A Design Process for
Adaptive Behavior of Situated Agents

Elke Steegmans, Danny Weyns, Tom Holvoet, and Yolande Berbers

AgentWise, DistriNet, Department of Computer Science, K.U.Leuven
Celestijnenlaan 200 A, B-3001 Leuven, Belgium
{Elke.Steegmans, Danny.Weyns, Tom.Holvoet,

Yolande.Berbers}@cs.kuleuven.ac.be

Abstract. Engineering non-trivial open multi-agent systems is a chal-
lenging task. Our research focusses on situated multi-agent systems,
i.e. systems in which agents are explicitly placed in an environment which
agents can perceive and in which they can act. Situated agents do not use
long-term planning to decide what action sequence should be executed,
but select actions based on the locally perceived state of the world and
limited internal state. To cope with change and dynamism of the sys-
tem, situated agents must be able to adapt their behavior. A well-known
family of agent architectures for adaptive behavior are free-flow archi-
tectures. However, building a free-flow architecture based on an analysis
of the problem domain is a quasi-impossible job for non-trivial agents.
To tackle the complexity of designing adaptive agent behavior based on
a free-flow architecture, suitable abstractions are needed to describe and
structure the agent behavior. The abstraction of a role is obviously essen-
tial in this respect. A modeling language is needed as well to model the
behavior of the agents. We propose a statechart modeling language to
support the design of roles for situated agents. In this paper we describe
a design process for adaptive behavior of situated agents as part of a
multi-agent oriented methodology. The design process integrates the ab-
straction of a role with a free-flow architecture. Starting from the results
of analysis of the problem domain, the designer incrementally refines the
model of the agent behavior. The resulting class diagram serves as a ba-
sis for implementation. We illustrate the subsequent design steps with a
case study on controlling a collection of automated guided vehicles.

1 Introduction

Dealing with the increasing complexity of developing, integrating and managing
open distributed applications is a continuous challenge for software engineers.
In the last fifteen years, multi-agent systems have been put forward as a key
paradigm to tackle the complexity of open distributed applications. In our re-
search we focus on situated multi-agent System(situated MASSs) as a generic
approach to develop self-managing open distributed applications.

1 Alternative descriptions are behavior-based agents [5], adaptive autonomous agents
[14] or hysteretic agents [10]]9].

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 109-{I25] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

110 E. Steegmans et al.

In situated multi-agent systems, agents and the environment constitute com-
plementary parts of a multi-agent world that can mutually affect each other.
Situatedness places an agent in a context in which it is able to perceive its
environment and in which it can (inter)act. Situated agents do not use long-
term planning to decide what action sequence should be executed, but select
actions based on the locally perceived state of the world and limited internal
state. Contrary to knowledge-based agents, situated agents do not emphasize
internal modeling of the environment. Instead, they favor to employ the en-
vironment itself as a source of information. The environment can serve as a
robust self-revising common memory for agents. This can unburden the indi-
vidual agents from continuously keeping track of their knowledge about the
system. Intelligence in a situated MAS originates from the interactions of the
agents in their environment rather than from the capabilities of the individ-
ual agents. Agents interacting form an organization in which they all play and
execute their own role(s). Situated MASs have been applied with success in nu-
merous practical applications over a broad range of domains, e.g. manufacturing
scheduling [20], network support [3] or peer-to-peer systems [2]. The benefits of
situated MAS are well known, the most striking being flexibility, robustness and
efficiency.

To cope with change and dynamism of the system, situated agents must
be able to adapt their behavior according to the changing circumstances. A
well-known family of agent architectures for adaptive behavior are free-flow ar-
chitectures [21][23][6]. Free-flow architectures allow adaptive behavior, yet from
our experiences we learned that it is unrealistic to assume that -starting from
the analysis of the problem domain- software engineers build a complex free-flow
architecture for complex applications, where agents can perform many actions.
For such applications, the architecture quickly becomes unmanageable, it is no
longer possible to have an overall view of the architecture. To tackle the com-
plexity of designing adaptive agent behavior based on a free-flow architecture
suitable abstractions are needed to describe and structure the agent behavior.
The abstraction of a role is obviously essential in this respect, as roles provide
the building blocks for social organization of a MAS. A modeling language is
needed as well to model the behavior of the agents. We propose a statechart
modeling language to support the design of roles for situated agents.

In this paper we describe a design process for adaptive behavior of situated
agents as part of a multi-agent oriented methodology. The design process inte-
grates the abstraction of a role with a free-flow architecture. We illustrate the
subsequent design steps with a case study on controlling a collection of auto-
mated guided vehicles.

