serialization of distributed execution-
state. The byte code transformer instruments the application code by inserting
code blocks that extract the execution-state from the application code. The
management subsystem, which is invoked by the inserted codes, is responsible
for managing the capturing execution-state efficiently. The management subsys-
tem also provides operations by which an external control instance can initiate
serialization of the distributed execution-state at its own will.

It is important to know that we solely focus on distributed applications that
are developed using conventional ORBs such as Java Remote Method Invocation
(RMI) or Voyager. Programmers often use these middleware platforms because
of their object-based Remote Procedure Call (RPC) like programming model,
which is very similar to the well-known object-oriented programming style.

1.1 Important Aspects of Our Work

Serialization of a Distributed Execution-state. In this paper we first de-
scribe how we realized serialization of a distributed execution-state. Note that
in the past, several algorithms have been proposed to capture the execution
state of Java Virtual Machine (JVM) threads in serialized form. Some require
the modification of the JVM [2]. Others are based on the modification of source
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code [6]. Some models rely on byte code rewrite schemes, e.g., [10][15]. We too
had already implemented such a byte code rewrite algorithm called Brakes [13].

However, most of these schemes are presented in the domain of mobile agents
systems. Whenever a mobile agent wants to migrate, it initiates the capturing
of its own execution-state. As soon as the execution-state is serialized the agent
migrates with its serialized execution-state to the target host where execution
is resumed. However, serialization of distributed execution-state of Java RMI-
like applications introduces two aspects that are not covered in the migration
scenario of mobile agents. First, the computational entities in Java RMI ap-
plications execute as distributed flows of control that may cross physical JVM
boundaries, contrary to how conventional Java threads are confined to a single
address space. As such, serializing the execution-state of such a distributed con-
trol flow introduces a lot of unexplored problems that are not an issue for the
migration of mobile agents. The second aspect is that mobile agents initiate the
capturing/reestablishment of their execution-state themselves, whereas captur-
ing/reestablishment of distributed execution-state must often be initiated by an
external control instance.

The Brakes thread serialization scheme is not designed for being initiated
by such an external control instance. In this paper we describe how we have
extended Brakes with a mechanism for serialization of the execution-state of
distributed control flows that can be initiated by an external control instance.
Runtime Repartitioning of Distributed Java Applications. Subsequently,
we show how we used this serialization mechanism to implement a prototype for
runtime repartitioning. The idea is that the load balancing monitor, that plays
the role of external control instance here, captures the execution-state of an
application whenever it wants to repartition that application and reestablishes
the execution-state after the repartitioning is finished.

The advantage of having separate phases for migration of execution state and
object migration is that objects can migrate independently of their (suspended)
activity. Requests for object migration can immediately be performed, without
having to wait for the objects to become passive. This is possible because, by
using the serialization mechanism, application objects can be turned passive on
demand by the monitor, while their actual execution-state is safely stored in
the management subsystem of the serialization mechanism. So when the actual
repartitioning takes place, all application objects are a priori passive. As a re-
sult, we can still use a conventional passive object migration to implement the
runtime repartitioning prototype. In this paper we assume that the application’s
underlying ORB supports passive object migration, e.g. the Voyager ORB, but
existing work [5] has shown that support for passive object migration can also
be added to the application by means of byte code transformation.

Previous work [9][14] already offers support for runtime repartitioning, but
this is implemented in the form of a new middleware platform with a dedicated
execution model and programming model. A disadvantage of this approach is
that Java RMI legacy applications, which have obviously not been developed
with support for runtime repartitioning in mind, must partially be rewritten such
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that they become compatible with the programming model of the new middle-
ware platform. Instead, our new approach is to develop a byte code transformer
that transparently injects new functionality to an existing distributed Java appli-
cation such that this application becomes automatically runtime repartition-able
by the monitor. The motivation behind this approach taken is that programmers
do not want to distort their applications to match the programming model of
whatever new middleware platform.
Portability of the serialization mechanism. An important benefit of the se-
rialization mechanism for capturing distributed execution-state is its portability:
(1) byte code transformations integrate the required functionality transparently
into existing Java applications. A custom class loader can automatically perform
the byte code transformations at load-time. (2) The serialization mechanism does
require no modifications of the JVM. This makes the implementation portable
on any system, as long as a standard JVM is installed on that system. (3) The
serialization mechanism does require no modifications of the underlying ORB.
It works seamless on top of any ORB with an RPC-like programming model,
provided that our byte code transformation is performed before stub code gen-
eration, see section 2.3.

