
A Colored Petri Net for Regional Synchronization
in Situated Multi-Agent Systems

Danny Weyns and Tom Holvoet

AgentWise, DistriNet, Department of Computer Science,
K.U.Leuven, B-3001 Leuven, Belgium

{danny.weyns,tom.holvoet}@cs.kuleuven.ac.be

Abstract. Interaction is central to multi-agent systems. In this paper
we look at agents that interact by performing simultaneous actions in
their environment. Simultaneous actions are interfering actions that are
executed together and that produce a compound result. To act simultane-
ously agents need to synchronize their actions. Synchronization of actions
is typically established by one centralized synchronizer that ensures for
each action cycle that the actions of all agents are treated simultaneously.
Centralized synchronization is simple, however, its drawbacks are central-
ized control and poor scalability. We present a Colored Petri Net (CPN)
for regional synchronization. With regional synchronization agents syn-
chronize with each other locally, resulting in independent groups of syn-
chronized agents. Regional synchronization is established in a distributed
way and ensures that only agents that are able to perform simultaneous
actions are synchronized. The algorithm for regional synchronization,
that is based on a two-phase commit protocol combined with a logical
clock, is not trivial. For a clear explanation of the algorithm, we discuss
the CPN for regional synchronization at great length. We also formally
prove that for one agent the various steps of the algorithm are executed
correctly, and we prove the correctness of the algorithm for two agents.
Finally we discuss simulation results of the algorithm for four agents.

1 Introduction

Interaction is central to multi-agent systems. Through interactions agents are
able to setup social organizations. In this paper we look at a particular kind of
interactions where situated agents interact by performing simultaneous actions
in their environment.

Situated multi-agent systems. In situated multi-agent systems (situated
MAS), agents as well as objects have an explicit position in the environment.
Situatedness reflects the local relationships between agents and objects. Through
its situatedness, a situated agent is placed in a local context that it is able to
perceive and in which it can act. For actions, we use a model that is based on
the theory of influences and reactions to influences, proposed by J. Ferber [3].
Roughly spoken, this theory separates what an agent wants to perform from

what actually happens: agents produce influences into the environment and sub-
sequently the environment reacts by combining the influences to deduce a new
state of the world from them. The reification of actions as influences enables the
environment to combine simultaneously performed activity in the MAS.

Simultaneous actions. With simultaneous actions, we mean a set of inter-
fering actions that are executed together and that produce a compound result.
We distinguish between three kinds of simultaneous actions: joint actions, influ-
encing actions and concurrent actions. Joint actions are actions that must be
executed together in order to produce a successful result. An example of joint
actions is two or more agents that pick up an object that none of them can pick
up by itself or agents that carry such an object to a certain location together.
Influencing actions are actions that positively or negatively affect each other.
An example of influencing actions is two agents that push the same object to-
gether. When the agents push the object in different directions, the object moves
according to the resultant of the two actions. Finally, concurrent actions are si-
multaneously performed actions that conflict. An example of concurrent actions
is two or more agents that try to pick up the same object at the same time. When
only one of the involved agents can get the object, a non-deterministic selection
can be used to assign the object to one of the agents. For a classification and a
detailed study of simultaneous actions we refer to [10].

Supporting simultaneous actions. Support for simultaneous actions in-
volves two aspects: (1) agents must be able to act together and (2) the outcome
of a combination of simultaneously performed actions must be in accordance
with the domain that is modelled. The focus of this paper is on the first aspect.

To act simultaneously, the agents need to synchronize their actions. In situ-
ated MASs synchronization of actions is typically dealt with by one centralized
synchronizer that ensures that for each action cycle the actions of all agents
are treated simultaneously [4]. Centralized synchronization is simple, however
it forces all the agents to act at one global pace. This is a hard requirement
and it implies a number of drawbacks. First, the scalability of the model with
respect to the number of agents in the MAS is limited. Centralized synchroniza-
tion does not differentiates between the influences of agents that may interfere
(i.e. influences of potential simultaneous actions) and influences that are not. The
influences of all agents are treated as if they happened together. Therefore, the
synchronizer must verify for each influence whether it interferes with any other
influence. This makes the costs for calculating reactions in the order of square
to the number of agents in the MAS. And second, centralized control conflicts
with the distributed nature of MAS. All agents are globally synchronized and
that implies centralized control of the evolution of the MAS.

To resolve the drawbacks of centralized synchronization we present an algo-
rithm that allows agents to synchronize with other agents within their perceptual
range. The result of the algorithm is the formation of independent groups of syn-
chronized agents. The composition of these groups is based on the locality of the
agents and dynamically changes when agents enter or leave each others percep-
tual range. In this approach, only the actions of regionally synchronized agents

(i.e. potentially simultaneously acting agents) are treated simultaneously. Since
regional synchronization is established by the agents themselves, there is no
longer a central entity that controls the evolution of the MAS. The price for de-
centralization of synchronization is the communication cost to set up the groups.

The algorithm for regional synchronization, that is based on a two-phase
commit protocol combined with a logical clock, is not trivial. In [9] we have given
a high level outline of the algorithm. In this paper, we zoom in and present a
detailed formal model of the algorithm by means of a Colored Petri Net (CPN)
[6]. For a clear explanation of the algorithm, we discuss the CPN for regional
synchronization at great length. In addition, the CPN also allows to formally
prove the correctness of the algorithm. In the paper we formally prove that for
one agent the various steps of the algorithm are executed correctly. We also
prove the correctness of the algorithm for two agents. In addition, we discuss
simulation results of the algorithm for four agents. The CPNs presented in this
paper are designed with the Design/CPN tool [2].

