
Protocol-Based Communication for Situated Multi-Agent Systems

Danny Weyns, Elke Steegmans and Tom Holvoet
AgentWise, DistriNet, K.U.Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
{danny.weyns, elke.steegmans, tom.holvoet@cs.kuleuven.ac.be}

Abstract

In this paper we introduce a model for direct communi-
cation in situated multi-agent systems. Direct communica-
tion is typically associated with cognitive agents, where the
information encoded in the messages is related to a mental
state. This generally assumed view on communication how-
ever, does not fit the approach of situated, behavior-based
agents. We propose a protocol-based communication model
for situated agents. Communication specified in terms of
protocols, i.e. well-defined sequences of messages, shifts the
focus of communication from the reasoning upon messages
towards the relationship between the exchanged messages.
The model decomposes communication into three functional
modules: message decoding, communicating and message
encoding. The core of the model, the communicating mod-
ule (1) interprets decoded messages and reacts to them in
accordance with the applicable protocol, and (2) initiates
or continues conversations when the conditions imposed by
the applicable protocol are satisfied.

1. Introduction

In the approach of situated multi-agent systems1 (situ-
ated MASs), agents and the environment constitute com-
plementary parts of a multi-agent world that can mutually
affect each other. Situatedness places an agent in a con-
text in which it is able to perceive its environment and in
which it can (inter)act. Intelligence in a situated MAS orig-
inates from the interactions of the agents in their environ-
ment rather than from the capabilities of individual agents.
Where the approach of situated MASs started from the re-
jection of classical agency based on symbolic AI, nowadays
the original opposition tends to evolve towards convergence
with different schools emphasizing different aspects. In re-
cent years, several researchers have shown that a mutual in-
tegration of visions can yield a synergetic surplus value, see

1 Alternative designations are behavior-based agents [2], adaptive au-
tonomous agents [10] or hysteretic agents [6].

e.g. [6][11][20]. This paper contributes in this evolution by
integrating direct communication in situated MASs.

Situated, behavior-based agents usually communicate in-
directly, e.g. by depositing pheromone trails in the environ-
ment. To set up explicit collaborations, reflected in mutual
commitments, the agents need to communicate directly with
one another. Direct communication however, is typically as-
sociated with cognitive agents, where the information en-
coded in the messages is related to a mental state. This gen-
erally assumed view on communication does not fit the ap-
proach of situated, behavior-based agents. Situated agents
do not reason upon mental state but select actions based on
internal stimuli and stimuli perceived in their environment.
In this paper we study the research problem of how to en-
able direct communication in situated MASs. Enabling di-
rect communication sets a different perspective on the so-
cial interaction between situated agents. We propose com-
munication specified in terms of protocols instead of men-
tal states as an approach to shift the focus of communica-
tion from the reasoning upon individual messages towards
the relationship between the exchanged messages.

Throughout the paper we use the Packet-World [16] as
an illustrative case. Fig. 1 depicts an example of the Packet-
World. The goal of the agents in the Packet-World is to bring
colored packets (squares) to correspondingly colored desti-
nations (circles). Agents can observe the environment, how-
ever only to a limited extent. Agents are allowed to make
one step at a time to a free neighboring field or pick up a
packet from a neighboring field. An agent is able to carry
one packet at a time, which it can put down at any free
neighboring field or at the destination. Agents can also send
messages to each other either for exchanging information or
for setting up collaborations. Performing actions requires
energy. Therefore agents are equipped with a battery. En-
ergy is of vital importance for the agents. The battery can be
charged at one of the available charge stations. To find the
way to a charge station, each charge station transmits a gra-
dient field. Agents can follow such a field and “climb up”
the gradient towards the station. In the example of Fig. 1
there is one charge station which is indicated by an electric

Figure 1. The Packet-World

socket symbol. The gradient field is marked by concentric
rounded squares around the charge station. The intensity de-
creases proportional to the distance to the charge station.

This paper is structured as follows. Section 2 explains
how the model for communication fits in a generic architec-
ture for situated agents and introduces the basic concepts.
Section 3 introduces the model for protocol-based commu-
nication. First we give a high level overview of the model.
Then, in section 4, we zoom in on the model and formally
describe the constituent modules and their interplay. Finally
we conclude in section 5.

2. Generic agent architecture and concepts

In this section we first situate the model for communica-
tion in a general model for situated agents. Then we intro-
duce the basic concepts of roles and situated commitments.