However, a limitation is that our serialization mechanism is only applicable
on top of a dedicated cluster of machines where network latencies are low and
faults are rare. This is not directly a dependability of our approach, but rather a
dependability of the RPC-like programming model: performing blocking calls on
remote objects is after all only feasible on a reliable, high-bandwidth and secure
network. As such our serialization mechanism is not well suited for runtime
repartitioning of Internet applications or wireless applications.

1.2 Structure of the Paper

This paper is structured as follows. In section 2 we present our mechanism for
serializing a distributed execution-state for a Java RMI-based application. In
section 3 we introduce our prototype for runtime repartitioning and demon-
strate how it works by means of a concrete example application. In section 4 we
evaluate the performance overhead and byte code blowup that is generated by
our approach. Section 5 discusses related work. Finally we conclude and look to
future work in section 6.

2 Distributed Thread Serialization

In this section we describe our mechanism for serializing a distributed execution-
state for a Java RMI-based application. First we shortly describe the implemen-
tation of Brakes. We discuss the problem we encountered when trying to reuse
Brakes for capturing distributed execution-state. Next we introduce the notion
of distributed thread identity and show how we used it to extend Brakes for se-
rialization of distributed execution-state of Java RMI-based applications. Then
we give an overview of the associated management subsystem that is responsible
for managing the captured execution-state efficiently.
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2.1 Brakes for JVM Thread Serialization

In Brakes the execution-state of a thread is extracted from the application code
that is executing in that thread. For this, a byte code transformer inserts capture
and reestablishing code blocks at specific positions in the application code. We
will refer to this transformer as the Brakes transformer.

With each thread two flags, called isSwitching and isRestoring, are associated
that represent the execution mode of that specific thread. When the isSwitching
flag is on, the thread is in the process of capturing its state. Likewise, a thread
is in the process of reestablishing its state when its isRestoring flag is on. When
both flags are off, the thread is in normal execution. Each thread is associated
with a separate Context object into which its state is switched during capturing,
and from which its execution-state is restored during reestablishing.

The process of capturing a thread’s state, indicated by the empty-headed
arrows in Fig. 1, is then implemented by tracking back the control flow, i.e. the
sequence of nested method invocations that are on the stack of that thread. For
this the byte code transformer inserts after every method invocation instruction
a code block that switches the stack frame of the current method into the context
and returns control to the previous method on the stack, etc. This code block is
only executed when the isSwitching flag is set.

The process of reestablishing a thread’s state, indicated by the full-headed
arrows in Fig. 1, is similar but restores the stack frames in reverse order on
the stack. For this, the byte code transformer inserts in the beginning of each
method definition a code block that restores stack frame data of the current
method and subsequently creates a new stack frame for the next method that
was on the stack, etc. This code block is only executed when the isRestoring flag
is set.

Fig. 1. Thread Capturing/Reestablishing in Brakes.
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A context manager per JVM manages both Context objects and flags. The
inserted byte codes switch/restore the state of the current thread into/from its
context via a context-manager-defined static interface. The context manager
manages context objects on a per thread basis. So every thread has its own
Context object, exclusively used for switching the state of that thread. The
context manager looks up the right context object with the thread identity as
hashing key. For more information about Brakes, we refer the reader to [13].

2.2 Problem with Brakes to Capture Distributed Execution-State

This section describes the problem we encountered when trying to reuse Brakes
for capturing distributed execution-state. In Brakes, execution-state is saved per
local JVM thread. This works well for capturing local control flow but not for
capturing a control flow that crosses system boundaries. Fig. 2 illustrates the
problem.

bar

foo

f()
thread ti

b()

b()

f()

call stack ti

//media

p()

barb() poe

//multi

p()

r()
RMI

stub

p()

r()

context_jcontext_i

thread tj

i

i

j

call stack tj

j

Fig. 2. Context per JVM Thread.