Overview. This paper is structured as follows. Section 2 discusses the Col-
ored Petri Net for regional synchronization in detail. In section 3 we prove that,
from the viewpoint of one agent, the various steps in the algorithm are executed
correctly. Subsequently we prove the correctness of the algorithm for two agents.
Section 4 discusses a simulation of the algorithm for four agents. Finally, we
conclude and look at future work in section 5.

2 Colored Petri Net for Regional Synchronization

In this section we discuss the algorithm for regional synchronization. First we
give a high level overview of the algorithm. Then we present the CPN and discuss
the subsequent steps of the algorithm in detail.

2.1 High level overview of the regional synchronization algorithm

Regional synchronization realizes logical simultaneity of agent activity based on
the locality of the agents. The settlement of simultaneous actions follows two
major phases: the phase of synchronization setup and the acting phase.

With regional synchronization each agent is equipped with its own local syn-
chronizer. Each synchronizer is responsible to establish synchronization for its
associated agent with the synchronizers of other agents. Synchronization setup
starts when the agent receives the view set together with the synchronization
time from the environment. The view set is the initial set of candidates for
synchronization, i.e. the names of the agents which whom the agent starts syn-
chronizing. Since the goal of synchronization is to handle simultaneous actions,
the range for an agent to synchronize with other agents should be in accordance
with the range for such interfering actions. In the context of situated agents it
is quite natural to limit this range to the perceptual range of the agents them-

selves1. The synchronization time is the value of the logical clock at the time
when the agent’s view set was composed. This logical clock is a counter main-
tained by the environment. Each time a region of synchronized agents concludes
the acting phase, the value of the logical clock is incremented and new view
sets for the agents are composed2. When no other agent is within the percep-
tual scoop, the agent can act asynchronously with respect to all other agents.
Otherwise the synchronizer starts executing the synchronization algorithm.

The algorithm for regional synchronization integrates a two-phase commit
(2PC) protocol and a logical clock (LC). The goal of a standard 2PC (see e.g. [1])
is to reach a full agreement between a set of processes (participants) whether or
not to perform some action. The protocol is initiated by one process, i.e the coor-
dinator. The coordinator collects votes from the participants and decides about
the outcome of the interaction. Logical clocks were first proposed by Lamport [7]
to capture numerically causal ordering of events within process groups. In the al-
gorithm for regional synchronization, synchronizers are peers and can play both
the role of participant as well as coordinator during one ongoing synchronization
setup. Which role a synchronizer plays with respect to the others depends on
the comparison of the values of their synchronization-time, i.e. the value of the
logical clock they received when they entered synchronization setup.

During synchronization setup, the agent blocks its activity until all agents it
is synchronizing with have finished synchronization setup. While executing the
algorithm, synchronizers progressively try to synchronize with the synchroniz-
ers of the agents inside their perceptual range by means of sending messages
back and forth. During this interaction, the synchronizers pass two phases.
During the first phase they decide whether they agree about synchronization
and subsequently during the second phase they mutually commit to the agree-
ment. When all agents within their perceptual range have concluded synchro-
nization they act together during the acting phase. We call such a group a
region of synchronized agents, in short a region. Each acting agent invokes a
tuple (influence, names of synchronized agents) into the environment. The
environment collects the influence tuples of the agents per region. Since agents
have only a limited view on the environment it may be the case that two agents
positioned inside each others perceptual range see different candidates to syn-
chronize with. So at the end of synchronization setup an agent typically knows
only a limited number of the agents of the synchronized region to which it be-
longs. As such the environment is responsible for composing regions on the basis
of only subsets of synchronized agents that are passed with the influence tuples.

When all influences of a region are available, the environment calculates the
effects of the simultaneously acting agents and that concludes the acting phase.
For a detailed study of influence processing by the environment we refer to [11].

1 In the paper we associate perceptual range with ’visual’ perception. However this is
not a restriction of the algorithm, other approaches can be used as well as e.g. the
agents’ acquaintances can be used to determine locality.

2 Notice that the value of the logical clock is not a global variable, each physical or
logical zone of the MAS environment maintains its own logical clock.

Summarizing, the algorithm for regional synchronization combines a two
phase commit protocol with a logical clock. During synchronization setup each
agent synchronizes with the agents inside its perceptual range and hence also
with all agents within the perceptual range of the latter, and so on. Subse-
quently during the action phase, synchronized agents act together, allowing them
to perform simultaneous actions. In comparison to centralized synchronization,
regional synchronization avoids centralized control of the evolution of the multi-
agent system and improves scalability.

2.2 Colored Petri Net for the Algorithm

Fig. 1 depicts a hierarchical CPN for the regional synchronization algorithm,
hereafter denoted as the synchronization net. The transitions handle mail, sche-
duler and simulation verification denote substitution transitions that stands
for entire subnets. The simulation verification subnet (in short the test net)
models a simulation or verification net that is connected to the synchronization
net. In the next two sections we use different test nets for verification and simula-
tion purposes. Each agent that starts synchronization setup injects a token from
the test net into the synchronization net. We call such token a synchronization
token. The scheduler subnet (scheduler net) allows to schedule the synchroniza-
tion tokens according to a specific scheduling algorithm. The standard algorithm
schedules all tokens concurrently, however, to control state space explosion dur-
ing verification, we apply a round-robin scheduling algorithm. When synchro-
nization setup is finished the synchronization token returns to the test net. De-
pending on the kind of applied test, the test net uses the synchronization token
to continue the simulation of a MAS (i.e. regional synchronized agents perform
simultaneous actions) or the test net compares the state of the synchronization
token with an expected state to verify the correctness of the executed step in
the algorithm. Finally, handle mail is an integral part of the synchronization
algorithm. This subnet (hereafter called the mail net) is depicted in Fig. 2.