2.1. Agent architecture

The model for protocol-based communication we
present in this paper fits in a generic model for situ-
ated MASs we have described in previous work [18]. This
generic model formally describes an abstract architec-
ture for situated MASs. The model builds upon Ferber’s
theory for action, described in [6]. According to this the-
ory, agents produce influences into the environment and
subsequently the environment reacts by combining the in-
fluences to deduce a new state of the world.

An overview of the generic architecture with a focus on
the functional decomposition of an agent’s behavior is de-
picted in Fig. 2. We touch briefly on the different mod-
ules. The Perceptioni module takes care of the perception
of the environment of agent ai, i.e. it maps the local state
of the environment σ onto a percept, denoted as pi. The
Consumptioni module selects from the set of consump-
tions χ a consumption ci for agent ai. A consumption is

����

�����	
���
�	

��
�
�	

�������
�	

�	��������	������
�	

��	�����
�	

����� ��

�

�

�

�

�

�

 ��

�

� �

�

�

�

��	�
������

Figure 2. Generic model for a situated agent

an effect of the reaction of the environment to the most re-
cently produced influences for a particular agent. When an
agent “consumes” a consumption, the consumed effect can
be absorbed (e.g. food that is turned into energy), the agent
may simply hold an element (e.g. an object it has picked up)
or the consumption may affect the agent’s state (e.g. the arm
of a robot is wrenched through an external force). Percep-
tion and consumption depend on an agent’s ontology [19].

The KnowledgeIntegrationi module uses the most re-
cent percept and consumption to update the internally reg-
istered state and to produce the current knowledge κi. The
current knowledge is determined by the actual context the
agent is situated in. Contrary to knowledge-based agents,
situated agents do not build up an internal model of the en-
vironment. Instead, they favor to employ the environment it-
self as a source of information. Internal representations are
described in terms of the immediate environment, known as
indexical-functional representation [9][6]. Situated agents
use representations to direct their decision making process,
however this is done “here and now”. Such representations
do not oblige the agent to keep track of a hypothetical fu-
ture state or investigate the implications of it on a plan.

The Decisioni module is responsible for action selec-
tion. To decide about its next action, the decision module
takes the agent’s current knowledge κi, the set of available
roles ρi and the activated situated commitments γi and se-
lects an operator oi for execution. We explain the concepts
of a role and a situated commitment below. Execi executes
the selected operator producing an influence fi into the en-
vironment. The environment collects the influences of si-
multaneously acting agents [17] and calculates the reaction,
i.e. state changes in the environment and consumptions for
the acting agents, according to a set of domain specific laws.

The final building block in the model of a situated agent
is the Communicationi module that is the subject of this
paper. In short, the communication module processes in-
coming messages and produces outgoing messages accord-
ing to well-defined communication protocols. Agents typ-
ically modify their state (current knowledge and/or situ-

����������

	

��

�
� ����

��������
�������������

�������������
	

��

�
� ���

�����

��������

��������
�����������

�����������

���� ��������� ������

�
�����
� ������

��������

����

 � ! �

���� ��� ���� ������

����" ������

�������

����������

��#����

������

��$���

���%�����

���� ����

������������

&

 � ! � � ! �

'()
'() '()

*('

*('

+�, +-, +�,

�����

Figure 3. Model for action selection (a); detail of the activity flow (b); a communication protocol (c)

ated commitments) implied by the communicative interac-
tions. Messages are exchanged through the communication
medium that is part of the environment.

2.2. Roles and situated commitments

Direct communication is the basis for explicit collabora-
tions between agents, reflected in mutual commitments. The
attitude of a commitment has been studied extensively, how-
ever always from the perspective of cognitive agents, see
e.g. [4][7][5]. These traditional approaches take a psycho-
logical viewpoint on commitment, i.e. a commitment is es-
sentially based on the mutual beliefs of the involved agents.
We introduce the notion of a situated commitment as a so-
cial attitude of situated agents. Contrary to the traditional
approaches on commitment which are based on the mutu-
ally dependent mental states of the involved agents and a
goal-oriented plan, a situated commitment is based on the
roles of the involved agents and the local context they are
placed in. We share the sociological viewpoint on commit-
ment proposed in [14], however Singh’s work focuses on
cognitive agents in information rich environments while our
focus is on situated, behavior-based agents.