This paper is structured as follows. In section 2 we introduce free-flow archi-
tectures and outline the design process for adaptive agent behavior. Section Bl
the core of the paper, explains in detail the different steps of the design process
for roles proposed in this paper. We illustrate our design process with an exam-
ple application. Finally, in section @] we conclude the paper and give some future
work.

A Design Process for Adaptive Behavior of Situated Agents 111

2 Free-Flow Architectures and Designing Adaptive
Behavior

In this section we start with a brief introduction of free-flow architectures and
illustrate the complexity of developing a free-flow architecture for non-trivial
agents. Then we outline the design process for adaptive agent behavior we pro-
pose in this paper.

2.1 Free-Flow Architecture for Adaptive Agent Behavior

Open multi-agent systems are characterized by dynamism and change: new
agents may join the system, others may leave, the environment may change,
e.g. its topology or its characteristics such as throughput and visibility. To cope
with such dynamism the agents must be able to adapt their behavior according
to the changing circumstances. A well-known family of agent architectures for
adaptive behavior are free-flow architectures.

Free-flow architectures are first proposed by Rosenblatt and Payton in [2I]. In
his Ph.D thesis, T. Tyrrell [23] demonstrated that hierarchical free-flow architec-
tures are superior to flat decision structures, especially in complex and dynamic
environments. The results of Tyrrell’s work have been very influential, for a re-
cent discussion see [6]. An example of a free-flow architecture is depicted in Fig.[Il

System node

energy level
fad Legenda

© @ O increasing activity level

@] negative activity

not carry object
0.3

not see object carry object

Explore

ToStation Charging

connected

disconnected

gradient

move N move E move S move W connect charge disconnect

Fig. 1. An example of a free-flow architecture

The hierarchy is composed of nodes which receive information from internal
and external stimuli in the form of activity. The nodes feed their activity down
through the hierarchy until the activity arrives at the action nodes (i.e. the leaf
nodes of the tree) where a winner-takes-it-all process decides which action is
selected. The main advantages of free-flow architectures are:

112 E. Steegmans et al.

— Stimuli can be added to the relevant nodes avoiding the ’sensory bottleneck’
problem. In a hierarchical decision structure, to make correct initial deci-
sions, the top level has to process most of the sensory information relevant
to the lower layers.

— Decisions are made only at the level of the action nodes; as such all infor-
mation available to the agent is taken into account to select actions.

— Since all information is processed in parallel the agent can take different
preferences into consideration simultaneously. E.g. consider an agent that
moves to a spotted object but is faced with a neighboring threat. If the
agent is only able to take into account one preference at a time it will move
straight to the spotted object or move away from the threat. With a free-
flow decision tree the agent avoids the threat while it keeps moving towards
the desired object, i.e. the agent likely moves around the threat towards the
spotted object.

Fig. [depicts a free-flow tree for action selection of a simple robot. This
robot lives in a grid world where it has to collect objects and bring them to
a destination. The robot is supplied with a battery that provides energy to
work. The robot has to maintain its battery, i.e. when the energy level of the
battery falls below a critical value the robot has to recharge the battery at a
charge station. The left part of the depicted tree represents the functionality
for the robot to search, collect and deliver objects. On the right, functional-
ity to maintain the battery is depicted. The System node feeds its activity to
the Work node and the Maintain node. The Work node combines the received
activity with the activity from the energy level stimulus. The 4+’ symbol in-
dicates that the received activity is summed up. The negative activity of the
energy level stimulus indicates that little energy remains for the robot. As such
the resulting activity in the Work node is almost zero. The Maintain node
on the other hand combines the activity of the System node with the posi-
tive activity of the energy need stimulus, resulting in a strong positive activity.
This activity is fed to the ToStation and the Charging nodes. The ToStation
node combines the received activity with the activity level of the not at sta-
tion stimulus (the “*’ symbol indicates they are multiplied). In a similar way
the Charging node combines the received activity with the activity level of the
at station stimulus. This latter is a binary stimulus, i.e. when the robot is at
the charge station its value is positive, otherwise it is negative. The ToStation
node feeds its positive activity towards the action nodes it is connected to. Each
moving direction receives an amount of activity proportional to the value of the
gradient stimulus for that particular direction. gradient is a multi-directional
stimulus, i.e. a compound stimulus with a value of the stimulus for each di-
rection. The values of the gradient stimulus are based on the sensed value of
the gradient field that is transmitted by the charge station. In a similar way,
the Charging node and the child nodes of the Work node (Ezplore, Collect and
Deliver) feed their activity to the action nodes they are connected to. Action
nodes that receive activity from different nodes combine that activity according
to a specific function. The action nodes for moving actions use a function f,,