Once thread ti in the example reaches method b() on object bar, the call
p() on object poe is performed as a remote method invocation. This remote
call implicitly starts a new thread tj at host multi. Physically, the threads ti
and tj hold their own local subset of stack frames, but logically the total set
of frames belongs to the same distributed control flow. The context manager
is however not aware of this logical connection between threads ti and tj. As
a consequence Brakes will manage contexts and flags of these JVM threads as
separate computational entities, although they should be logically connected.
Without this logical connection, it becomes difficult to robustly capture and
reestablish a distributed control flow as a whole entity. For example, it becomes
quasi impossible for the context manager to determine the correct sequence
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of contexts that must be restored for reestablishment of a specific distributed
control flow.

2.3 Distributed Thread Identity to the Rescue

A Java program is executed by means of a JVM thread. Such a thread is the
unit of computation. It is a sequential flow of control within a single address
space, i.e. JVM. However for distributed applications developed with an object-
based control flow programming model like Java RMI, the computational entities
execute as flows of control that may cross physical node boundaries. In the re-
mainder of this paper we refer to such a distributed computational entity as a
distributed thread of control, in short distributed thread. A distributed thread is a
logical sequential flow of control that may span several address spaces, i.e. JVMs.
A distributed thread is physically implemented as a concatenation of local JVM
threads, sequentially performing remote method invocations when they transit
JVM boundaries. As shown in Fig. 3 a distributed thread T is physically im-
plemented as a concatenation of local (per JVM) threads [t1,. . . ,t4] sequentially
performing remote method invocations when they transit JVM boundaries.

Fig. 3. A Distributed Thread.

In a local execution environment, i.e. for centralized programs that run
on one JVM, the JVM thread identifier offers a unique reference for a single
computation entity. In a distributed environment however, a new JVM thread
is created whenever the control flow crosses system boundaries. Thereby logical
thread identity gets lost. We extend Java programs with the notion of distributed
thread identity. Propagation of a globally unique distributed thread identity pro-
vides a uniform mechanism to refer to that distributed thread as one and the
same computational entity.
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We implemented distributed thread identity by means of byte code transfor-
mation based on M. Dahm’ BCEL [4]. Hereafter we will refer to this transformer
as the DTI transformer. The DTI transformer extends the signature of each
method with an additional argument of class D Thread ID. D Thread ID is a
serializable class that implements an immutable, globally unique identifier. The
signature of every method invoked in the body of the methods must be extended
with the same D Thread ID argument type too. For example, a method f() of
a class C is rewritten as:

//original method code //transformed method code
f(int i, Bar bar) { f(int i, Bar bar, D Thread ID id ) {
... ...
bar.b(i); bar.b(i, id );
... ...

} }

This way the distributed thread identity is automatically propagated with the
control flow along the method call graph.
Applying the byte code transformation to applications developed with an off-the-
shelf Object Request Broker demands some attention. The programmer must be
aware of generating the stub classes for the different remote interfaces only after
our byte code transformation has been applied. This to make sure that stubs
and skeletons (that are automatically generated) would propagate distributed
thread identity appropriately.
The identity of a distributed thread is assigned at creation time. This behavior is
encapsulated in the D Thread class. Therefore the DTI transformer wraps each
Java Thread object in a D Thread which serves as abstraction for creating a new
distributed thread. For more details about distributed threads and distributed
thread identity we refer to [16].

Since distributed thread identity is now available in every method frame
as the D Thread ID argument, it can be inspected by the context manager of
Brakes. The only adjustment required to make it work, is that the inserted
capturing and reestablishing code blocks of Brakes must pass the D Thread ID
argument to the context manager along its static interface.

Efficient Management of Serialized Distributed Execution-State. Dis-
tributed thread identity allow us to build an associated distributed management
system, illustrated in Fig. 4, that manages captured execution-state on a per
distributed thread basis. The management subsystem consists of a context man-
ager for each JVM where the distributed application executes, to which we will
refer as local context managers. Capturing and restoring code blocks still com-
municate with the static interface of the local context manager, but the captured
execution-state is now managed per distributed thread by one centralized man-
ager, the distributed thread manager.
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LocalContextManager LocalContextManager

DistributedThreadManager

D_ContextT

JVM 3

JVM 1 JVM 2

T T

T T

TRMI

distributed application

management architecture

static interface

Fig. 4. Distributed Architecture of the Context Manager.

