
Integrating Free-Flow Architectures
with Role Models Based on Statecharts

Danny Weyns, Elke Steegmans, and Tom Holvoet

AgentWise, DistriNet
Department of Computer Science K.U.Leuven

Celestijnenlaan 200 A
B-3001 Leuven, Belgium

{Danny.Weyns,Elke.Steegmans,Tom.Holvoet}@cs.kuleuven.ac.be

Abstract. Engineering non-trivial open multi-agent systems is a chal-
lenging task. Our research focusses on situated multi-agent systems,
i.e. systems in which agents are explicitly placed in a context – an en-
vironment – which agents can perceive and in which they can act. Two
concerns are essential in developing such open systems. First, the agents
must be adaptive in order to exhibit suitable behavior in changing cir-
cumstances of the system: new agents may join the system, others may
leave, the environment may change, e.g. its topology or its character-
istics such as throughput and visibility. A well-known family of agent
architectures for adaptive behavior are free-flow architectures. However,
building a free-flow architecture based on an analysis of the problem do-
main is a quasi-impossible job for non-trivial agents. Second, multi-agent
systems developers as software engineers require suitable abstractions for
describing and structuring agent behavior. The abstraction of a role ob-
viously is essential in this respect. Earlier, we proposed statecharts as a
formalism to describe roles. Although this allows application developers
to describe roles comfortably, the formalism supports rigid behavior only,
and hampers adaptive behavior in changing environments.
In this paper we describe how a synergy can be reached between free-
flow architectures and statechart models in order to combine the best
of both worlds: adaptivity and suitable abstractions. We illustrate the
result through a case study on controlling a collection of automated
guided vehicles (AGVs), which is the subject of an industrial project.

1 Introduction

Dealing with the increasing complexity of developing, integrating and managing
open distributed applications is a continuous challenge for software engineers.
In the last fifteen years, multi-agent systems have been put forward as a key
paradigm to tackle the complexity of open distributed applications. In this paper
we focus on situated multi-agent systems1(situated MASs) as a generic approach

1 Alternative descriptions are behavior-based agents [4], adaptive autonomous agents
[22] or hysteretic agents [16][14].

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 104–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Integrating Free-Flow Architectures with Role Models Based on Statecharts 105

to develop self-managing open distributed applications. In particular, we propose
an approach that combines aspects of adaptive agent architectures with ideas
of rigid modeling of agent behavior for developing these kinds of multi-agent
systems.

In situated MASs, agents and the environment constitute complementary
parts of a multi-agent world which can mutually affect each other [33]. Situated-
ness places an agent in a context in which it is able to perceive its environment
and in which it can (inter)act. Intelligence in a situated MAS originates from the
interactions of the agents in their environment rather than from the capabilities
of the individual agents. While interacting, agents form an organization in which
they all play and execute their own role(s) in that organization.

The approach of situated MASs has a long history. R. Brooks [4][5] identified
the key ideas of situatedness, embodiment and emergence of intelligence. L. Steels
[31] and J. L. Deneubourg [11] introduced the basic mechanisms for agents to
coordinate through the environment: gradient fields and marks. P. Maes [22]
adopted the early robot-oriented principles of reactivity in a broader context of
software MASs. J. Ferber and A. Drogoul [13], M. Dorigo [12], V. Parunak [27]
and many other researchers drew inspiration from social insects and adopted the
principles in situated MASs. Where the approach of situated MASs started from
the rejection of classical agency based on symbolic AI, nowadays the original op-
position tends to evolve towards convergence with different schools emphasizing
different aspects. The researchers, although having different points of view, are
very complementary, and each have their own applications.

Situated MASs have been applied with success in numerous practical applica-
tions over a broad range of domains, e.g. manufacturing scheduling [28], network
support [3] or peer-to-peer systems [1]. The benefits of situated MASs are well
known, the most striking being flexibility, robustness and efficiency.

During the last two years, we developed an agent architecture that enables
advanced adaptive agent behavior. The architecture is a hierarchical free-flow
architecture which integrates the concept of situated commitments. Situated
commitments allow an agent to bias action selection towards actions in its com-
mitments.