A Design Process for Adaptive Behavior of Situated Agents 113

to calculate the final activity level. A possible definition of this function is the
following:

AmoveD = max [(ANode + AstimulusD) * AfTeeD]

Herein is A,,ovep the activity collected by a move action, D denotes one of
the four possible directions, i.e. D € {N,E,S,W}. Anoge denotes the activity
received from a node. The move actions are connected to four nodes: Node €
{Ezplore,Collect,Deliver, ToStation}. With each node a particular stimulus
is associated. stimulus € {random direction,see object,see destination,
gradient} are multi-directional stimuli with a corresponding value for each mov-
ing direction. Finally, free is a multi-directional binary stimulus that indicates
whether the way to a particular direction is free (or not free) for the robot to
move to.

When all action nodes have collected their activity the node with the highest
activity level is selected for execution. In the example, the ToStation node is
clearly dominant over the other nodes connected to actions nodes. Currently the
East and West directions are blocked (see the free stimulus), leaving the robot
two possibilities to move towards the charge station: via North or via South. In
the depicted situation, the robot will move northwards according to the values
of a guiding gradient field.

2.2 Designing Adaptive Behavior

For the simple robot example discussed in the previous section, the free-flow
tree is already fairly complex. For a non-trivial agent however, the overall view
of the tree quickly becomes very cluttered. When a change is made in one part
of such a tree it becomes unclear how this affects the other parts. Although
free-flow trees are at best developed with a focus on a particular functionality
of the agent, the architecture itself does not support any structuring. From our
experiences we learned that it is unrealistic to assume that software engineers
build a complex free-flow architecture for complex applications, where agents
can perform many actions. For such applications, the architecture quickly be-
comes unmanageable, it is no longer possible to have an overall view of the
architecture.

To tackle the complexity of designing adaptive agent behavior based on a free-
flow architecture suitable abstractions are needed to describe and structure the
behavior of the agent. The software engineer as a designer needs a comfortable
modeling language that guides him or her in the process of designing the behavior
of non-trivial agents.

Several agent-oriented methodologies acknowledge the abstraction of a role
as a core abstraction for designing multi-agent systems, examples are Gaia [26],
MESSAGE [8] or SODA [19], see also [I§]. In these methodologies the design
process is described independent of a particular multi-agent architecture, for a
recent discussion see Chapter 4 of [13]. When it comes to building a concrete
multi-agent application however, the gap between the high level design models
and the chosen multi-agent architecture that is used to implement the multi-

114 E. Steegmans et al.

agent system has to be filled, see also [I]. In this paper we aim to bridge this gap
enabling designers to build concrete multi-agent systems applications. In partic-
ular, we propose a design process that enables a designer to incrementally refine
the model of the agent behavior from a high level role model toward a concrete
agent architecture for adaptive behavior, in casu a free-flow architecture.

In previous work, we already proposed statecharts as a formalism to describe
roles, see [I1]]. In that work the focus was on reusing roles in different applications
and the statecharts notation was extended with new concepts, such as pre-action
and post-action. Although a statechart specification of agent behavior is simple
to design and to understand, it is typically a static, rigid model in that it leaves
little room for adaptive and explorative behavior. In this paper we revise the
statechart modeling language, i.e. we refrain from considering a statechart de-
scription of agent behavior as a kind of sequence chart, but use statecharts to
describe role composition and to structure related actions in roles only.

To design adaptive behavior for agents, the designer needs to go through
a number of subsequent design steps as depicted in Fig. 2l In the first step,
the adaptive behavior is designed in a high level model making use of the role
abstraction and the proposed role statechart modeling language. The diagrams
of this high level model serve as a basis for structuring the free-flow tree in
the next design step, resulting in a skeleton of the free-flow architecture. As the
name indicates, it is a skeleton of the free-flow tree and thus it still needs to be
refined by the designer. The refined free-flow architecture serves on its turn as
a basis for the class diagram model in the last step of the design process. In the
next section we elaborate in detail on each of the steps of the design process and
illustrate them with a concrete example. Note that in practice the design process
is typically not a one way pass through the indicated design steps. The designer
may iterate a number of times over the different steps of the design process.

results analysis

L

High level
model

4

Free-flow
architecture

4

Class diagram

@ |

executable code ‘I Implementation

Analysis

| L

Design

Fig. 2. Design process for adaptive behavior of situated agents

A Design Process for Adaptive Behavior of Situated Agents 115

3 A Design Process for Roles

In this section we discuss the design process for adaptive agent behavior. We
start with a brief introduction of the example application. Then we zoom in and
discuss the subsequent steps of the design process in detail.