To explain the synchronization algorithm, we follow one synchronization to-
ken that runs through the algorithm. Each agent synchronizes before each action.
Synchronization setup starts when the agent receives the view set together with
the synchronization time from the environment. As explained in the previous
section, the view set contains the names of the agents within the perceptual
range of the agent and the synchronization time is the value of the logical clock
maintained by the environment at the time when the agent’s view set was com-
posed. With the view set and the synchronization time the agent composes a
synchronization token that is put in the start sync place, see Fig. 1. Synchro-
nization tokens are of the color SyncSet that is defined as follows:

SyncSet = record name : Name ∗memberset : MemberSet ∗ clock : Clock;

name is the unique name of the synchronizing agent, memberset is a data struc-
ture in which the current state of the synchronization process for each agent
(member) of the view set is registered and clock denotes the synchronization
time of the agent. The color MemberSet is defined as follows:

Fig. 1. Main CPN for regional synchronization.

MemberSet = list Member with 0 . . . max agents;

Member = record member : Name ∗ state : State ∗ clock : Clock;

State = with ini | reqS | reqR | ackS | ackR | comS | comR | sync;

The memberset contains one Member for each agent which whom a synchronizer
is synchronizing. Each Member is characterized by the name of the associated
agent (member), a state and a clock value. Initially, for each name in the view
set, a member is added to the memberset with the state set to ini and the clock
set to zero. During the algorithm clock values are exchanged and the state of
each member evolves from ini to sync. The comparison of clock values determine
the rights of a synchronizer to initiate particular steps in the synchronization
algorithm. When synchronization with a member fails, that member is removed
from the memberset.

For the explanation of the algorithm, we follow the synchronization setup of
an agent with name 3 with a view set {2, 4, 1} and a synchronization time 7,
resulting in the following initial synchronization token:

s = {name=3, memberset=[{member=2, state= ini, clock=0},
{member=4, state= ini, clock=0}, {member=1, state= ini, clock=0}], clock=7}

As soon as the synchronization token is scheduled, i.e. when the token moves
from the queue place to the synchronize place, the synchronizer checks its mail-
box, verifying whether there are pending requests. Pending requests are request
messages received by the synchronizer during the previous acting phase. If the
synchronizer has received mail, the pick mail transition in the mail net (see
Fig. 2) is enabled. When this transition fires, it takes a synchronization token
from the synchronize place and a message from the synchronizer’s inbox. The
color of inbox is MailBox that is defined as follows:

MailBox = record name : Name ∗ box : Box;

Box = list Message with 0 . . . max msgs;

Message = record from : Name ∗ to : Name ∗ perform : Performs ∗ clock : Clock;

Performs = with reqM | ackM | nackM | comM | syncM ;

The condition to enable the pick mail transition is defined as follows:

[syncsBox(sin, mbin), haveMail(sin, mbin),

sout = sin, msgin = pickMsg(mbin), mbout = removeTopMsg(mbin)]

syncsBox(sin,mbin) selects the mailbox mbin of the synchronization token sin,
while haveMail(sin,mbin) verifies whether mbin contains any message. If this
latter condition holds and the pick mail transition fires, the synchronization to-
ken is passed (sout = sin) from the synchronize place to the syncset buffer
place. Simultaneously the top message of the mailbox mbin is removed from
the box (mbout = removeTopMsg(mbin)) and put in the msg buffer place
(msgin = pickMsg(mbin)). For pending requests the performative (perform) of
the message in msg buffer is reqM . Now there are two possibilities. If the agent
associated with the requesting synchronizer belongs to the memberset of the syn-

chronization token, the function reqToAccept(sin,msgin) returns true and that
enables the req accept transition. On the other hand, if reqToAccept(sin,msgin)
returns false (i.e. when the requesting synchronizer does not belongs to the
memberset) the req reject transition is enabled.

Fig. 2. The handle mail subnet of the main CPN for regional synchronization.

If the req accept transition fires, an acknowledgement is sent to the request-
ing agent (sendAck(sin,msgout)) and the state of the memberset is updated
(updateSyncSet(sin,msgin, ackS)), i.e. the state of the corresponding member
is set to ackS and its clock is set to the clock value of the requesting mes-
sage (clock in msgin). However, if the req reject transition is enabled, a ’nack’

message is sent to the requesting agent (sendNack(sin, msgout)) and the syn-
chronization token is put in the synchronize place without changes (sout = sin).
All pending requests are handled in a similar way. For the example synchronizer
we assume the following content of its mailbox:

mbin = [{from = 6, to = 3, perform = reqM, clock = 6},
{from = 1, to = 3, perform = reqM, clock = 6}]

Since agent 6 does not belong to the memberset of agent 3 its request is rejected.
The request of agent 1 is accepted. Thus, the synchronizer sends two messages:

msg1 = {from = 3, to = 6, perform = nackM, clock = 7}
msg2 = {from = 3, to = 1, perform = ackM, clock = 7}
The state of the synchronization token is updated as follows:

s = {name=3, memberset=[{member=2, state= ini, clock=0},
{member=4, state= ini, clock=0}, {member=1, state=ackS, clock=6}], clock=7}
After mail handling we return to the synchronization net, see Fig. 1. The ac-
knowledge messages in the outbox of the synchronizer enable the deliver mail
transition. Each time this transition fires, a message is delivered in the mailbox
of the addressee. destinationBox(msg, mbin) selects the appropriate mailbox
and mbout = deliverMail(msg, mbin) effectively delivers the message.