As indicated in Fig. 2, roles (ρi) and situated commit-
ments (γi) are related to action selection as well as to com-
munication. To clarify the concepts of a role and a situated
commitment we take a closer look at action selection, which
is the responsibility of the Decisioni module. For a detailed
study we refer to our previous work, mentioned above.

The model for action selection is based on a hierarchi-
cal, free-flow network [12]. In [15] T. Tyrrell demonstrated
that free-flow decision structures for behavior-based action
selection are preferable over hierarchical or flat decision
structures. For a recent discussion see [3]. However, exist-
ing free-flow architectures are designed from the viewpoint
of individual agents. They lack explicit support for social
behavior. The concepts of a role and a situated commitment
enable explicit social behavior of situated, behavior-based

agents. Fig. 3(a) depicts a simplified partial action selection
model for an agent in the Packet-World.

The hierarchy is composed of nodes which receive in-
formation from internal and external stimuli in the form of
activity. The nodes feed their activity down through the hi-
erarchy until the activity arrives at the action nodes where a
winner-takes-it-all process decides which action is selected.
Fig. 3(b) shows in detail how the DeliverPacket node col-
lects its activity and feeds it downwards in the hierarchy.

We define a role as a subtree in the hierarchy that cov-
ers a logical functionality of the agent. The root node of
such a subtree is denoted as the top node of the role. A role
is named as its top node. A role may consist of a set of sub-
roles, and sub-roles of sub-sub-roles etc. All roles of the
agent are constantly active and contribute to the final de-
cision making by feeding subsets of actions with activity.
However the contribution of each role depends on the ac-
tivity it has accumulated from the affecting stimuli of its
nodes. In the example, there are three roles demarcated by
dotted triangles. In the role Individual, the agent searches
for packets and brings them to the destination. The role of
Chain is composed of two sub-roles: Head and Tail de-
noting the two roles of agents in a collaboration to form a
chain to pass packets to each other. Finally in the role of
Maintain the agent recharges its battery.

A situated commitment defines a relationship between
one role, called the goal role, and a non-empty set of other
roles, i.e. the source roles, of an agent. Situated commit-
ments have a well-known name. Explicitly naming the com-
mitments enables agents to set up mutual commitments in a
collaboration [14]. However, a single agent can also commit
to itself. The connector Charging in Fig. 3(a) denotes the
situated commitment of an agent to itself to recharge its bat-
tery. The connectors HeadOfChain and TailOfChain
denote the mutual situated commitments of two agents to
collaborate in a chain. With each link between (the top node
of) a source role and the commitment, a weight factor is
associated that determines the amount of influence of the

source role on the goal role via the situated commitment.

Besides a name, each situated commitment is character-
ized by a relations set, a context, an activation condition,
a deactivation condition, a status (activated or deactivated)
and an addition function. The relations set contains the iden-
tity of the related agent(s) in the situated commitment. The
context describes contextual properties of the situated com-
mitment such as descriptions of objects in the local environ-
ment. Activation and deactivation conditions can be boolean
expressions based on internal state or perceived informa-
tion, or event occurrences such as sending or receiving a
message. When the activation condition becomes true, the
situated commitment is activated. The situated commitment
then injects an additional amount of activity in the goal role
defined by the addition function. The weight factors of the
links from the source roles determine the fraction of activity
of each source role that is taken into account by the addition
function. The top node of the goal role combines the addi-
tional activity of the situated commitment with the regular
activity accumulated from its stimuli. As soon as the deac-
tivation condition becomes true, the situated commitment is
deactivated. Then the situated commitment no longer influ-
ences the activity level of its goal role.

In general one agent can be involved in different situated
commitments at the same time. Activity received through
different situated commitments is then combined with the
regular activity received from stimuli into one result.

As an example, consider agent 8 (see Fig. 1) that com-
mits to be HeadOfChain in a collaboration to pass pack-
ets to agent 1. The activation condition for the situated com-
mitment is the receipt of the confirmation from agent 1 to
collaborate. The relations set for the commitment is the sin-
gleton agent 1. The context of the commitment denotes that
gray packets are passed along the chain. The deactivation
condition is a change in the environment that indicates that
the collaboration has finished, e.g. agent 1 has left its post.