3.1 Example Application

In a current research project with an industrial partner we investigate how the
paradigm of situated multi-agent systems can be applied to the control of logistic
machines. Traditional systems use one central controller that instructs the ma-
chines to perform jobs based on a preceding calculated plan. Increasing demands
with respect to adaptability and scalability faces the centralized approach with a
number of limitations. By looking at machines as agents of a situated multi-agent
system, we aim to convert the centralized control system into a self-managing
distributed system, improving adaptability and scalability.

For the case in this paper we limit the discussion to the Automated Guided
Vehicle (AGV) transport system. The AGV transport system is typically one
part, yet a crucial part, of an integral logistic warehouse system. AGVs are un-
manned vehicles that transport goods from one place to another. AGVs can
supply basic/raw materials to a production department, serve as a link between
different production lines or store goods between different processes and connect
to the dispatch area. In a centrally controlled approach, the functionality of the
individual AGVs is rather limited. Each AGV is provided with basic infrastruc-
ture to ensure safety. Besides, a typical AGV is able to perform pick and drop
functions autonomously. The distribution of jobs, the routing through the in-
frastructure, collision avoidance at junctions etc. are all handled by the central
control system.

In the research project we apply a decentralized approach to tackle the prob-
lem of controlling the AGVs. In this paper we look at a number of basic roles
for an AGV to deal with jobs autonomously. We take into account functionality
for the AGV to find a job, to handle a job, to park when no more work has to
be done and finally to ensure that the battery is charged in time.

3.2 High Level Model: Role Model

Before we elaborate on the design of the role model we first clarify what we mean
by the role abstraction. We regard a role as an agent’s functionality in the context
of an organization. Roles provide the building blocks for social organization of the
MAS. Agents are linked to other agents by the roles they play in the organization.
The links can be explicit, e.g. a set of agents that pass objects along a chain;
or implicitly, e.g. in an ant colony a dynamic balance exists between ants that
supply the colony with food and ants that maintain the nest.

In the first step of the design process, the high level role model of the agents
is designed. High level modeling is supported by two diagrams and one schema.
The role diagram structures the agent roles and their interdependencies. We dis-
tinguish two kinds of interdependencies: roles can be related in a hierarchy and

116 E. Steegmans et al.

Working

Fig. 3. The role diagram of the AGV

roles can be related through situated commitments. The role hierarchy expresses
the behavior of the agent at different levels of abstraction. A situated commit-
ment expresses an agent’s preference of one role in relation to one or more other
roles. The action diagrams structure the related actions within the roles. Finally
a commitment schema defines the activation and deactivation conditions for a
situated commitment.

Role Diagram. The roles and their interdependencies that describe the behav-
ior of an agent are described in a role diagram. Fig. Bl depicts the role diagram
of an AGV. A role diagram consists of a hierarchy of roles of which some are
related through situated commitments.

A role is represented by a white oval and the name of the role is written in
the oval. A role can consist of a number of sub-roles, and sub-roles of sub-sub-
roles etc. As such the role diagram is typically composed of a hierarchy of roles.
Roles at the bottom of the hierarchy are denoted as basic roles. The first role
of the AGV is the Active role consisting of two sub-roles, Search, i.e. a basic
role, and Work. The Work role is further split up in two sub-roles, Collect and
Deliver. This latter too are two basic roles. In the Search role the AGV searches
for a new job. Once the AGV finds a job it will Collect the good associated with
the job and subsequently Deliver the good at the requested destination. Besides
the Active role, the AGV has the Maintain role and the Park role. The AGV
executes the Park role when it has no more work to do. In this role the AGV
simply moves to the nearest parking place. The Maintain role ensures that the
AGYV keeps its battery loaded. When the energy level crosses a critical value, the
AGYV finishes its current job and moves towards the nearest charging station. To
find its way to the charging station an AGV uses an internal gradient map. At
regular time intervals all charging stations broadcast their current status. AGVs
use these messages to keep their gradient maps up to date.

