
Agents are not part of the problem,
agents can solve the problem

Danny Weyns, Alexander Helleboogh, Elke Steegmans, Tom Dewolf,
Koen Mertens, Nelis Boucḱe and Tom Holvoet

AgentWise, DistriNet, Department of Computer Science,
K.U.Leuven, B-3001 Heverlee, Belgium

{danny.weyns, alexander.helleboogh, elke.steegmans, tom.dewolf,
koenraad.mertens, nelis.boucke, tom.holvoet }@cs.kuleuven.ac.be

Abstract. In this paper, we discuss the position of multi-agent systems (MASs)
in the software development process. Basically, MASs provide an approach for
solving software problems by decomposing a system into a number of autonomous
entities, embedded in an environment, which cooperate in order to achieve the
functional and non-functional requirements of the system. As such, MASs are in
essence a family ofsoftware architecturesand hence enter the software develop-
ment picture in the design phase.
Coverage and abstraction are identified as two important dimensions of the ar-
chitectural design space for MASs. Based on this, we outline a good practice
for architectural design with MAS. Given this perspective, we conclude with a
critical reflection on state-of-the-art agent-oriented methodologies.

1 Introduction and Position Statement

In [25], M. Wooldridge and N. Jennings agree with O. Etzioni [6] thatAgents are 99%
computer science and 1% AIand conclude that developers should exploit conventional
software technologies and techniques wherever possible to engineer the conventional
99%. The trend in agent-oriented software engineering however is to devise new entire
methodologies, neglecting or even ignoring existing practice and research in software
engineering. This evolution suggests that multi-agent systems (MASs) are radically dif-
ferent ways of developing systems, unrelated to existing practice and research in engi-
neering complex software. This image of MASs could well be one important reason
why MASs are not widely adopted yet. We are strongly convinced that the research
community of MASs would benefit a great deal from allocating a correct role for MASs
within mainstream software engineering, rather than positioning MASs as a radically
new paradigm for software development.

In essence, what is the purpose of using MASs? MASs basically provide a approach
for solving software problems by decomposing a system into a number of autonomous
entities, embedded in an environment, which cooperate in order to achieve the func-
tional and non-functional requirements of the system. As such, MASs are in essence a
family of software architectures, which play a prominent role in the software develop-
ment process. Based on a problem analysis that should not be biased by any solution



strategy, the designer may or may not choose to build a solution based on MASs. Re-
quirements related to adaptability, distribution, openness of the system may be argu-
ments for the designer to pick a multi-agent system software architecture. This archi-
tecture then is the backbone for the further development of the software.

This paper is structured as follows: section 2 elaborates on mainstream software
development practice. In section 3, we discuss the position of MAS in the software de-
velopment process. Section 4 reflects on state-of-the-art agent-oriented methodologies.
Finally, we conclude in section 5.

2 Mainstream Software Development Practice

A methodology consists of amodeling languageand asoftware development process
[1]. A modeling language is a visual syntax that can be used to construct models. The
most well-known modeling language is the Unified Modeling Language (UML). A soft-
ware development process on the other hand, defines the who, what, when and how of
developing software. In general, a software development process can be split up in four
phases: requirements analysis, design, implementation, and testing. These four phases
can be dealt with sequentially (e.g. thewaterfallmethodology [18]), but recent method-
ologies make iterations over (parts of) the phases (e.g. theunified software development
process[11] or even theextreme programmingmethodology [3]). The focus of this pa-
per is on the development process, in particular on its requirements analysis and design
phases.

To clarify the difference between requirements analysis and design, we now elabo-
rate on both these phases.

2.1 Requirements analysis phase

During requirements analysis, the analyst investigates the problem domain and the var-
ious requirements, independent of a solution. Thus, the analyst focusses onwhat the
problemis.

The purpose of requirements analysis is first of all to discover and reach an agree-
ment on what the system should do. It is a process of eliciting, prioritizing and organiz-
ing therequirementsthat the different stakeholders (i.e. the types of users, engineers,
salespeople, managers, end users etc.) have for the system. According to [11], require-
ments are capabilities and conditions to which the system must conform. Requirements
can be categorized as functional or non-functional. Functional requirements are state-
ments on what the system must do and can be captured by use cases. Non-functional
requirements are statements about the constraints on the system, such as performance,
reliability or security. It is important to emphasize that requirements shouldonly be
statements onwhat a system should do and what behavior a system should exhibit,
without saying anything abouthowthis functionality may be realized.