When all messages in the inbox have been handled and the synchroniza-
tion token arrives at the synchronize place, the transition no mail is enabled
(not(haveMail(sin,mbin)) holds). When the transition no mail fires, the syn-
chronization token is put in the split async sync place. At this point, the algo-
rithm can evolve in two possible directions. If the condition handleAsynchro-
nously(sin) holds, i.e. the memberset of the synchronization token is empty,
the transition handle async is enabled. When the handle async transition fires,
an anonymous token t of color T is put in the schedule place, enabling the
scheduler to schedule the next waiting synchronization token. Simultaneously,
the synchronization token is put in the end sync place (sout = sin) where
the test net will pick it up and that finishes synchronization setup for the
synchronizer. During the following acting phase, the associate agent will act
asynchronously with respect to the agents in the MAS. On the other hand,
if handleAsynchronously(sin) does not hold (the memberset of the synchro-
nization token is not empty) the handle sync transition is enabled. When this
transition fires, the synchronization token is put in the handle requests place.
Since the memberset of the synchronization token in the example is not empty
the token follows this latter route through the net.

As long as the memberset of the synchronization token contains members in
the state ini, the send request transition is enabled (i.e. toSendRequests(sin)
holds). Each time this transition fires a request message is sent to a particular
member in the initial state. For the synchronization token in the example the
following two request messages are sent:

msg1 = {from = 3, to = 2, perform = reqM, clock = 7};
msg2 = {from = 3, to = 4, perform = reqM, clock = 7};
For each request that is sent, the state of the corresponding member in the syn-
chronization token is updated to reqS. Applied to the example, the state of the
synchronization token becomes:

s = {name=3, memberset=[{member=2, state=reqS, clock=0},
{member=4, state=reqS, clock=0}, {member=1, state=ackS, clock=6}], clock=7}
When all requests have been sent, the condition toSendRequests(sin) no longer
holds and that enables the no requests to send transition. As soon as this tran-
sition fires the synchronization token is put in the handle blocked to commit
place. For the moment we do not elaborate on the next sequence of transi-
tions, i.e. the synchronization token now passes along the chain of transitions
not blocked – no commits to send – no syncs to send – not synced. When this
latter transition fires, a new token for the scheduler is put in the schedule place
and the synchronization token is put in the queue place.

We take up again when the synchronization token is scheduled for the next
pass through the synchronization net and arrives in the synchronize place. First
the inbox is inspected for new messages (see Fig. 2). The reactions to the ac-
knowledgements and requests may now have been arrived. As discussed above,
a request can be answered by an acknowledgement or a rejection, depending on
the membership of the requesting synchronizer. An acknowledgement enables
the ack accept transition (i.e. the condition isAnAck(msgin, sin) holds). When
this transition fires the synchronization token is updated, i.e. the state of the cor-
responding member in the memberset is set to ackR and the clock is set to the
value received in the acknowledge message. A rejection enables the nack accept
transition (the condition isANack(msgin, sin) holds). When this transition fires
the corresponding member is removed from the memberset in the synchroniza-
tion token. For our example, we suppose that two messages have been received:

msg1 = {from = 2, to = 3, perform = nackM, clock = 8};
msg2 = {from = 4, to = 3, perform = ackM, clock = 8};
The nack message of agent 2 indicates that after agent 3 has perceived agent
2 (synchronization time 7), agent 2 has moved out of the perceptual range of
agent 3. Agent 4 on the other hand (that has acted simultaneously with agent 2,
both have the same synchronization time 8) is still within the perceptual scope
of agent 3. After mail handling the synchronization token is updated to:

s = {name=3, memberset = [{member=4, state=ackR, clock=8},
{member=1, state=ackS, clock=6}], clock=7}

After handling the acknowledge messages, we return to the synchronization net
where the synchronization token is located in the synchronize place, see Fig. 1.
The synchronization token now passes the transitions no mail, handle sync (at
least if we suppose that the memberset of the synchronization token is not

empty) and no requests to send (send request is no longer enabled since the
synchronizer has sent all requests during the previous pass through the algo-
rithm). We further suppose that the synchronization token passes the not blocked
transition and arrives at the handle commits place, we discuss the selection be-
tween unblock and not blocked below. From the handle commits place a syn-
chronizer is able to send commits depending on the condition toSendCommits(sin).
This condition holds if the memberset of the synchronization token contains
members in the state ackR or ackS of which the clock value is smaller or
equal to the clock value of the synchronization token itself. Each time the
send commit transition fires a commitment message is sent to such a mem-
ber (msg = sendCommit(sin)) and simultaneously the state of the member is
updated to comS (sout = updateSyncSet(sin, msg, syncS)). For our example,
only member 1 meets the requirements to send a commit (the clock value of
member 4 is greater then the clock value of the synchronizer itself). When the
send commit transition fires, a commitment message is sent to the synchronizer
of agent 1 and the state of the synchronization token is updated:

msg = {from = 3, to = 1, perform = comM, clock = 7};
s = {name = 3, memberset = [{member = 4, state = ackR, clock = 8},

{member = 1, state = comS, clock = 6}], clock = 7}
After commitments have been sent, the condition toSendCommits(sin) no longer
holds and that enables the no commits to send transition. As soon as this tran-
sition fires the synchronization token is put in the handle syncs place. For the
moment we suppose that no syncs to send is enabled. When the synchroniza-
tion token passes this transition and the not synced transition, it is ready to
pass the synchronization net once more.