To further deal with the problem that Brakes is not designed for capturing
distributed execution-state, we also had to rearrange the management of the
isSwitching and isRestoring flags. First, while in Brakes there was a separate
isSwitching and isRestoring flag for each JVM thread, we now manage only one
isSwitching and one isRestoring flag for the entire distributed execution-state of
the application. Both flags are stored as static global variables on the distributed
thread manager and are replicated with strong consistency on each local context
manager. Furthermore we introduced a new flag, isRunning, associated with each
individual distributed thread that marks the start of capturing and the end of
reestablishing the execution-state of that distributed thread.

A positive side effect of the rearrangement of flags is that we drastically
reduced the overhead during normal execution. When inspecting the global isS-
witching and isRestoring flags during normal execution, inserted byte codes only
have to verify whether there has been a request for capturing the execution-
state, i.e. the test of the isSwitching flag at the local context manager, avoiding
a costly hashtable look-up on distributed thread identity. During state saving
the isSwitching flag is on and then inserted byte codes check the isRunning
flag too. This involves a search with D Thread D as hashing key, however these
look-ups do not occur during normal execution. This choice may seems to be
a trade-off between efficiency and flexibility. The rearrangement of flags results
in a less flexible mechanism that can only capture execution-state at the level
of the whole distributed execution-state of the application. It is not possible to
capture one distributed thread, without stopping the other distributed threads.
However, this coarse-grained scale is exactly what we want: it does not make
sense to capture one thread, without stopping the other threads when they are
executing in the same application objects. In section 4.1 we discuss performance
overhead.
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External Initiation of (De)Serialization. The Brakes thread serialization
scheme is designed in the context of mobile agents, and as such it is not designed
for being initiated by an external control instance. To deal with this problem,
the distributed thread manager offers a public interface that enables an exter-
nal control instance to initiate the capturing and reestablishing of distributed
execution-state. To handle these requests, we extended the Brakes transformer
to insert extra byte codes at the beginning of each method body that verifies
whether there has been an external request for capturing execution state. We
will refer to this code as {external capturing request check}.

Capturing of execution-state is started by calling the operation
captureState() on the distributed thread manager. This method sets the is-
Switching flag on all local context managers through broadcast. As soon as a
distributed thread detects the isSwitching flag is set, (inside the first executed
{external capturing request check} code) the distributed thread sets off its
isRunning flag and starts switching itself into its context.

Reestablishment of execution is initiated by calling the operation
resumeApplication() on the distributed thread manager. This method sets
the isRestoring flag on each local context manager and restarts the execution
of all distributed threads. Each distributed thread detects immediately that
the isRestoring flag is set, and thus restores itself from the context. Once the
execution-state is reestablished the distributed thread sets on its isRunning flag
(inside the {external capturing request check} code) and resumes execu-
tion. When all distributed threads execute again, the distributed thread manager
sets the isRestoring flag off on all local context managers through broadcast.

3 Runtime Repartitioning at Work

In this section we present our prototype for runtime repartitioning and demon-
strate it for a simple text translator application. First we describe the process of
runtime repartitioning. Then we give a sketch of the prototype. Next we illus-
trate the byte code transformations. Finally we explain the process of runtime
repartitioning by means of an example.

3.1 Runtime Repartitioning

Runtime repartitioning aims to improve the global load balance or network com-
munication overhead by repartitioning the object configuration of the applica-
tion over the available physical nodes at runtime. We distinguish between 4
successive phases in the runtime repartitioning process. In the first phase, the
management subsystem allows an administrator to monitor the application’s ex-
ecution and let him decide when to relocate the application objects over the
available physical nodes. In the second phase, the application takes a snapshot
of its own global execution-state, capturing the state of all distributed threads
that are executing in the application. After this, the execution of all application
objects is temporarily suspended and the corresponding thread states are stored
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as serialized data in a global thread context repository. In the third phase, the
management architecture carries out the initial request for repartitioning by mi-
grating the necessary objects over the network. In the final and fourth phase,
the execution-state of all threads is first reestablished from the stored data in
the global thread repository. As soon as the execution-state is reestablished the
application continues where it left off.

3.2 Prototype

In the runtime repartitioning prototype, the serialization mechanism is inte-
grated with a simple load balancing monitor. We demonstrate the repartitioning
prototype for a simple text translator system, see Fig. 5.

Server

ParserBuilder

Translator

Dictionary

//multi //media

Fig. 5. Prototype for runtime Repartitioning.