Next to the identification of requirements, another important aim of requirements
analysis is to derive adomain model. A domain model is a visual representation of
all relevant concepts or real-world entities in a particular domain of interest [16, 8].
Next to the concepts, it shows attributes of the concepts and associations between them.



A domain model isalwaysdescribed using the terminology of the problem domain,
i.e. the abstractions used in the domain model should form part of the vocabulary of the
problem domain.

Summarizing, during requirements analysis, the analyst investigates the problem,
(carefully) omitting decisions with respect to the solution. This (1) is a pre-requisite for
an objective choice for the most suitable architectural solution, and (2) ensures that the
requirements and the domain model are concise and simple statements of the system’s
behavior and structure independent of a particular solution. To quote Gruia-Catalin Ro-
man at SELMAS 2004: “The analysis of the problem must last for a hundred years”
[21].

2.2 Design phase

During the design phase the designer creates a solution to the problem driven by the
outcome of the requirements analysis phase. Thus, the designer focusses onhow the
problem can be solved.

It is common practice to make a distinction between two design levels in the design
phase: architectural design and detailed design respectively.

Architectural design During architectural design, an architecture is constructed that
has to satisfy both functional and non-functional requirements. Architecture is high-
level design; it is about making decisions about how the system will be built. Bass,
Clements, and Kazman [2] define a software architecture as follows:

The software architectureof a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

We further clarify this definition:

– Structures. An architecture is defined by one or more structures. Each structure is
an abstraction of the system from the viewpoint of one or more stakeholders. A
structure consists out of a set of elements and their relationships.

– Software elements. Software elements are the basic building blocks of a structure.
Each structure uses specific kinds of elements, for example process, module, com-
ponent.

– Externally visible properties. Externally visible properties of an element represent
the assumptions other elements can make about that element, such as provided
services, performance characteristics and shared resource usage. This implies that
an architecture omits the internals of each element and only considers information
about how it uses, is used by, relates to, or interacts with other elements.

– Relationships. Elements of a structure are related to other elements by means of
relationships. There are different kinds of relationships such as “a module uses
another module” or “a process synchronizes with another process.”



Common Practice.Building an architecture involves designing different structures of
the system. The process of designing a specific structure of the architecture is an iter-
ative process [2], where the architect decomposes the system into elements and rela-
tionships in a top-down fashion. First the system as a whole is decomposed, then each
element identified at that level is further decomposed, and so on, until a convenient level
is reached to start detailed design.

Building an architecture is not done from scratch. Over the years, a number ofarchi-
tectural styles[22] have been developed that express patterns of structural organization
and that can be used by the designer. In [2], an architectural style is defined as a de-
scription of elements and relation types together with a set of constraints on how they
may be used. Examples are layered systems, pipe-and-filter and blackboards.

Importance. As stated in [2, 22], “it is very important for a system to have a good ar-
chitecture first, before completing the design.” Architectural decisions have the most
far-reaching effects and are the hardest to change later. Therefore, designing an archi-
tecture should be well-considered since it establishes the main structure of the solution.

Detailed design During detailed design, a model of the system that can actually be
implemented, is produced. Therefore, detailed descriptions and diagrams of the inner
workings of all elements in the architecture are necessary. These descriptions and dia-
grams indicate which software artifacts (classes, methods, associations,. . . ) need to be
implemented. For example, choosing for a specific data structure that will be encap-
sulated in a particular element of the architecture, is a decision made during detailed
design and not an architectural decision.

3 Software development with MAS

According to M. Wooldridge and N. Jennings in [25], developers should exploit conven-
tional software technologies and techniques wherever possible to engineer their MASs.
This rises the question what the position of MAS is with respect to the mainstream
software engineering practice.

In essence, MASs provide an approach for decomposing a system into a number of
autonomous entities, embedded in an environment, which cooperate in order to achieve
the functional and non-functional requirements of the system. As such, the primary
contribution of research and practice in MASs is proposing one particular, yet large
family of ways to solve problems. Because a MAS is in essence an approach to solve
problems, it should enter the software development picture in the (architectural) design
phase. Based on an objective analysis of the problem (i.e. not biased by any solution
strategy), the designer may or may not choose for building a solution based on MASs.
Requirements related to adaptability, distribution, openness of the system may be argu-
ments for the designer to pick MASs as a solution strategy. The designer then defines a
complete software architectureexplicitly in terms of MAS related concepts such agents,
an environment, collaborations, and so on, and further refines it towards implementa-
tion.