After the synchronization token is scheduled, the mailbox is checked, see
Fig. 2. The synchronizer now expects commitment messages. If the mailbox con-
tains commitment messages the condition isACom(msgin, sin) holds and the
com accept transition is enabled (of course, after the pick mail transition has
fired). When the com accept transition fires the state of the member in the
memberset that has sent the commitment message is updated to comR. For our
example we suppose that the commitment message of member 4 has now been
arrived. The received message and the updated synchronization token are:

msg = {from = 4, to = 3, perform = comM, clock = 8};
s = {name = 3, memberset = [{member = 4, state = comR, clock = 8},

{member = 1, state = comS, clock = 6}], clock = 7}
After mail handling, we return to the synchronizer net, see Fig. 1. Starting
from the synchronize place, the synchronization token now passes along a chain
of transitions until it arrives in the handle syncs place. There the condition
toSendSyncs(sin) is verified. This condition holds when every member in the
memberset is in the state comR or sync. If this is the case, a synchronization
message is sent to every member in the state comR and the state of these mem-
bers are updated to sync. Since member 1 in the example is in the state comS,

the toSendSyncs(sin) does not hold for the example synchronization token and
thus the synchronizer has to wait for a confirmation of the commitment sent to
the synchronizer of agent 1. As a consequence the no syncs to sent transition is
enabled and the synchronization token returns back to the queue place.

During a next run through the synchronization net, the synchronizer likely
will find the expected confirmation message in its mailbox, see Fig. 2. When
a synchronization message has arrived the sync accept transition gets enabled.
When this transition fires, the state of the sender in the memberset of the syn-
chronization token is set to sync. For the example, we suppose that the confir-
mation of member 1 has arrived. After the pick mail and sync accept transitions
have fired, the state of the synchronization token becomes:

s = {name = 3, memberset = [{member = 4, state = comR, clock = 8},
{member = 1, state = sync, clock = 6}], clock = 7}

During the next pass through the synchronization net, the condition to send a
synchronization message to member 4 now holds (the function toSendSyncs(sin)
of the send sync transition returns true). When the send sync transition fires,
a synchronization message is sent to member 4 and the updated state of the
synchronization token becomes:

msg = {from = 3, to = 4, perform = syncM, clock = 7};
s = {name = 3, memberset = [{member = 4, state = sync, clock = 8},

{member = 1, state = sync, clock = 6}], clock = 7}
This enables the no syncs to send transition. When this transition fires the syn-
chronization token is put in the finish sync cycle place. Here the condition
synchronizationCompleted(sin) is verified. This condition holds if all members
of the memberset are in the state sync. Since this is the case for the synchro-
nization token in the example, the synchronization token reaches the end sync
place (and a new token is put in the schedule place to schedule the next syn-
chronization token) and that concludes synchronization setup.

Now we come back to the selection between unblock and not blocked. The
condition to enable the unblock transition is blocked to commit. This condition
deals with deadlocked situations in the algorithm that may arise when a sequence
of overlapping perceptual ranges of synchronizing agents form a cycle.

We illustrate an example of this problem in the Packet-World [5][8]. The
Packet-World is a simple MAS application we use as a test case in our research,
see 3. In the Packet-World agents have to bring colored packets (rectangles) to
corresponding colored destinations (circles). Agents can perform different kinds
of actions such as making a step to a neighboring field or pass a packet to a
neighboring agent. Agents have only a limited view on the world, the right part
of Fig. 3 illustrates the perceptual scope of agent 8. In this case agents can
perceive their environment two fields from their current location.

Suppose that in the depicted situation of Fig. 3 agents 8, 1, 7 and 2 are
all executing the acting phase. Now agent 7 makes a step North West, entering
the perceptual range of agents 1 and 2. S7, the synchronizer of agent 7, starts

Fig. 3. Blocking problem of regional synchronization in the Packet–World.

synchronization setup by requesting S1 and S2 to synchronize. Subsequently,
agent 1 and 8 conclude their action (suppose they transferred a packet) and enter
synchronization setup. S8 starts to synchronize with S1; S1 starts to synchronize
with S8 and S7. After a while agent 8 finishes synchronization. We suppose
that S1 and S7 are still busy synchronizing when agent 2 makes a step to the
South and enters synchronization setup. S2 confirms the pending request of S7.
Subsequently, S2 requests S8 to synchronize. While S1 and S7 can conclude
synchronization setup, S2 (and as such also the whole region) is blocked since
S8 (that already finished synchronization setup) is unable to respond to S2

synchronization request.
To deal with such potential deadlock situations, a synchronizer can ’unblock’

itself. The condition blockedToCommit(sin) that enables the unblock transition
holds if (1) at least one member of the memberset of a synchronization token is
in the state comR, comS or sync; (2) at least one member of the memberset is
in the state reqS and (3) no member is in the state reqR, ackR or ackS. When
a synchronization token reaches the handle blocked to commit place and the
blockedToCommit(sin) condition holds, the unblock transition is enabled. Each
time this transition fires a nack message is sent (msg = sendUnblockMsg(sin))
to a blocking member, i.e. a member of the memberset in the state reqS. Simul-
taneously the blocking member is removed from the memberset in the synchro-
nization token (sout = removeBlockingMember(sin,msg)). When the synchro-
nization token no longer contains a blocking member (blockedToCommit(sin)
returns true) the transition not blocked is enabled and that liberates the syn-
chronizer from the deadlock situation.