The text translator is composed with a number of objects that can be dis-
tributed over some hosts. For each translation a new distributed thread is started.
A client sends the text with a source and target language to a Server object. The
Server forwards the job to a ParserBuilder, who sends each sentence for transla-
tion to a Translator. The Translator uses a Dictionary object for the translation
of individual words. As soon as a sentence is translated the Translator returns it
to the ParserBuilder. The ParserBuilder assembles the translated text. Finally
the translated text is returned to the Server who sends it back to the client.

Fig. 6 gives a snapshot of the load balancing monitor. The monitor offers
a GUI to an administrator that enables to do runtime repartitioning. The left
and middle panels show the actual object distribution of the running application.
The panels on the right show the captured context objects per distributed thread
after a repartitioning request. Since passive object migration, i.e., code and data
migration, but no migration of runtime information like the program counter
and the call stack, is necessary during the third phase of the runtime reparti-
tioning process we used the mobile object system Voyager 2.0 [8] as distributed
programming model in our prototype.
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Fig. 6. Snapshot of the Runtime-Repartitioning Monitor.

To enable capturing and reestablishment of distributed execution-state dur-
ing phases two and four, the implementation code of the text translator system
must be hauled through our byte code transformer.

Finally, the distributed architecture as shown in Fig.4, defines an abstract
framework that must be instantiated by a concrete distributed implementation.
We used Voyager for this too, but another distribution platform like Java RMI
was also possible. Thus in our prototype LocalContextManager and Distribut-
edThreadManager are implemented as Voyager objects.

3.3 Byte Code Transformations

Before illustrating the process of runtime repartitioning we first give an overview
of the transformation of the application code, see Fig. 8. We limit the extract to
the principal code. The italic marked code is inserted byte code. Each method sig-
nature as well as each method invocation is extended with an extra D Thread ID
argument by the DTI transformer. The Brakes transformer has inserted code
blocks for the capture and restore of the execution-state of a distributed thread.

3.4 An Example of Run-Time Repartitioning

We will now explain the process of run-time repartitioning starting from Fig. 5.
Suppose the administrator decides to migrate the Dictionary object during the
translation of a text. At a certain moment, lets say when the control flow enters
the translate() method in Dictionary, the administrator pushes the capture
button on the monitor. This point is marked in Fig. 8 with *. At that moment
the execution- state of the distributed thread is scattered over two hosts as
illustrated in Fig.7.
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Pushing the capture button invokes captureState() on the distributed
thread manager that sets the isSwitching flag. The distributed thread detects this
in the {external capturing request check} code. Immediately it set off its
isRunning flag and saves the execution-state of the translate() method. This
includes: (1) the stack frame for translate() (i.e. the only frame for thread t2
on the call stack, see Fig.7); (2) the index1 of the last invoked method in the
body of translate (i.e. zero for {external capturing request check}); (3) the
object reference to the Dictionary object (i.e. the this reference). For reasons of
efficiency the execution-state is buffered per stack frame by the local context
manager until completion of switching. Then the local manager forwards the se-
rialized data to the distributed manager who stores it into the context repository
of the distributed thread with the given D Thread ID.

Fig. 7. Distributed Execution-state Before Capturing.

The last instruction of the {isSwitching code block} is a return. This re-
directs the control to the previous frame on the call stack of the distributed
thread, in our case the analyze() method. The control flow returns from host
to host (i.e. from media to multi, see Fig. 7) which means that the execution-
state of the JVM thread t2 now is completely saved. In the code of Fig. 8,
we then reach the point marked as **. Next the execution-state for analyze()
is saved, i.e.: (1) the stack frame for analyze() (i.e. the top frame of JVM
thread t1 as in Fig. 7): (2) the index of the last invoked method in the body
of analyze() (i.e. 4, see Fig. 8); (3) the object reference to the Translator

1 This index refers to the number the Brakes transformer associates with the subse-
quent invoke-instructions in the body of each method, starting with 0 for {external
capturing request check} code, 1 for the first invoke instruction and so on; the
index of the last performed invoke-instruction is saved in the context to remember
which methods where on the stack
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object. As soon as the buffered data is written to the context repository of the
distributed thread another return at the end of the {isSwitching code block}
redirects the control flow to the previous frame on the call stack. Subsequently,
the execution-state for that method is saved. This process recursively continues
until the JVM thread t1 returns to the run() method of D Thread. At that
time the DistributedContext contains the complete distributed execution-state
of the distributed thread.