A Design Process for Adaptive Behavior of Situated Agents 117

Maintain

connect

energy level

at
station

not
at station
follow
gradient

energy level
<

to charge

charged charge

disconnect

Fig. 4. The action diagram of the Maintain role

A situated commitment is represented by a rounded rectangle and the name
of the situated commitment is written in the rectangle. A situated commitment
defines a relationship between one role (the goal role) and a non-empty set of
other roles (the source roles) of the agent. When a situated commitment is acti-
vated the behavior of the agent tends to prefer the goal role of the commitment
over the source role(s). Favoring the goal role results in more consistent behavior
of the agent towards the commitment. An agent can commit to itself, e.g. when
it has to fulfill a vital task. However, in a collaboration agents commit relatively
to one another, typically via communication. We elaborate on situated commit-
ments below, references that explain the concept in detail are [25][24][22]. In
Fig. Bl the Maintaining commitment ensures that the AGV maintains its energy
level. Since energy is vital for the AGV to function, all roles (except the Maintain
role of course) are connected as source roles to the Maintaining commitment.
The Activation commitment is activated when the AGV starts to work. This
commitment ensures that the AGV remains active once it decides to start work-
ing. The Working commitment is activated once the AGV accepts a job. This
commitment ensures that the AGV acts consistently with the job in progress.

Action Diagram. Action diagrams are defined for the basic roles. An action
diagram describes the structure of the related actions for a basic role. In Fig. [
the action diagram of the Maintain role of the AGV is depicted.

A state is represented by a white circle in the diagram. In Fig[] three states
can be distinguished: ToStation, Charging and Charged. Besides these states
there are two special states: the initial state and the final state. The initial
state, represented by a black circle, indicates the typical start state of the action
sequence of the modelled role. The final state, depicted by a circle with an
F written in it, indicates the typical end state of the action sequence of the
modelled role.

A transition connects two states with each other. A transition expresses a
change of state due to the execution of an action. An action, which is added
to a transition, models the functionality that must be performed by an agent
to achieve a new desired state from an old state. An action is represented by
a white rectangule in which the name of the action is written and which is

118 E. Steegmans et al.

attached to a transition. To fulfill the Maintain role, the AGV has to perform
four different actions: follow gradient to find the charge station, and connect,
charge and disconnect to charge its battery (see Fig. M. The execution of an
action may be constrained by a precondition. Only when the precondition is
satisfied the attached action can be executed. A precondition is represented by
a gray rectangle in which the precondition is written and which is attached to
an action. In Fig. @ the gray rectangle with not at station denotes that the AGV
keeps following the gradient until it reaches the charge station. At that time the
precondition at station becomes true and that enables the AGV to connect to
the charge station. As long as energy level < to charge is true, the AGV keeps
charging. Finally when condition energy level = charged becomes true, the AGV
disconnects and that finishes the Maintain role.

Commitment Schema. For each situated commitment a commitment schema
is defined that describes the source roles and the goal role of the commitment as
well as its activation and deactivation conditions. Activation and deactivation
conditions are boolean expressions based on internal state of the agent or per-
ceived information, or information received from messages. Activating situated
commitments through communication enable situated agents to setup explicit
collaborations in which each participant plays a specific role. In this paper we do
not elaborate on this latter scenario, for a detailed discussion we refer to [24][22].
Fig.[Bldepicts the commitment schema for the situated commitment Maintaining.

Situated commitment: Maintaining

Source roles: Active, Park
Goal role: Maintain
Activation condition: energy level < to charge

Deactivation condition: energy level = charged

Fig. 5. The commitment schema for the situated commitment Maintaining

This commitment schema expresses that when the energy level of the AGV
falls below the threshold to charge, the situated commitment M aintaining
is activated. This will urge the AGV to prefer to execute the Maintain role
over the Active and Park roles. Once the battery is recharged the condition
energy level = charged becomes true and this deactivates the Maintaining
commitment.

3.3 Free-Flow Architecture

The role and action diagrams, together with the commitment schema serve as
a basis to design the free-flow architecture in the second design step. First the

A Design Process for Adaptive Behavior of Situated Agents 119

Maintaining
. \ Activation
ctive Ve
AN
Working
L/
Work
RN
PN ~
- ~ > - ~ - >
- N PR o~ - -
Search Collect - >~ - Park e Maintain ~

>
| Deliver

77777 L - - — — 4 |

Fig. 6. Skeleton structure of the free-flow tree according to the role diagram of Fig. Bl

high level models are used to build a skeleton of the free-flow architecture which
then can further be refined.

Skeleton of Free-Flow Tree. The free-flow tree describes the behavior of the
agent in detail. The high level diagrams for roles and situated commitments
described in the previous section serve as a basis for structuring the free-flow
tree. The role structure as described in the role diagram (see Fig. B is reflected
in the skeleton structure of the tree. Fig. [0l depicts the skeleton structure for the
AGV example.