Obviously, MAS researchers are convinced that MASs offer important advantages
for building software for various application domains in distributed problem solving,
collective robotics, agent-based simulations, and so on. We are strongly convinced that
the MAS research community would benefit a great deal from allocating a correct place
for MASs in mainstream software engineering, rather than positioning MASs as a rad-
ically new paradigm for software development. This does not mean that MASs should
loose their specific properties and research tracks. It does mean that MASs deserve to
be considered as one valuable (family of) way(s) to solve problems in a large spectrum
possible ways to solve problems.

The insights on the positioning of MASs with respect to software development
partly arose from our cooperation with an industrial partner, an expert in automating
warehouse systems using automated guided vehicles (AGVs). The requirements analy-
sis for their software describes the customer’s functional requirements, i.e. the jobs the
warehouse system should take care of, and non-functional requirements, e.g. on overall
performance, robustness and scalability. Today, the design of their software systems is
based on an architecture which is similar for different customers. This architecture is a
centralistic setting, using one central planner which controls all AGVs. In a joint project
with our team, we envisage to develop a decentralized system using a particular type of
MASs, situated MAS, as these promise to be scalable, and to be resilient to failure or
changes in the physical environment. In this project, we should not and will not change
the analysis of the problem. We mainly aim to investigate the possible advantages of
applying another way to solve the problem of warehouse management, i.e. by using a
different architecture.

In the remainder of this section, we focus on architectural design. First, we discuss
architecture in the context of MASs. Second, we propose a good practice for architec-
tural design with MASs.

3.1 Architecture and MASs

Architecture in the context of MASs is typically associated with agent architectures. A
whole set of agent architectures has been proposed over time. Well-known examples
are the BDI agent architecture and the subsumption architecture. P. Maes [15] defines
agent architecture as:

[An agent architecture] specifies how ... the agent can be decomposed into ... a
set of component modules and how these modules should be made to interact.
The total set of modules and their interactions has to provide an answer to
the question of how the sensor data and the current internal state of the agent
determine the actions ... and future internal state of the agent.

More recently, J. Ferber [7] defines agent architecture as:

An agent’s architecture characterizes its internal structure, that is, the principle
of organization which subtends the arrangement of its various components.

However, a MAS does not only consist of agents. In the MASs research community,
there is a growing awareness that apart from the agents, a lot of other entities in MAS



are essential and have to be dealt with explicitly. Examples are the explicit environment
in which the agents are situated or dynamic objects such as evaporating pheromones
used for agent coordination. The fact that a MAS comprises more than just agents,
imposes architectural challenges that go beyond the agents’ internal architecture. Since
architecture in MAS has not yet been addressed to its full extent, a lot of confusion and
misunderstanding exist about what comprises architecture for MASs.

A first problem is the lack ofcoveragein architectures for MASs. We define cover-
age as the degree to which an architectural description takes into account all constituent
parts of the system. Thus, a lack of coverage means that only a subset of all essential
parts of a MAS are considered for architectural description, neglecting other important
ones. This is a problem because these neglected architectural parts are extremely diffi-
cult to tackle in later design stages. By analogy, you do not design a house and build in
the bathroom afterwards. The most striking example of this is the way the environment
is often dealt with [23].

The second problem is that architectures generally only provide a high-level prob-
lem decomposition. Architectural descriptions are typically limited to a logical descrip-
tion in terms of interacting agents. However, architectures should come down to an
abstraction level appropriate for detailed design. This is necessary to bridge the gap
between the architectural description of the MAS and its implementation [19].

3.2 Good practice for architectural design with MAS

In this section, we outline an approach to address the problems with respect to archi-
tecture for MAS as described in the previous section. By studying the problems, we
distinguish between two important dimensions that need to be considered when devel-
oping architecture for MASs: coverage and abstraction.

In figure 1, we focus on coverage and abstraction as orthogonal dimensions of the ar-
chitectural design space. Three different architectural descriptions are depicted.A rep-
resents an architecture which is characterized by a high level of abstraction on the one
hand, and a wide-ranging coverage on the other hand. An example is an architecture in
which an environment, a number of agents, their responsibilities and inter-relationships
are described as a logical decomposition of the problem.B is characterized by a lower
level of abstraction and a limited coverage. An example is an architectural description
of a tuple-space and its interface as coordination medium.C finally represents an archi-
tecture with a high level of abstraction and an intermediate coverage.