class Translator {
Sentence analyze(Sentence sentence, D Thread ID, threadID ) {

{isRestoring code block}
{external capturing request check}
{isSwitching code block}
Sentence tSentence = new Sentence();
Word word, tWord;
sentence.resetCursor(threadID );
{isSwitching code block}
while(!sentence.endOfSentence(threadID )){

{isSwitching code block}
word = sentence.next(threadID) ;
{isSwitching code block}

** tWord = dictionary.translate(word, threadID );
{isSwitching code block}
tSentence.add(tWord, threadID );
{isSwitching code block}

}
return tSentence;

}
...
private Dictionary dictionary;

}

class Dictionary {
* public Word translate(Word word, D Thread ID threadID ) {

{isRestoring code block}
{external capturing request check}
{isSwitching code block}
...

}
...

}

Fig. 8. Application code after Byte Code Transformation.

Once the complete distributed execution-state is saved the Dictionary object
can be migrated from media to multi. To this purpose the administrator pushes
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the corresponding migrate-button on the monitor. As explained in section 3.2,
we used Voyager as distribution platform for our prototype. Voyager dynamically
transfers the object references from remote to local and vise versa.

Once the repartitioning is ready the administrator can push the resume but-
ton which invokes resumeApplication() on the distributed thread manager.
That turns off the isSwitching flag and sets the isRestoring flag. Next a new
JVM thread is created at multi to resume the translation. During the reestab-
lishing process the relevant methods are called again in the order they have been
on the stack when state capturing took place. The new thread takes the original
D Thread ID with it. This is the key mechanism for reconstructing the original
call stack. Each time inserted byte code reestablish the next stack frame the
managers use the distributed thread identity to select the right context object
for that particular distributed thread.

Fig. 9 illustrates the reestablishment of the last two frames in our example.
When analyze() on Translator is invoked, the isRestoring code block will be ex-
ecuted, based on the actual state of the flags (isRestoring = on, isRunning = off).
The inserted byte code restores the values of the local variables of the analyze()
frame one by one via the local context manager (see the left part of Fig. 9). At
the end the index of the next method to invoke is picked up. For the analyze()
frame an index 4 was earlier saved, so the fourth method, i.e. translate(), must
be invoked on the Dictionary object. The managers pickup the reference to this
object and translate() will be invoked. Again the restoring code restores the
local execution- state of the translate() method (the right part of Fig. 9).
This time the index for the next method is zero. This is the signal for the con-
text manager to reset the isRunning flag of the current distributed thread and
resumes its normal execution. At this point the expensive remote interaction be-
tween the translator and the dictionary objects is transferred into a cheap local
invocation.

Note that in the example the execution-state is saved with the trans-
lator object waiting on a pending reply of a remote method invocation,
dictionary.translate(), see Fig. 8. This illustrates the advantage of keep-
ing execution and object migration completely orthogonal to each other.

4 Evaluation

In this section we evaluate the serialization mechanism for a distributed
execution- state. Since inserting byte code introduces time and space overhead
we look to the blowup of the class files and give results of performance mea-
surements. To get a representative picture, we did tests on different types of
applications. At the end we look to limitations of our current implementation
and restrictions of the model.

4.1 Measurements

Blowup of the byte code. The blowup of the byte code for a particu-
lar class highly depends on the number and kind of defined methods. Since
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Fig. 9. Reestablishing a Distributed Execution-state.

the Brakes transformer inserts code for each invoke-instruction that occurs in
the program, the space overhead is directly proportional to the total number
of invoke-instructions that occur in the agent’s application code. Per invoke-
instruction, the number of additional byte code instructions is a function of the
number of local variables in the scope of that instruction, the number of values
that are on the operand stack before executing the instruction and the num-
ber of arguments expected by the method to be invoked. The DTI transformer
rewrites method and class signatures. This adds a space overhead proportional
to the number of signature transformations. We measured the blowup for three
kinds of applications:

1. Low degree of method invocation, i.e., the program has a structure
main{m1;} thus the code is compacted in one method body;

2. Nested method invocations, i.e., the program has a structure main{m1;};
m1{m2; m3;}; m3{m4;} thus the code is scattered over a number of nested
methods;

3. Sequential method invocations, i.e., the program has a structure main{m1;
m2; m3; m4;} thus the code is scattered over a number of sequential non-
nested methods.