Summarizing, agents agree on mutual situated commit-
ments in a collaboration via direct communication. Acti-
vating situated commitments and initiating their proper-
ties (relations set and context) are typical responsibilities
of the Communcationi module. Once activated, the situ-
ated commitment will affect the selection of actions in the
Decisioni module. The situated commitment induces ex-
tra activity in the hierarchy, favoring the goal role of the
commitment relatively to the source roles. Contrary to tradi-
tional approaches of commitment (e.g. a joint commitment
[4]) where the agents have the obligation to mutually com-
municate with each other when the conditions for a com-
mitted cooperation no longer hold, for a situated commit-
ment it is typically the local context in which the involved
agents are placed that regulates the duration of the commit-
ment. This approach fits the general principles of situated-
ness and robustness of situated MASs.

3. Model for protocol-based communication

In this section we give a high level description of the
model for protocol-based communication. First we exam-
ine communication protocols, then we introduce the model
for protocol-based communication.

3.1. Communication protocols

Communication in MASs is traditionally based on
speech act theory [1][13]. Speech act theory treats commu-
nication as actions, however the communicative acts are
considered in isolation. For example, the original KQLM
specification only suggests an implicit sequencing of mes-
sages in agent interactions [8]. In practice speech acts
are mostly part of logically related series of communica-
tive acts. In addition, communicative acts are typically
specified in terms of mental states which imposes con-
sequences on the nature of the agents. Communication
specified in terms of protocols shifts the focus of com-
munication from reasoning upon individual messages
towards the relationship between the exchanged mes-
sages.

A communication protocol specifies a well-defined se-
quence of messages, each message referring to a speech
act. We consider both binary and n-ary communication
protocols. A binary protocol involves two communication
peers (one as the initiator), whereas an n-ary protocol in-
volves multiple communication peers (also with one initia-
tor). Protocol-based communication is the interaction be-
tween agents based on the exchange of messages accord-
ing to a specific communication protocol. We use the no-
tion of a conversation to refer to such an ongoing interac-
tion. A conversation is initiated by the initial speech act of
a communication protocol. At each stage in the conversa-
tion there is a limited set of possible speech acts. Terminal
states determine when the conversation comes to an end.
During the progress of a conversation agents typically mod-
ify their state implied by the communicative interaction.

As an example, we look at the communication protocol
to set up a chain for passing packets in the Packet-World
as shown in the UML interaction diagram of Fig. 3(c). If
the conditions for an agent hold to enter the role of Head
of a chain, it requests the candidate tail to cooperate. Re-
quest is the initial speech act. The requested agent then in-
vestigates the proposal. Depending on the context it answers
with accept or reject. In case the agent accepts the request
it activates the situated commitment TailOfChain, see
Fig. 3(a). After receiving the acceptance, the initiating agent
activates the situated commitment HeadOfChain. The co-
operation is then settled and continues until the situated
commitments are deactivated. Deactivation may be commu-
nicated explicitly by communicating “end of cooperation”
messages, but may also be induced by changes in the envi-

�����������	
��

�����������	
��

�����
���
��

������
���
�� ��������

������� ������	��
�����

�
�����	 ����
�����

������� 	��� �� ����	�

��������

����
��
������� 	���

	���	�	
��������

��������
�����
��

���������	���

Figure 4. High level overview of the model

ronment, e.g. when all packets are passed or when an agent
for some reason leaves its post. In case the requested agent
rejects the proposal the conversation terminates without an
agreement. Finally, when the requested agent neglects the
request, e.g. when it urgently left to recharge its battery, the
initiator detects this and terminates the conversation.

3.2. High level model

Fig. 4 depicts an overview of the model. The model de-
composes communication into three functional modules:
message decoding, communicating and message encoding.

The message decoding module stores incoming mes-
sages in a buffer and decodes the buffered messages one
by one. Decoding extracts the information from a mes-
sage according to a well defined communication language.
A communication language defines the format of the mes-
sages, i.e. the subsequent fields the message is composed
of. We denote the extracted information as decoded mes-
sage data. Decoded message data describes the informa-
tion of a message in a form that can be understood by
the agent’s communicating module. As an example, con-
sider an agent ai with identity yi that requests an agent
aj with identity yj to form a chain for passing gray pack-
ets. The decoded message data of the received mes-
sage may contain the following data:

< 2475, yi, request, {Tail, chain(packet(gray))} >

This decoded message data consists of four fields. 2475 is a
unique identifier for the conversation. This identifier is as-
signed by the initiator of the conversation and is used by
the participants to refer unambiguously to the conversa-
tion. yi is the identity of the sender, request is the perfor-
mative of the message and {Tail, chain(packet(gray))}
is the obvious content of the message. In the model, we as-
sume that agents speak (one and) the same language. This
limitation avoids complexity, however the model can be ex-
tended to multi-language communication.