We now address the question: ”What is a good practice in the architectural design
for MASs with respect to the two-dimensional design space we focus on?”

Our outline for good practice is based on the following elements:

1. First mainstream software development principle: it is very important for a system
to have a good architecture first, before completing the design [2, 22].

2. Second mainstream software development principle: refine your architecture to an
abstraction level appropriate for detailed design [2].

3. Important dimensions of the design space: coverage and abstraction.

Applying the first software development principle to the first dimension, coverage, im-
poses the need for a full coverage by the architecture from the beginning of the design



��������� 	�
��

	
������� 	������ ���

�

�

�

Fig. 1. Architectural design space in terms of the dimensions coverage and abstraction

phase. This is articulated in the first law of our good practice for architectural design
with MAS:

Law 1: Get the full architecture of your MAS straight from the beginning.

Figure 2 illustrates our outline for good practice of architectural design with MAS. The
first law is reflected byD, depicting an architecture with wide-range coverage which
has to be assembled in early design.

Analogously, applying the second software development principle to the second di-
mension, abstraction, imposes that architectures for MASs have to be refined down to
an abstraction level appropriate for detailed design. This is articulated by the second
law of our good practice for architectural design with MAS:

Law 2: Refine the architecture of your MAS towards implementation.

In figure 2, the second law is reflected by the evolution ofD towardsE, which rep-
resents a process of architectural refinement. For example, whereasD is described in
terms of agents as logical entities able to perceive and perform actions in an environ-
ment,E is described at a convenient level of abstraction to start detailed design, where
the agents interact with a tuple-space via a well defined interface, and their internals are
structured as a set of interconnected components.

3.3 Discussion

This section raises some important issues and questions with respect to architectural
design for MASs. First, architecture has to be dealt with explicitly. What are possible
motivations that could convince designers to choose for MASs as a solution? What are



��������� 	�
��

	
������� 	������ ���

�

�

� 	����

� 	����

Fig. 2. Good practice for architectural design

possible contra-motivations? Second, architecture of a MAS comprises more than the
architecture of its agents. What are possible architectures for an explicit environment?
Which other parts of a MAS have to be incorporated in an architectural description?

4 A reflection on state-of-the-art agent-oriented methodologies

In this section we reflect on a number of the state-of-the-art agent-oriented methodolo-
gies. We focus on two issues: the scope of the methodology with respect to the software
development process and the position of architecture in that methodology.

Gaia v.2 Gaia v.2 [27, 5] is an extension of the Gaia methodology [26]. According to
[27] Gaia v.2 is “suitable for the development of open MASs in complex environments.”

Scope.Gaia v.2 covers the analysis and the design phase of the software develop-
ment process: (1) in theanalysis phasethe requirements are organized into an envi-
ronmental model, a preliminary role and interaction model, and a set of organizational
rules, for each of the (sub-)organizations composing the overall system; (2) in thear-
chitectural design phasethe specifications of the analysis phase are used to structure
the MAS organization, and to complete the preliminary role and interaction models; (3)
in detailed design phasethe agent model and the services model are identified, which
act as guidelines for implementation of agents and their activities.

A requirement of the Gaia methodology is that the analysis phase yields a prelimi-
nary role model. However, the goal of problem analysis is to deliver a problem descrip-
tion that is not biased towards particular ways to solve it. A strong focus on roles in
the problem analysis could endanger a free and objective choice for the most suitable
solution during the design phase.



Architecture. In [27] it is stated that “the organizational metaphor of Gaia v.2
. . . leads implicitly to a general architectural characterization of the MAS.” However,
according to law 1 of our good practice in architectural design, the system’s architec-
ture should beexplicitedstraight in the beginning of design.

MaSE In [24], it is stated that MaSE “supports the complete software development life
cycle from problem description to realization and it is an environment for analyzing,
designing and developing heterogeneous MASs”.

Scope.Theanalysis phaseof MaSE consists of the following sub-phases: capturing
goals, applying use cases and refining roles. In thedesign phasethe following sub-
phases are distinguished: creating agent classes, constructing conversations, assembling
agent classes and system design.

Similar to Gaia v.2, the problem description in MaSE is biased towards particular
ways to solve it, because roles (and also goals) are created in the analysis phase.