Table 1 shows the results of our measurements.
Functionality for distributed thread identity produces an average blowup of

27 % while the average blowup for full serialization functionality is 83 %. The
expansion for Sequential is rather high, but its code is a severe test for blowup.
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Table 1. Byte code Blowup (Bytes) for Three Kinds of Applications

Low degree Nested Sequential
Original 377 431 431
DTI 399 616 524
DTI + Brakes 573 718 991

4.2 Performance Measurements

For performance measurements, we used a 500 MHz Pentium III machine with
128 MB RAM with Linux 2.2 and the SUN 2SDK, JIT enabled. We limited our
tests to the overhead during normal execution. This overhead is a consequence
of the execution of inserted byte code. Table 2 shows the test results.

Table 2. Performance Overhead (ms) for Three Kinds of Applications

Low degree Nested Sequential
Original 190 811 1011
DTI 192 852 1054
DTI + Brakes 199 949 1314

For distributed thread identity we measured an average overhead of only 3
%. For full serialization functionality we get an average overhead of 17 %, a quite
acceptable result. Note that ”normal” applications typically are programmed in
a nested invocation style. As such, the results for the Nested application are a
good indication for blowup and performance overhead in practice.

It is difficult to compare our measurement results with other systems, since
to our knowledge, no related systems truly covers functionality for serialization
of distributed execution-state as our system does. In section 5 we discuss related
work.

4.3 Limitations of the Current Implementation

Our byte code transformers have some limitations we intend to eliminate in the
future. Although possible, we have not yet implemented state capturing during
the execution of an exception handler. The major difficulty here is dealing with
the finally statement of a try clause. Currently our byte code transformer
throws away all debugging information associated with a Java class. This affects
the ability to debug a transformed class with the source-code debugger. The
DTI byte code transformer encapsulates each user defined JVM thread into
a D Thread, but currently ignores other JVM thread related code. Thus our
current model doesn’t support aspects as e.g., thread locking in synchronized
code sections.
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4.4 Restrictions of the Model

Our model is intended and only applicable for applications running on top of a
dedicated cluster of machines where network latencies are low and faults are rare.
This is not directly a dependability of our approach, but rather a dependability
of the RPC-like programming model: performing blocking calls on remote objects
is after all only feasible on a reliable, high-bandwidth and secure network. As
such our serialization mechanism is not well suited for runtime repartitioning of
Internet applications or wireless applications.

Furthermore, in section 2.3 we already mention that the granularity of our
repartitioning algorithm is at JVM level. When the isSwitching flag is set all
running distributed threads are suspended together irrespective of whatever ap-
plication they belong. Thus applications, which its classes are transformed with
our byte code transformer and that executes on the set of involved JVMs will be
suspended together. Since we extract thread execution-state at byte code level
we cannot handle a method call that causes a native method to be placed on
the thread stack. Thus programs that use reflection do not work properly with
our repartitioning model. Therefore we actually don’t transform JDK libraries
and JDK method calls in the application code. In our prototype we transformed
the application classes before deployment, but it is possible to defer this byte
code transformation until runtime. In Java, this can easily be realized by imple-
menting a custom classloader that automatically performs the transformation.
However, the overhead induced by the transformation process then becomes a
relevant performance factor.

5 Related Work

We discuss related work according to the related fields that touches our work.
Distributed Threads. D. Jensen at CMU already introduced the notion of dis-
tributed thread in the Alpha distributed real-time OS kernel [3]. The main goal
of distributed threads in the Alpha kernel was integrated end-to-end resource
management based on propagation of scheduling parameters such as priority
and time constraints. In our project we adopted the notion of distributed thread
at the application level. This allows the distributed management subsystem to
refer a distributed control flow as one and the same computational entity.
Strong Thread Migration. Several researchers developed mechanisms for
strong thread migration in the context of Mobile Agents. S. Funfrocken at TU
Darmstadt [6] has implemented a transparent serialization mechanism for local
JVM threads by processing the source code of the application. He used the Java
exception mechanism to capture the state of an ongoing computation. Source
code transformation requires the original Java files of the application. Besides,
it is much easier to manipulate the control flow at byte code level than at source
code level. Therefore, byte code transformation is more efficient especially in
terms of space overhead.