Unblocking has a side effect. Since messages are delivered indirectly (via the
deliver mail transition), an acknowledge message may reach the mailbox of a
requested synchronizer with delay. Therefore a blocked synchronizer can not
distinguish whether it is effectively blocked due to a synchronizer that is not
able to react to a request (because it has finished synchronization setup and

waits for the conclusion of synchronization setup of the other members of the
region to which it belongs) or whether the acknowledgement to a request mes-
sage is underway. As soon as a synchronizer unblocks and removes a blocking
member from its memberset at least direct synchronization with that member
is no longer possible3. An acknowledge message of the removed member may
reach the mailbox of the unblocked synchronizer after this latter has concluded
synchronization setup. Such outdated messages should not interfere with the
next synchronization setup of a synchronizer. Outdated messages are therefore
removed from the mailbox via the outdated msg transition in the mail net,
see Fig.2. When a new synchronization token (i.e. a token with all its mem-
bers in the state ini) enters the synchronization net, first the mailbox of the
synchronizer is checked. When the mailbox contains outdated messages, the
isAnOutdatedMsg(sin,msg) transition becomes enabled. When this transition
fires, an outdated message is discarded. As soon as all outdated messages are
removed from the mailbox, the oudated msg transition is no longer enabled and
the synchronizer can follow the usual synchronization setup. Note that unblock-
ing due to a delay of message delivering is rather exceptional since it is very
unlikely that a synchronizer passes the complete synchronization process with
some members of its memberset while the acknowledgements of other members
did not had the change to reach its mailbox.

3 Verification

In this section we discuss formal verification of the regional synchronization algo-
rithm. First we prove that for one agent the various steps of the synchronization
algorithm are executed correctly. Then we prove the correctness of the algorithm
for two agents. Together this is only a partial proof of the correctness of the al-
gorithm, e.g. the blocking situations where at least four agents are involved are
not covered here.

3.1 Formal verification of the algorithm for one agent

We prove the correct execution of the various steps of the algorithm for one agent
by enumeration. We developed a test net that feeds the synchronization net with
a set of synchronization tokens (hereafter denoted as test tokens) accompanied
with possible received messages (test messages). This set represents all possible
situations a single synchronizer can be faced with during one pass through the
synchronization algorithm. For each situation we only took into account a mini-
mal needed memberset to verify the step. After a test token has passed through
the synchronization net, the test net (1) verifies whether a possible test message
has been processed correctly; (2) compares the correctness of the updated test

3 The agents may still get synchronized indirectly. E.g. in the Packet-World example,
agent 2 who unblocks agent 8 is at the end of synchronization setup still synchronized
with agent 8 via agents 7 and 1.

token with an appropriate control token and (3) compares the correctness of a
possible new sent message with a corresponding control message.

Fig.4 depicts the CPN of the test net. Initially the test sets place contains
a set of composite test tokens of color TestSet. Each composite test token holds
the data needed to verify the correct execution of a particular step of the algo-
rithm. We identified 14 different steps in the algorithm, including steps to verify

Fig. 4. Verification net for one agent.

the reaction to received messages and steps to verify whether progress in the
algorithm is made when the appropriate conditions hold. As an example, we
illustrate the composite test token that is used to verify whether a request is
correctly accepted:

is2={name=1, memberset=[{member=2, state= ini, clock=0}], clock=1} : SyncSet;

im2 = {from=2, to=1, perform=reqM, clock=2} : Message;

os2={name=1, memberset=[{member=2, state=ackS, clock=2}], clock=1} : SyncSet;

om2={from=1, to=2, perform=ackM, clock=1} : Message;

ts2={number=2, inset= is2, inmsg= im2, outset=os2, outmsg=om2} : TestSet;

is2 is the initial synchronization token (test token) and im2 the accompanied re-
quest message (test message) for the test. os2 (the control token) represents the
expected state of the synchronization token after is2 has passed through the syn-
chronization net and om2 (the control message) is the expected acknowledge mes-
sage that has to be sent. ts2 aggregates all this data in one composite test token.

The split transition selects the composite test tokens one by one, based on
their number (e.g. in the example above the number of ts2 is 2). The composite
test token is then split into a synchronization token (test token) that is put in
the start sync place, a message token that is put in the inbox place and a control
token combined with a control message that is put in the control set place. The
test token then passes one time through the synchronization net after which it
reaches the end sync or the continue sync place depending on its updated state.
Possibly sent messages are put in the outbox that, for verification purposes, is not
connected to the mailboxes of the addressees. Subsequently, one of the transitions
match, end match, no match or no end match is enabled depending the result
of the match functions of the guards of the transitions. If match or end match
fires, an anonymous token (of color T) is put in the ok place indicating that
the test has succeeded. On the other hand if no match or no end match fires a
token is put in the nok place, indicating a failure.