Roles match to trees in the free-flow tree, sub-roles to sub-trees etc. Situ-
ated commitments on the other hand correspond to connectors that connect the
source roles of the situated commitment with the goal role. When a situated
commitment is activated, extra activity is injected in the goal role relative to
the activity levels of the source roles. Details are discussed shortly.

The action diagrams and commitment schemas enable the developer to refine
the skeleton tree. Fig.[ddepicts the refined sub-tree for the Maintain role and the
Maintaining commitment. States in the action diagram correspond to activity
nodes in the tree. Preconditions correspond to binary stimuli connected to the
corresponding nodes. Examples are the stimuli at station or connected (compare
Fig.Mand Fig.[M). Each action in the action diagram of the basic role corresponds
with an action node in the tree. A number of other analog stimuli in the tree
represent data in the action diagram that determines the action selection. An
example is the stimulus gradient that guides the AGV to move towards the
station.

The activation and de-activation conditions of the situated commitments,
described in the commitment schema correspond to the conditions associated
with the corresponding connectors in the free-flow activity tree. Fig. [[illustrates
this for the Maintaining commitment.

Refining the Free-Flow Tree. Next the developer can refine the free-flow
tree, integrating all details needed for action selection. Fig. 8 depicts the refined
subtree of the Maintain role and the situated commitment Maintaining.

120 E. Steegmans et al.

energy level <to charge
Active Maintaining

N
Maintain \

energy need \
at statior\

Charging

Park

energy level = charged

/
/

/ not at station

ToStation

gradient disconnected connected

5 ol

follow gradient connect charge disconnect

|
i

Fig. 7. Detailed skeleton of Maintain role and Maintaining commitment

energy level
fad Legenda

o 0O O increasing activity level

O negative activity
O Acti O energy level <to charge
Clive
n @)
o Park Maintaining /\\

energy level = charged

Maintain \
energy need \
at statioh

+

Charging

disconnected connected

‘4 o

drive turn turn turn connect charge disconnect
right left back

Fig. 8. Maintain role and Maintaining commitment after refinement

A Design Process for Adaptive Behavior of Situated Agents 121

The abstract action node follow gradient in Fig. [0 is refined towards the
different moving actions of the AGV. The stimulus gradient is split up in a
multi-directional stimulus. Each segment represents the tendency (based on the
value of the gradient field) of the AGV to move in a particular direction. Besides,
a couple of extra stimuli represent data that influences the action selection. An
example is the multi-directional stimulus free that denotes in which direction
the AGV is able to drive.

Stimuli needed to verify the activation and deactivation condition are con-
nected to the situated commitment. The Maintaining commitment is activated
when the value of the energy level crosses the threshold value to charge. The
commitment then calculates the extra activity to inject in the M aintain role.
For the Maintaining commitment this extra activity is calculated as the sum
(’+’ symbol) of the activity level of the Active and Park role, i.e. the activity
levels of the top nodes of these roles. As soon as the battery level reaches the
threshold value charged the Maintaining commitment is deactivated and it no
longer injects extra activity in the Maintain role.

3.4 Class Diagram: Free-Flow Framework

In the last design step, the refined free-flow tree is mapped onto a class dia-
gram. For this class diagram we distinguish two parts, a framework and the
application specific part for each hot spot that instantiates the framework.

Framework. We have designed a framework [I6] for the free-flow architecture
and implemented it in .NET. In Fig. [only a part of the framework is depicted,
i.e. the classes and associations drawn above the dotted lind2 belong to the frame-
work. The framework consists of a set of related classes that model the concepts
of the free-flow architecture as described in the previous section. The concept
of a situated commitment with its activation and deactivation conditions is
modeled by the SituatedCommitment class which subclasses the FunctionNode
class and which has an activationCondition and a deactivationCondition
association with the SituatedCommitmentFunction class. In the free-flow archi-
tecture two kinds of stimuli are distinguished, a binary stimulus and an analog
stimulus. This is modeled in the framework by the class hierarchy Stimulus,
BinaryStimulus and AnalogStimulus. The concept of a link in the free-flow
architecture represents a path along which activity can flow. A link is modeled
as the Link class in the framework. Link has two associations, a sourceNode
association with the class GenericNode and a goalNode association with the
FunctionNode class.

Instantiating the Framework. For a concrete free-flow tree, the generic frame-
work has to be instantiated, i.e. the the application specific part for each hot spot
has to be instantiated in the framework. The part of the class diagram under

2 For clarity, details such as the method names of the classes are not depicted. For all
the details of the framework see [4].