The communicating module is the heart of the com-
munication system and has a twofold task. First, this

module is responsible for interpreting the decoded mes-
sage data derived from incoming messages and for re-
acting appropriately. Second the module is responsible
to initiate or continue a conversation when the condi-
tions imposed by an applicable protocol step become
true. To deal with these tasks, the communicating mod-
ule uses the agent’s repository of protocols, its current
knowledge, the set of available roles, the status of its sit-
uated commitments and a common ontology. The on-
tology defines the terminology of the modelled domain,
i.e. (1) a vocabulary of words that are used to repre-
sent concepts in the domain and (2) a set of relation-
ships that express interconnections between these con-
cepts. For example, the content of the decoded message
data {Tail, chain(packet(gray))} connects four con-
cepts of the agent’s vocabulary Tail, chain, packet and
gray into a relationship with an obvious semantic. In the
example, the conditions for agent yj to accept the pro-
posal to collaborate in the chain are: (1) it knows the pro-
tocol to set up a chain, (2) the agent has the role Tail,
(3) there are gray packets in the agent’s neighborhood to
pass on and (4) the agent is not yet engaged in a com-
mitment that conflicts with this new request. If all these
conditions hold, the agent accepts the proposal, other-
wise it rejects it. When accepting it, the agent activates the
situated commitment TailOfChain and composes mes-
sage data to encode like:

< 2475, yi, accept, {TailOfChain, packet(gray)} >

This message data contains the necessary information to en-
code the confirmation message of the collaboration.

The message encoding module encodes the newly com-
posed message data into messages and passes them to the
message transport system of the environment. To deal with
possible delays, this module also provides a buffer.

4. Formal description of the model

In this section we formalize the model for protocol-based
communication. The formal notation is based on set the-
ory and in accordance with [18][19]. First we zoom in
on MessageDecodingi and MessageEncodingi, then we
look at the Communicatingi module.

4.1. Message decoding and encoding

Fig. 5 depicts an overview of the decoding and encod-
ing modules. First we introduce a number of definitions:

Ag = {a1, . . . , an}: the set of agents in the MAS
yi ∈ Y : the identity of ai with Y = {y1, ..., yn} the set of unique

identities, one for each agent in the MAS
mk ∈ M : a formatted structure of characters representing a messa-

ge with M the set of all possible messages in the system

������������	�
�����
	�����	���������

�
���

�

�

�����������	
�� �

� ��
��� ����

��
������	� �
����
	�����	�����
	
������

�

�����������	
�� �

� ��
��� ����

��
	��	�

Figure 5. Message decoding and encoding

L ∈ Λ: the communication language2 that defines the message for-
mat; a message has the following fields:
1. cid ∈ Cid: a unique id of the conversation, with Cid the set

of conversations ids. The function getCid() returns a new id
to the initiator of a conversation

2. sender ∈ Y : the id of the sender of the message
3. addressees ∈ 2Y : the ids of the addressees
4. perform ∈ P : the performative of the message, with P the

set of all performatives of L

5. content ∈ C: the content of the message, with C the set of
all contents of L

inbox ∈ M i
in: a set of messages in the input buffer of agent ai with

M i
in ⊆ 2M all message sets with agent ai as addressee

outbox ∈ M i
out: a set of messages in the output buffer of ai, with

M i
out ⊆ 2M all message sets with agent ai as sender

mdi
k = <cid, sender, perform, content>: decoded message

data, i.e. the data of a message received by ai, with mdi
k ∈ Dd

and Dd the set of all decoded message data in the system
mei

k = <cid, addressees, perform, content>: the message
data to encode a message to be sent by ai, with mei

k ∈ De and
De the set of all message data to encode in the system

Based on these definitions we formalize the functional-
ity of the decoding and encoding modules. We limit the de-
scription to the decoding part. ReceiveMessagei is a func-
tion that adds a message received by agent ai to its inbox.
The function is typed as follows:

ReceiveMessagei : M × M i
in → M i

in

ReceiveMessagei(mr, inbox) = inbox+

with3 inbox+ = inbox + mr

MessageSelectioni picks up a message from the in-
box and sends it to the decoding module:

MessageSelectioni : M i
in → M × M i

in

MessageSelectioni(inbox) = < md, inbox− >

with inbox− = inbox − md

2 Since we assume one language, the set Λ only contains the singleton L.
3 The binary operator ’+’ denotes the addition of an element to a set,

while the ’−’ operator analogously denotes the substraction.