Architecture. MaSE supports architectural design by the selection of agent types
and the definition of their interactions. As such, the coverage of architectural design
in MaSE is limited to purely communicative agent systems. Furthermore, MaSE does
a fairly poor job in dealing with agent architectures. The internal agent architectures,
which have a severe impact on the overall design of the system, are unsupported and left
to the designer. The general applicability of the provided component framework [20] is
at least debatable.

Prometheus In [17], Prometheus is describes as “a methodology for the design of
MASs. The methodology specifically supports the use of BDI-like agents.”

Scope.The Prometheus methodology consists of three phases: (1) thesystem spec-
ification phasefocusses on identifying the basic functionalities of the system, together
with how the agent system is going to interact with the environment; (2) thearchitec-
tural design phaseis used to determine the agents and how they will interact; (3) the
detailed design phaselooks at the internals of each agent and how it will accomplish its
tasks within the overall system.

Although Prometheus is claimed to be a methodology for thedesignof MAS, it
appears that thesystem specification phaseboils down to analysis. Identifying the basic
functionalities of the system investigateswhat the problem is, and as such is part of
analysis.

Architecture. During architectural design, shared data objects and agents are iden-
tified, assigned functionalities and tied together by specifying their interactions. The
choice for a specific BDI-like architecture of the agents is interwoven with detailed de-
sign. However, decisions about the agent architecture are part of architectural design
and hence should be completed before entering the detailed design phase.

Tropos According to [10], Tropos is “an agent-oriented software development method-
ology based on two key ideas. First the notion of agent and the related mentalistic no-
tions, such as goals and plans, are used in all phases of software development, from
early analysis down to the actual implementation. Second, the methodology covers the



very early phases of the requirements analysis, thus allowing for a deeper understanding
of the environment where the software-to-be will eventually operate.”

Scope.Early requirements analysisis concerned with the understanding of a prob-
lem by studying its organizational setting, mainly focussing on the intentions of the
stakeholder modeled as goals. Inlate requirement analysisthe system-to-be is described
in its operational environment, along with relevant functions and qualities. Duringar-
chitectural designthe system’s global architecture is defined in terms of interconnected
subsystems. Finally,detailed designdeals with the behavior of each component in fur-
ther detail.

Tropos violates mainstream software development practice by introducing the use
of agent-related mentalistic notions during requirements analysis. This severely biases
the problem’s description towards a particular solution, endangering objective design
choices as was the case with Gaia v.2 and MaSE.

Architecture. In Tropos, architectural design is based on a set of organizational
architectural styles for MASs [10], which guide the design of the system architecture.

Summary To conclude, we list a number of general remarks with respect to agent-
oriented methodologies. First, state-of-the-art agent-oriented methodologies fail to make
a clear separation betweenwhat the problemis andhow it is solved. As stated in sec-
tion 3, biasing the analysis of what the problem is towards a particular way to solve it,
should be avoided because this could endanger an objective choice for the most suitable
architectural solution.

Second, in some methodologies a number of architectural decisions are made im-
plicitly or are interwoven with detailed design. However, out of all design decisions,
architectural decisions have the most far-reaching effects and are the hardest to change
later. Therefore, any methodology should support all architectural issues explicitly and
to their full extent in order to facilitate the construction of a well-considered architecture
for a MAS.

Finally, none of the methodologies clearly lists the requirements of theproblemsfor
which their approach can be applied (or on the contrary: is not applicable) to build an
favorable solution.

5 Conclusions

State-of-the-art agent-oriented methodologies suggest MASs to be a revolution in soft-
ware development, neglecting or even ignoring existing practice and research in main-
stream software engineering. In this paper, we argued that MASs are an evolution rather
than a revolution. More precisely, MASs provide a particular approach to solve prob-
lems, and as such MASs enter the software development picture in architectural design.
Do we have to conclude that agent-oriented methodologies are in fact design method-
ologies?



6 Acknowledgments

We would like to thank the members of the Networking task force at the DistriNet
research group, K.U.Leuven for the valuable discussions that have contribute to the
work presented in this paper. Also a word of appreciation goes to Jim Odell for his
useful comments to improve this paper.

References

1. J. Arlow and I. Neustadt,UML and the Unified Process, The Object Technology Series, Ad-
dison Wesley, 2002.

2. L. Bass, P. Clements and R. Kazman,Software Architecture in Practice, SEI series in Software
Engineering, Addison Wesley, 2003.