The proof of the correct execution of the test steps is based on the liveness
property of the verification ready transition connected to the ok place. As
soon as the ok place has collected an anonymous token for each verified step of
the algorithm (i.e. 14 tokens) the verification ready transition becomes enabled
and from then on stays live forever. To prove the correct execution of the various
steps of the algorithm, we generate an occurrence graph for the net and prove
that a path exists from each node in the graph to the node that represents
the final marking, i.e the state of the ok place with 14 collected tokens. That
particular node, the leaf node of the occurrence graph (node number 331) is
shown in Fig.4. The proof is straightforward. The SearchNodes function (see
Fig.4) searches the nodes that have no path to the leaf node. Since this number
is zero we have proven that all test steps are executed correctly.

3.2 Formal verification of the algorithm for two agents

To prove the correct execution of the algorithm for two agents, we developed a
test net that simulates a simple MAS. In this MAS two agents perform a sequence
of actions that represent all possible synchronization situations for two agents
in the algorithm. Then we generate an occurrence graph for this simulation and
formally prove that the algorithm works properly.

The simple MAS we used is depicted in Fig. 5. During the simulation the
agents make 4 moves according to the path indicated in the figure. The agents
synchronize with one another when they perceive each other. We suppose that an
agent can only perceive the other agent if it is located at a neighboring field. The
verification includes the following four situations. After the first move agent 1
requests agent 2 for synchronization, however agent 2 who has left the perceptual

�

�

Fig. 5. Subsequent actions of the agents to verify the algorithm for two agents.

range of agent 1 rejects. After the second move agent 2 accepts the request, as
a result the third move is made simultaneously. Finally the fourth move is made
separately, without any synchronization request.

Fig. 6 depicts the CPN of the test net. The world token of color World lo-
cated in the world place represents the MAS environment, i.e. a 5x5 grid, with
the agents on their locations. The color World and the initial world token are
defined as follows:

color World = list Item with 0 . . . worldsize ∗ worldsize;

color Item = record name : Name ∗ coord : Coordinate;

val world = [{name=free, coord=(1, 1)}, . . . , {name=a1, coord=(2, 2)}, . . .
. . . , {name=a2, coord=(4, 4)}, . . . , {name=free, coord=(5, 5)}] : Wold;

The initial sequence of test moves for the agents are located in the test moves1
and test moves2 places. TestMove is a list of Move, each Move representing
an action of an agent. The initial synchronization tokens of both agents are lo-
cated in the start sync place. Since in the initial situation no agent is able to
perceive the other, both memberset’s are empty. When an agent finishes syn-
chronization setup its synchronization token is put in the end sync place. The
compose regions transition selects a matching region for the agent from the
colect regions place and add the agent as well as the members of its memberset
set to that region. Regions is a list of Region, each region is defined as:

color Region = list RegionMember with 0 . . . max agents;

color RegionMember = product Name ∗Bool;

When a region is expanded, the entry of the acting agent with name n is set to
(n, true), while a member m of this agent is set to (m, s) with s the previous
state of the member as registered in the region, or s = false if the member was
not yet registered. If no matching region exists, a new region is added to the list
of regions in collect regions. The transition merge regions ensures that regions
with overlapping agents are merged into one composite region. As soon as the
state of all agents of a region becomes true the region is ready to be handled,
i.e. the agents of the region then make a move simultaneously. In the test we force

regions to be handled in a predefined order. The test regions place contains a list
of Names each element defining a set of names of agent that have to act simul-
taneously. When the region that corresponds with the names of the top element

Fig. 6. The test net to prove the correctness of the algorithm for two agents.

of the list in test region have finished synchronization setup, the handle region
transition fires. This results in the following effects: (1) the Names of the act-
ing agents are put in the acting agents place (completedRegion(rsin, hdtns)),
(2) an anonymous token is passed to the region handled place, (3) the value of
Clock in the logical clock place is incremented and (4) a token of color LT is

put in the handle agent place. The LT token contains an anonymous token for
each member of the region that is handled. From the acting agents place agent
1 enables the act1 transition and agent 2 act2. When one of these transitions
fires, it takes the next test move from the test moves1 or test moves2 place
and uses this to move the corresponding agent to the next position in the world
(tm = nextTestMove(tmvs) and wso = updateworld(wsi, move(tm))). Simul-
taneously, the name of the acting agent is put in the perceiving agent place.
This enables the compose syncset transition. When this transition fires a new
synchronization token for the agent is composed and put it in the start sync
place. Together one anonymous token is collected from the handle agent place.
As soon as all agents of the region have acted, the token in the handle agent
place will enable the prepare region transition. When this transition fires, an
anonymous token is put in the region to handle place. This prepares the test
net to handle the next region.

As soon as all predefined regions have acted and the agents have finished
their final synchronization setup, the verify transition is enabled. When this
transition fires, an anonymous token is put in the verification ready place.
This makes the verification ready transition live forever. Similar as for the
correctness proof for one agent, to prove the correctness of the algorithm for
two agents we have to prove that there exists a path from each node in the
occurrence graph to the node that represents the final marking. The leaf node of
the occurrence graph (node number 1851) is shown in Fig.6. The SearchNodes
function searches the nodes that have no path to the leaf node. Since the set
of nodes that have no path is empty, we have proved that the synchronization
algorithm works correctly for two agents.