122 E. Steegmans et al.

GenericNode Link
1 sourceNode L.*
-activity:int
goalNode L.*
1
. - - - FunctionNode MergeFunction
Stimulus Situated CommitmentFunction
1 1. mergeFunction 1
I &7 !
deactivationCondition
activationCondition
AnalogStimulus BinaryStimulus L
Situated Commil ActivityNod ActionNode
L
Drive Cha
ToSt@ation g
Maintain
EnergyNeed NotAtStation
MaintainPlus
EnergylevelCharged
o mergeFunction
EnergyLevelMaintain
deactivationCondition
EnergyLevelToCharge Maintaining
goalNode
activationCondition
sourceNode

Fig. 9. The Maintain role and Maintaining commitment in the framework (partial)

the dotted line in Fig. [0 depicts a partial instantiation of the framework for
the Maintain role and the Maintaining commitment. The situated commit-
ment Maintaining is translated to the Maintaining class which subclasses the
SituatedCommitment class of the framework. The activationCondition asso-

A Design Process for Adaptive Behavior of Situated Agents 123

ciation of the Maitaining commitment is modeled as the EnergyLevelToCharge
class while the deactivationCondition association is modeled as the
EnergyLevelCharged class (both are a subclass of
SituatedCommitmentFunction). The link between the binary stimulus energy
need and the Maintain activity node is translated to the EnergyLevelMaintain
class which subclasses the Link class of the framework. The
EnergyLevelMaintain class has a goalNode association with the Maintain class
(a subclass of the ActivityNode class) and a sourceNode association with the
EnergyLevelStimulus class (a subclass of the AnalogStimulus class). A number
of other examples are depicted in the figure, but are not further explained here.

4 Conclusion and Future Work

Designing non-trivial open multi-agent systems is a challenging task. In this
paper we focussed on designing adaptive behavior of situated agents.

Most existing agent-oriented methodologies describe the design process inde-
pendent of a particular agent architecture, however when it comes to building
a concrete multi-agent application, the gap between the high level design mod-
els and the chosen multi-agent architecture has to be filled. In this paper we
proposed a design process for adaptive agent behavior as part of a multi-agent
oriented methodology. The design process bridges the gap between high level
role modeling and a free-flow architecture for adaptive agent behavior.

Starting from the results of analysis of the problem domain, the designer
incrementally refines the model of the agent behavior. At the highest level, roles
and their interdependencies are caught into a high level model. This model is
used as a basis for designing a skeleton of the free-flow architecture. Next the
skeleton is refined such that it contains all details needed for action selection.
Finally, the free-flow tree is mapped onto a class diagram that serves as a basis for
the implementation of the agent’s behavior. Throughout the paper we illustrated
the role design process for a case study on controlling a collection of automated
guided vehicles.

The phased design process proposed in this paper is in line with the paradigm
of Model Driven Architecture [I7]. In the successive design steps, the agent be-
havior is specified at subsequent lower levels of abstraction, each level introducing
more detail. The highest level model is independent of the architecture chosen
at the medium level. Likewise, the free-flow architecture is independent of the
chosen framework at the lowest design level. In future work we intend to elabo-
rate on this vision and extend the design process towards other abstractions [15]
that need to be engineered in situated MASs such as agent communication and
interaction (see also [12] and [7]), and the design of the environment of the MAS.

Acknowledgements

This research is supported by the K.U.Leuven research council (AgCo2) and the
Flemish Institute for Advancement of Research in Industry (EMC2). We also

124 E. Steegmans et al.

would like to express our appreciation to Nelis Boucké for his contribution to
the work presented in this paper.

References

1. M. Amor, L. Fuentes and A. Vallecillo. Bridging the Gap Between Agent-Oriented
Design and Implementation. In Proceedings of the 5th International Workshop on
Agent-Oriented Software Engineering (AOSE 2004), pp.1-16.

2. O. Babaoglu, H. Meling and H. Montresoret. Anthill: A Framework for the De-
velopment of Agent-Based Peer-to-Peer Systems. International Conference on Dis-
tributed Computing Systems, Vienna, Austria 2002.

3. E. Bonabeau, F. Hnaux, S. Gurin, D. Snyers, P. Kuntz and G. Theraulaz. Routing
in Telecommunications Networks with Ant-Like Agents. IATA, 1998, pp.60-71.

4. N. Boucké. Situated Multi-Agent Approach for Distributing Control in Automatic
Guided Vehicle Systems. Master Thesis, 2004.