���������	�

	������

�
	���	����������	�

����

���	���	����������	�

���������	��
 �

� �

�� ��

������ �

�

����

�

��	�	�	��

���	�	�� �

� �

�������������� � �

	 �

Figure 6. Detailed model for communicating

Decodingi decodes the selected message resulting in de-
coded message data. To decode the received messages, the
decoding module uses a communication language L. This
function is typed as follows:

Decodingi : M × Λ → Cid × Y × P × C

Decodingi(md, L) = < cid, sender, perform, content >

The integral MessageDecodingi function is typed as follows:

MessageDecodingi : M × M i
in × Λ → Cid × Y × P × C

MessageDecodingi(mr, inbox, L) =

< cid, sender, perform, content >

Summarizing, the message decoding module collects re-
ceived messages in a buffer from where it selects the mes-
sages one by one for decoding. To decode a message the
agent uses the communication language. Decoding re-
sults in decoded message data that can be interpreted by the
communicating module of the agent.

4.2. Communicating

Now we direct our attention to the core of protocol-based
communication, the Communicatingi module, see Fig. 6.
First we introduce a number of extra definitions. Then we
discuss the decomposition of the communicating module.

4.2.1. Definitions

O ∈ Θ: the ontology4 that defines the terminology of the model-
led world, i.e. a tuple < V, F > defined as:
1. v ∈ V : the representation of a concept that the agent under-

stands with V the vocabulary of the domain concepts
2. f ∈ F : a relationship between concepts of V , with V the set

of all relationships of the ontology
p(c q, . . . , cr) ∈ RO: the representation of a part of knowledge

based on an ontology O, with p a predicate, ci a value and RO

the set of all knowledge representations in the system

4 We suppose that agents use one and the same ontology, thus Θ={O}.

κi ∈ KO
i : the current knowledge of agent ai, with KO

i ⊆ KO all
possible knowledge sets of ai and KO ⊆ 2RO

all sets of knowl-
edge in the agent system

r ∈ ρi: the name of a role, in short a role, with ρi ⊆ � the role set
of ai and � the set of all roles in the system

g∈γi: a situated commitment, i.e. a 3-tuple <name, status, ini-
tiate> with name∈V defined in the ontology O and status ∈
{activated, deactivated} the commitment status; initiate is a
function that enables an agent to set contextual properties of the
commitment (relations and context, see section 2.2). γi ∈ Γ

is ai’s set of situated commitments, Γ ⊆ 2G the set of all com-
mitment sets and G all situated commitments in the agent system

s ∈ S: a protocol step, i.e. a tuple <conditions, effects> with
conditions a set of boolean expressions that determine whether
the protocol step is applicable (based on received messages, the
roles and the state5 of the agent); effects describe the effects of
the protocol step (composing a new message data and/or upda-
ting the state of the agent)

p = {su, . . . , sw}: a communication protocol, i.e. a well-defined
set of protocol steps with p ∈ πi and πi ∈ Π the set of protocols
available to agent ai; Π = 2P is the set of all protocol sets and
P the protocol set in the agent system

d ∈ δi: a conversation, i.e. a 3-tuple <protocol, cid, history>

with protocol the used protocol, cid a unique identifier, histo-
ry the sequence of message data of received/sent messages of
the conversation. δi ∈ Δi is the set of conversations agent ai

currently is involved in and Δi ⊆ Δ the set of all conversation
sets agent ai can be involved in; Δ ⊆ 2D is the set of all conver-
sation sets and D the set of all conversations in the agent system