3. K. Beck,Extreme programming explained: embrace change, ISBN 0-201-61641-6, Addison-
Wesley Longman Publishing Co., Inc., 200.

4. P. Bresciani and F. Sannicolo,Requirements Analysis in Tropos: a self referencing example,
NetObject.Days, Erfurt, Germany, 2002.

5. L. Cernuzzi and T. Juan and L. Sterling and F. Zambonelli,The Gaia Methodology: Basic
Concepts and Extensions. In Methodologies and Software Engineering for Agent Systems,
Kluwer, 2004, to appear.

6. O. Etzioni,Moving Up the Information Food Chain: Deploying Softbots on the World Wide
Web, 13th National Conference on Artificial Intelligence and the 8th Innovative Applications
of Artificial Intelligence Conference, 1996.

7. J. Ferber,Multiagent Systems, An Introduction to Distributed Artificial Intelligence, Addison
Wesley, 1999.

8. M. Fowler, Analysis patterns: reusable objects models, ISBN 0-201-89542-0, Addison-
Wesley Longman Publishing Co., Inc., 1997.

9. E. Gamma, R. Helm, R. Johnson and J. Vlissides,Design Patterns, Addison-Wesley, 1995.
10. P. Giorgini and M. Kolp and J. Mylopoulos and M. Pistore,The Tropos Methodology: An

Overview. In Methodologies and Software Engineering for Agent Systems, Kluwer, 2004, to
appear.

11. I. Jacobson, G. Booch and J. Rumbaugh,The unified software development process, ISBN
0-201-57169-2, Addison-Wesley Longman Publishing Co., Inc., 1999.

12. P. Kruchten,The Rational Unified Process: An Introduction, Addison-Wesley, 2000.
13. C. Larman,Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design, ISBN 0-13-092569-1, Prentice Hall, 2002.
14. M. Luck and R. Ashri and M. D’Inverno,Agent-Based Software Development. Artech House,

2004.
15. P. Maes,The agent network architecture (ANA), SIGART Bulletin, 2(4), 1991.
16. J. Martin and J. Odell,Object-Oriented Methods: A Foundation, UML Edition, ISBN 0-13-

905597-5, Prentice Hall, 1997.
17. L. Padgham and M. Winikoff,Prometheus: A methodology for Developing Intelligent Agents.

Proceedings of the Third International Workshop on AgentOriented Software Engineering, at
AAMAS 2002. July, 2002, Bologna, Italy.

18. W. Royce,Managing the Development of Large Software Systems: Concepts and Techniques,
9th International Conference on Software Engineering, Pittsburgh, PA, USA, ACM Press,
1989.



19. K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans, and D. Weyns,Agent
Implementation Patterns, Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies (Debenham, J. and Henderson-Sellers, B. and Jennings, N. and Odell, J., eds.),
2002.

20. D. Robinson,A Component Based Approach To Agent, citeseer.ist.psu.edu/632651.html
21. SELMAS 2004, Third International Workshop on Software Engineering for Large-Scale

Multi-Agent Systems, http://www.teccomm.les.inf.puc-rio.br/selmas2004/
22. M. Shaw and D. Garlan,Software Architecture: Perspectives on an Emerging Discipline,

Prentice Hall, 1996.
23. D. Weyns, V. Parunak, F. Michel, T. Holvoet and J. Ferber,Environments for Multi-agent

Systems, State-of-the-art and Research Challenges, Post-proceedings of First International
Workshop on Environments for Multi-agent Systems, E4MAS, New York, 2004. To appear in
Lecture Notes for Computer Science Series, Springer.

24. M. F. Wood and S. A. DeLoach,An Overview of the Multiagent Systems Engineer-
ing Methodology. Agent-Oriented Software Engineering, Volume 1957 of LNCS, Berlin:
Springer, January 2001, 207-221.

25. M. Wooldridge and N. Jennings,Software Engineering with Agents, Pitfalls and Pratfalls,
IEEE Internet Computing, 1999.

26. M. Wooldridge and N. Jennings and D. Kinny,The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems, vol.3(3), 2000.

27. F. Zambonelli, N. Jennings, M. Wooldridge,Developing Multiagent Systems: the Gaia
Methodology. ACM Transactions on Software Engineering and Methodology, vol.12(3), 2003.