5. R. A. Brooks. Intelligence without representation. Artificial Intelligence Journal,
1991, Vol. 47, pp.139-159.

6. J. J. Bryson. Intelligence by Design, Principles of Modularity and Coordination for
Engineering Complexr Adaptive Agents. PhD Dissertation: MIT, 2001.

7. L. Cabac and D. Moldt. Formal Semantics for AUML Agent Interaction Protocol
Diagrams. In Proceedings of the 5th International Workshop on Agent-Oriented
Software Engineering (AOSE 2004), pp.97-112.

8. G. Caire and others. Agent Oriented Analysis Using MESSAGE/UML. Agent-
Oriented Software-Engineering 11, Vol. 2222 of LNCS, New York: Springer, 2001,
pp.119-135.

9. J. Ferber. An Introduction to Distributed Artificial Intelligence. Addison-Wesley,
1999.

10. M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmanns, 1997.

11. T. Holvoet and E. Steegmans. Application-Specific Reuse of Agent Roles. Soft-
ware Engineering for Large-Scale Multi-Agent Systems, 2003, Vol. 2603 of LNCS,
Springer Verlag, pp.148-164.

12. M. Ph. Huget and J. Odell. Representing Agent Interaction Protocols with Agent
UML. In Proceedings of the 5th International Workshop on Agent-Oriented Soft-
ware Engineering (AOSE 2004), pp.65-80.

13. M. Luck, R. Ashri and M. D’Inverno. Agent-Based Software Development. Artech
House, 2004.

14. P. Maes. Modeling Adaptive Autonomous Agents. Artificial Life Journal, Vol. 1(1-
2), 1994, pp.135-162.

15. X. Mao and E. Yu. Organizational and Social Concepts in Agent Oriented Software
Engineering. In Proceedings of the 5th International Workshop on Agent-Oriented
Software Engineering (AOSE 2004), pp.49-64.

16. M. E. Markiewicz and C. J. P. Lucena. Object Oriented Framework Devel-
opment. ACM Crossroads Xrds7-4, 2001. See www.acm.org/crossroads/xrds7-
4 /frameworks.html

17. Model Driven Architecture (MDA): http://www.omg.org/mda/

18. J. Odell, M. Nodine and R. Levy. A Metamodel for Agents, Roles, and Groups.
In Proceedings of the 5th International Workshop on Agent-Oriented Software
Engineering (AOSE 2004), pp.131-146.

19

20.

21.

22.

23.

24.

25.

26.

A Design Process for Adaptive Behavior of Situated Agents 125

A. Omicini. SODA: Societies and Infrastructures in the Analysis and Design of
Agent-Based Systems. Agent-Oriented Software Engineering, Vol. 1957 of LNCS,
New York: Springer, 2001, pp.185-193.

V. Parunak. The AARIA Agent Architecture: From Manufacturing Requirements
to Agent-Based System Design. Integrated Computer-Aided Engineering, Vol. 8(1),
2001, pp.45-58.

K. Rosenblatt and D. Payton. A fine grained alternative to the subsumbtion archi-
tecture for mobile robot control. International Joint Conference on Neural Networks,
IEEE, 1989.

E. Steegmans, D. Weyns, T. Holvoet and Y. Berbers. Commitment-Driven
Collaboration in Situated Multi-Agent Systems: A Case Study. Technical CW
Report.

T. Tyrrell. Computational Mechanisms for Action Selection. Ph.D thesis, Univer-
sity of Edinburgh, 1993.

D. Weyns, E. Steegmans and T. Holvoet. Protocol Based Communication for Situ-
ated Multi-Agent Systems. In Proceedings of the Third International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2004), ed. N. Jennings,
C. Sierra, L. Sonenberg and M. Tambe, pp.118-126, New York, 2004.

D. Weyns, E. Steegmans and T. Holvoet. Towards Commitments for Situated
Agents. Role-Based Collaboration at IEEE SMC 2004, International Conference
on Systems, Man and Cybernetics, The Hague, The Netherlands, 2004.

M. Wooldridge, N. Jennings and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems, Vol.
3(3), 2000, pp.285-312.

	Introduction
	Free-Flow Architectures and Designing Adaptive Behavior
	Free-Flow Architecture for Adaptive Agent Behavior
	Designing Adaptive Behavior

	A Design Process for Roles
	Example Application
	High Level Model: Role Model
	Free-Flow Architecture
	Class Diagram: Free-Flow Framework

	Conclusion and Future Work