Sakamoto et al. [10] also developed a transparent migration algorithm for
Java application with the Java exception mechanism, but those researchers uses
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byte code transformation. We have chosen not to use the exception mechanism,
since entries on the operand stack are discarded when an exception is thrown,
which means that their values cannot be captured from an exception handler.
Sakamoto et al. solved this problem by copying al those values in extra local
variables before method invocation, but this causes much more space penalty
and performance overhead.

In her dissertation [15], W. Tao proposes another portable mechanism to
support thread persistence and migration based on byte code rewriting and the
Java exception mechanism. Tao’s mechanisms supports synchronized execution
state saving.
Multi-Threading for Distributed Mobile Objects in FarGo. Abu and
Ben-Shaul integrated a multi-threading model for distributed and mobile ob-
jects in the FarGo framework [1]. A FarGo application consists of a number of
’complets’. Complets are similar to components. They are the unit of reloca-
tion in the model. The distributed mobile thread model of FarGo is based on
a thread-partitioning scheme. Programmers must mark a migratable complet
as thread-migratable (T-migratable) by implementing the empty T Migratable
interface. The FarGo compiler uses this interface to generate proper thread par-
titioning code. Thread partitioning is integrated in the complet reference archi-
tecture. When a T Migratable complet is referenced the invoking thread waits,
and a new thread is started in the referenced complet. The migration itself is
based on the source code transformation of Funfrocken’ migration scheme.
Byte Code Transformations for Distributed Execution of Java applica-
tions. The Doorastha system [5] allows implementing fine-grained optimizations
for distributed applications just by adding code annotations to pure Java pro-
grams. By means of these annotations it is possible to dynamically select the
required semantics for distributed execution. This allows a programmer to de-
velop a program in a centralized (multi-threading) setting first, and then prepare
it for distributed execution by annotation. Byte code transformation will gener-
ate a distributed program whose execution conforms to the selected annotations.

Researchers at the University of Tsukuba, Japan [12] developed a system
named Addistant, which enables too the distributed execution of a Java program
that originally was developed to run on a single JVM. Addistant guaranties
that local synchronized method calls of one distributed control flow are always
executed by one and the same JVM thread. Therefore it establishes a one-to-
one communication channel (as thread local variable) for the threads that take
part in such an invocation pattern. In this approach it isn’t necessary to pass
distributed thread identity along the call graph of the distributed control flow,
but for a runtime repartitioning system, thread identity must be propagated
with every remote invocation anyway.

6 Conclusion and Future Work

In this paper we presented a mechanism for serialization of a distributed
execution- state of a Java application that is developed by means of a distributed
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control-flow programming model such as Java RMI. This mechanism can serve
many purposes such as migrating execution-state over the network or storing it
on disk. An important benefit of the serialization mechanism is its portability.
It can be integrated into existing applications and requires no modifications of
the JVM or the underlying ORB. However, because of its dependability on the
control-flow programming model, our serialization mechanism is only applicable
for distributed applications that execute on low latency networks where faults
are rare.

Our contribution consists of two parts. First we integrated Brakes, our ex-
isting serialization mechanism for JVM threads, in a broader byte code transla-
tion scheme to serialize the execution-state of a distributed control flow. Second
we integrated a mechanism to initiate the (de)serialization of the distributed
execution-state from outside the application.

We applied the serialization mechanism in a prototype for runtime reparti-
tioning of distributed Java applications. Our repartitioning mechanism enables
an administrator to relocate application objects at any point in an ongoing dis-
tributed computation. Often byte code transformation is criticized for blowup of
the code and performance overhead due to the execution of inserted byte code.
Based on a number of quantitative analyses we may conclude that the costs
associated with our byte code translation algorithm are acceptable.

The latest implementation of the runtime repartitioning tool is available at:

http://www.cs.kuleuven.ac.be/˜ danny/DistributedBrakes.html

Some limitations of our serialization mechanism for a distributed execution-
state have to be solved. Finally it ’s our intention to build a complete tool for
runtime repartitioning for distributed Java RMI applications. Therefore we have
to extend our current monitoring and management subsystem with several other
features such as functionality for dynamic adaptation of object references after
migration, support for different load balancing algorithms and an application
adaptable monitor.
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