The communication function abstracts from the con-
crete implementation of a role and a situated commit-
ment in the Decisioni module. By explicitly naming roles
and situated commitments agents can set up mutual com-
mitments in a collaboration. We illustrate the use of a com-
munication protocol for a collaboration to set up a chain
in the Packet-World, see also Fig. 3. The protocol con-
sists of four protocol steps:

setupChain = < request, accept, reject, terminate >

We take a closer look at the request step that initi-
ates the collaboration:

request = <

{κi[distance(self, destination(c))= |1|,
distance(self, agent(yj)= |2|,
distance(destination(c), agent(yi)) ≤ 2],

ρi[r=Head],

γi[¬status.any=activated],

δi[¬ protocol.any=setupChain] },
{cid = getCid(),

5 Here state refers to the agent’s current knowledge, the status of its sit-
uated commitments and the conversations it is involved in.

mei
k = < cid, {yj}, request, {Tail, chain(packet(c))} >,

conversation = < setupChain, cid, {mei
k} >

δi.add(conversation) }
>

An agent ai with id yi is able to request an agent aj with id
yj to collaborate as Tail in a chain for passing packets with
color c when, according to its current knowledge, the re-
questing agent ai is near the destination for packets of color
c and the requested agent aj is positioned at the right dis-
tance to cooperate. Besides agent ai must be able to perform
the role of Head, it may not have activated any other com-
mitment (γi[¬status.any = activated]) and it may not
be involved in any other conversation to set up a chain
(δi[¬ protocol.any = setupChain]). When all these con-
ditions hold agent ai asks for a new conversation id, com-
poses a new message data and a new conversation with the
appropriate data and adds the new conversation to its set
of ongoing conversations (δi.add(conversation)). When
agent aj receives the encoded message it verifies the re-
quest and informs agent ai whether it accepts or rejects
the collaboration. However, when for some reason agent
aj neglects the request, e.g. when it leaves the context to re-
charge its battery, the terminate condition for agent ai be-
comes true and that finishes the conversation.

4.2.2. Communicating functionality Fig. 6 depicts
the decomposition of the communicating module. Each
sub-module takes care of a particular kind of conver-
sation step. We identify four classes of functions in a
conversation: initiating a conversation, reacting to an in-
coming message, continuing a conversation and ter-
minating a conversation. ExogenousInitiationi and
EndogenousInitiationi represent functions to initi-
ate a new conversation, by another agent or the agent itself
respectively. Stepi processes received message data with-
out directly reacting to it, while Replyi immediately reacts
to received message data. Continuei picks up the conversa-
tion after a break and finally Terminationi “silently” ter-
minates a conversation. An example of Stepi is a manager
that receives a bid of one of the participants in a Contract
Net. An example of Continuei is a contractor who informs
the manager about the result of the expedited task. Finally,
Terminationi is illustrated in the Packet-World exam-
ple above where agent aj neglects a request of ai to collab-
orate in a chain. We limit the formal description to two re-
presentative modules, EndogenousInitiationi and Replyi.

EndogenousInitiationi starts new conversations. This
function is typed as follows:

EndogenousInitiationi :

Π × Δi × KO
i × Γi ×�× Θ → KO

i × Γi × De × Δi

EndogenousInitiationi(πi, δi, κi, γi, ρi, O) =

< κ′
i, γ

′
i, mei

j , δ
′
i >

An agent is able to initiate a new conversation when the con-
ditions of the initial step of an applicable protocol hold ac-
cording to the set of conversations the agent is currently in-
volved in, its current knowledge, the status of its situated
commitments, the available roles and the ontology of the
domain. As a result the agent updates its current knowl-
edge, it possibly activates a new situated commitment, it
composes the message data to encode the initial message of
the newly initiated conversation and finally it adds the new
conversation to the set of its conversations.

Replyi reacts to incoming messages of an ongoing con-
versation and is typed as follows:

Replyi : Dd×Δi ×KO
i ×Γi ×�×Θ → KO

i ×Γi ×De×Δi

Replyi(mdi
k, δi, κi, γi, ρi, O) = < κ′

i, γ
′
i, mei

k, δ′i >

To react to an incoming message, the agent selects from
the set of conversations it is currently involved in the con-
versation that matches the conversation id of the decoded
message data. The agent then verifies the conditions of the
next protocol steps for the conversation based on its current
knowledge, the status of its situated commitments, the avail-
able roles and the ontology of the domain. According to the
effects of the protocol step for which the conditions hold,
the agent updates its current knowledge and the set of situ-
ated commitments, it composes the message data for the re-
ply and adds the new message data to the history of the con-
versation. To conclude, the encoding module encodes the
new message data and passes the reply at the message trans-
port system of the environment.