4 Simulation

In addition to the formal proofs discussed in the previous section, we developed a
test net that simulates the algorithm for four agents. Obviously, a simulation does
not prove the correctness of the algorithm. However, the positive results from
this simulation support the hypothesis that the algorithm is indeed completely
correct. A complete formal proof should further substantiate this claim.

The set-up of the test net for the simulation is similar to the net we used to
verify the algorithm for two agents. For the MAS, we used a 8x8 grid environment
with four agents. The actions of the randomly scheduled agents are limited to
move randomly. We performed simulations for agents with perceptual ranges of
1, 2 and 3 fields. The simulation ends when the agents together have performed
1000 moves. To interpret the simulation results, we added several extra logging
places to the net such as places to register the number of times regions of different
size have acted, a place to register the number of times regions have merged and a
place to register the number of sent messages. The main results of the simulation
are depicted in the table below.

The Clock value represents the value of the logical clock of the environment.
Since the clock value is incremented each time a region acts, its value is equal

to the number of regions that have acted. For a perceptual range of 1 field, 768
regions have acted, i.e. the average region size is 1000/768 = 1, 3. For a per-
ceptual range of 3 fields, 355 regions have acted, i.e. the average region size is
100/355 = 2, 8. These results confirm that agents with a larger perceptual scope
form larger regions. The Region size values reflect the number of times each
particular region size has occurred. E.g. for a perceptual range of 1 field, 584
agents have acted asynchronously (region size = 1) while only 12 regions of 4
agents have acted simultaneously. On the other hand, for a perceptual range of
3 fields, 156 agents have acted asynchronously and just as much regions of four
agents have acted simultaneously. The Region merges values denote the num-
ber of times two subsets of synchronized agents are merged into one compound
region. The communication overhead is denoted by the Number of messages
that are sent. For a perceptual range of 3 fields about three times as much syn-
chronization messages are sent as for a perceptual range of 1 field. :

����� � ��� � 	
�� �
�� ������ ��� ���
�� 	 � � ���� ����� � � � � ���� ��������� ���� � 	���� ����� ������ �
�����

! " #�$ %�$ &'! &�#)(�*+! (# ! $ &�*
(&�,�* ! #�(-#�(.! / &0!�! & $,�*�" #
, ,�%�% ! %�#),�*1! /�"2! %�# ! % %�(�$�(

!3(4,5&

Summarizing, larger perceptual ranges result in larger regions. Larger regions
improve the possibility for simultaneous actions, however they also increase the
communication overhead to setup synchronization.

5 Conclusions and Future Work

In this paper we presented a CPN for regional synchronization. Regional syn-
chronization allows agents to perform simultaneous actions with other agents
within their perceptual range. Regional synchronization avoids centralized con-
trol of the evolution of the MAS and improves scalability in comparison to central
synchronization.

The algorithm combines a distributed two phase commit protocol with a
logical clock. The detailed discussion of the CPN for regional synchronization
shows that the the algorithm for regional synchronization is not trivial. In prac-
tice however, the algorithm can be implemented as a separate reusable module
that, once correctly implemented, hides the complexity for the MAS designer.

We formally proved that the various steps of the algorithm for one agent
are executed correctly. We also proved the correctness of the synchronization
algorithm for two agents. To avoid state space explosion we had to schedule the
agents round-robin for verification. In addition to the formal proofs, we discussed
simulation results of the algorithm for four agents.

As future work it is our intention to extend the formal verification discussed
in this paper to complete the proof of correctness of the algorithm for regional
synchronization.

References

1. K. Birman Building Secure and Reliable Network Applications, Cornell University,
Ithaca NY, 14853, 1995.

2. Design/CPN, http://www.daimi.aau.dk/designCPN/
3. J. Ferber, Un modele de l’action pour les systemes multi-agents, Journees sur les

systemes multi-agents et l’intelligence artificielle distribue, Voiron, 1994.
4. J. Ferber, Multi-Agent Systems, An Introduction to Distributed Artificial Intelli-

gence, Addison-Wesley, ISBN 0-201-36048-9, Great Britain, 1999.
5. M. N. Huhns and L. M. Stephens, Multi-Agent Systems and Societies of Agents,

in G. Weiss ed., Multi-agent Systems, ISBN 0-262-23203-0, MIT press, 1999.
6. K. Jensen, Coloured Petri Nets, in Lecture Notes Computer Science, vol. 254,

Advances in Petri Nets, Bad Honnef, Springer Verlag, 1986.
7. L. Lamport Time, clocks and the ordering of events in a distributed system, ACM,

vol. 21, no. 7, pp.558-65, 1978.
8. D. Weyns and T. Holvoet, A Colored Petri Net for a Multi-Agent Application,

Modeling Components, Objects and Agents, MOCA’02, Aarhus, Denmark, 2002.
9. D. Weyns and T. Holvoet, Regional Synchronization for Simultaneous Actions

in Situated Multi-Agent Systems, 3th International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS’03, Prague, Czech Republic, Pro-
ceedings in LNAI vol. 2691, 2003.

10. D. Weyns and T. Holvoet, Model for Simultaneous Actions in Situated Multi-
agent Systems, First German Conference on Multi-Agent System Technologies,
MATES’03, Erfurt Germany, Proceedings in LNCS vol. 2831, 2003.

11. D. Weyns and T. Holvoet, Formal Model for Situated Multi-Agent Systems,
Formal Approaches for Multi-agent Systems, Special Issue of Fundamenta Infor-
maticae, Eds. B. Dunin-Keplicz, R. Verbrugge, 2004. (to appear)