5. Conclusions and future work

In this paper we proposed a model for protocol-based
communication in situated MASs. Direct communica-
tion allows situated agents to exchange information or to
set up explicit collaborations. We use the notion of a situ-
ated commitment as a basis for explicit collaboration be-
tween situated agents. During collaboration setup, agents
exchange messages. If the agents agree, i.e. when the con-
ditions prescribed by the protocol hold, this results in
mutual situated commitments. A situated commitment af-
fects the agent’s decision making in favor of the role
it plays in the collaboration. The collaboration typi-
cally ends when the context of the involved agents changes
such that the conditions to continue the collaboration expire.

To validate the model we implemented it in the
Packet-World. In the paper, we showed how agents in
the Packet-World use a communication protocol to coor-
dinate in a collaboration to pass packets along a chain.
The next step is to verify the model in a more com-
plex case. In a current industrial research project we in-
vestigate how the multi-agent paradigm can be applied
to Automated Guided Vehicle (AGV) warehouse sys-

tems. Traditional systems use one central controller that
instructs the AGVs to perform jobs based on a calcu-
lated plan. By looking at AGVs as agents of a situated
MAS the system can control itself in a distributed man-
ner, improving adaptability and scalability.

Acknowledgements. This research is supported by the
K.U.Leuven research council (AgCo2) and the Flemish In-
stitute for Advancement of Research in Industry (EMC2).

References

[1] J. L. Austin. How To Do Things With Words. Oxford Univer-
sity Press, Oxford, UK, 1962.

[2] R. A. Brooks. Intelligence without representation. Artificial
Intelligence Journal, 47, 1991.

[3] J. Bryson. Intelligence by design. PhD thesis, MIT, 2001.
[4] P. Cohen and H. Levesque. Teamwork. Special Issue on Cog-

nitive Science and Artifical Intelligence, 1991.
[5] B. Dunin-Keplicz and R. Verbrugge. Calibrating collective

commitments. LNCS, Springer Verlag, 2691, 2003.
[6] J. Ferber. An Introduction to Distributed Artificial Intelli-

gence. Addison-Wesley, Great Britain, 1999.
[7] N. Jennings. Commitments and conventions. The Knowl-

edge Engineering Review, 2(3), 1993.
[8] Y. Labrou. Standardizing agent communication. LNCS,

Springer Verlag, 2086, 2001.
[9] P. Maes. Designing Autonomous Agents, MIT Press, 1990.

[10] P. Maes. Modeling adaptive autonomous agents. Artificial
Life Journal, 1(1-2), 1994.

[11] V. Parunak and F. Zambonelli. From design to intention:
Signs of a revolution. 1th International Conference on Au-
tonomous Agents and Multi-Agent Systems, Bologna, 2002.

[12] K. Rosenblatt and D. Payton. A fine grained alternative to
the subsumbtion architecture for mobile robot control. Inter-
national Joint Conference on Neural Networks, IEEE, 1989.

[13] J. R. Searle. Speech Acts: An Essay in Philosophy of Lan-
guage. Cambridge University Press, 1969.

[14] M. Singh. Commitments among autonomous agents in
information-rich environments. 8th Workshop on Modelling
Autonomous Agents in a Multi-Agent World, Sweden, 1997.

[15] T. Tyrrell. Computational Mechanisms for Action Selection.
PhD thesis, University of Edinburgh, 1993.

[16] D. Weyns and T. Holvoet. The packet–world. Demo pre-
sented at the 1th International Conference on Autonomous
Agents and Multi-Agent Systems, Bologna, 2002.

[17] D. Weyns and T. Holvoet. Regional synchronization for si-
multaneous actions in situated multi-agent systems. LNCS,
Springer Verlag, 2691, 2003.

[18] D. Weyns and T. Holvoet. A formal model for situated multi-
agent systems. Formal Approaches for Multi-Agent Systems,
Special Issue of Fundamenta Informaticae, to appear, 2004.

[19] D. Weyns, E. Steegmans, and T. Holvoet. Model for active
perception in situated multi-agent systems. Special Issue of
Journal on Applied Artificial Intelligence, 18(8-9), 2004.

[20] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing
multiagent systems: The gaia methodology. Transactions on
Software Engineering and Methodology, ACM, 12(3), 2003.