Besides the theoretical work on agent architectures, we have been confronted
with application engineers who require software engineering support for develop-
ing concrete, real-world MASs, the applications include active networking, man-
ufacturing control and supply chain networks. These software engineers require
simple and comfortable modeling languages for functionally describing agent
behavior. A modeling language based on statecharts resolved this requirement.
However, a statechart specification of agent behavior is typically a static, rigid
model in that it leaves little room for adaptive and explorative behavior. As a
result, the agents in the applications performed behavior that was sometimes
unable to adapt to different environmental situations.

Free-flow architectures allow adaptive behavior, yet it is unrealistic to assume
that software engineers – starting from the analysis of the problem domain –
build a complex free-flow architecture for complex applications, where agents



106 Danny Weyns, Elke Steegmans, and Tom Holvoet

can perform many actions. For such applications, the architecture quickly be-
comes unmanageable. We aim to combine the best of both worlds, i.e. the best
of adaptive architectures and simple modeling languages. To that end, we re-
tain a flexible action selection mechanism, but complement its description with
statecharts. Here, we refrain from considering a statechart description of agent
behavior as a kind of sequence chart, but rather use statecharts to describe role
composition and to structure related actions within roles only.

This paper is structured as follows. In section 2 we introduce free-flow ar-
chitectures and give an overview of the statechart formalism we have developed.
We discuss problems we encountered when applying them in practice. Section 3,
the core of the paper, describes the combined adoption of free-flow architectures
and the statechart modeling language. We illustrate our explanation with an
example application. Section 4 discusses how the software engineering approach
proposed in this paper relates to existing agent-oriented methodologies. Finally,
in section 5 we conclude the paper.

2 Free-Flow Architectures and Statechart Models

In this section we start with a brief introduction of free-flow architectures. Then
we give a short overview of the statechart formalism we have developed for
modeling agent behavior. For both, we point out a number of problems we en-
countered when applying them in practice. Subsequently we outline an approach
to combine free-flow architectures with statechart models.

2.1 Free-Flow Architecture for Adaptive Behavior

Open MASs are characterized by dynamism and change: new agents may join the
system, others may leave, the environment may change, e.g. its topology or its
characteristics such as throughput and visibility. To cope with such dynamism
the agents must be able to adapt their behavior according to the changing cir-
cumstances. A well-known family of agent architectures for adaptive behavior
are free-flow architectures.

Before we introduce free-flow architectures, we first clarify our perspective
on adaptability in this paper. Here we look at adaptability as an agent’s ability
to deal with different kinds of situations in its environment in a flexible way. We
do not look at adaptability in the sense of learning, i.e. as an agent’s ability to
adjust its behavior in certain kinds of situations over time, according to good or
bad experiences of recent choices.

Free-flow architectures are first proposed by Rosenblatt and Payton in [29].
In his Ph.D thesis, T. Tyrrell [32] demonstrated that hierarchical free-flow ar-
chitectures are superior to flat decision structures, especially in complex and
dynamic environments. The results of Tyrrell’s work have been very influential,
for a recent discussion see [6].

An example of a free-flow architecture is depicted in Fig. 1.
The hierarchy is composed of activity nodes (in short nodes) which receive

information from internal and external stimuli in the form of activity. The nodes



Integrating Free-Flow Architectures with Role Models Based on Statecharts 107

��������

��������� �	�
����

��� � �	�
��

�
��

�
������

���
�� ����

�� ���������� �� �������

������������ ���������

������� ������������� � ��� �

���
������ ������� ����

������� �������

�������

��

�

�
��

�����
� ������� �����



�������
������

��� �

��� �����������

��� ������

��

� ������

��� ��

� ������

������ ����

��
 

���
�� ����

��� ��� ������
��� ��

� ������

�

�� ��

!"#

�

Fig. 1. An example of a free-flow architecture.

feed their activity down through the hierarchy until the activity arrives at the
action nodes (i.e. the leaf nodes of the tree) where a winner-takes-it-all process
decides which action is selected. The main advantages of free-flow architectures
are:

– Stimuli can be added to the relevant nodes avoiding the “sensory bottle-
neck” problem. In a hierarchical decision structure, to make correct initial
decisions, the top level has to process most of the sensory information rele-
vant to the lower layers. A free-flow architecture does not “shut down” parts
of the decision structure when selecting an action.

– Decisions are made only at the level of the action nodes; as such all infor-
mation available to the agent is taken into account to select actions.

– Since all information is processed in parallel the agent can take different
preferences into consideration simultaneously. E.g. consider an agent that
moves to a spotted object but is faced with a neighboring threat. If the
agent is only able to take into account one preference at a time it will move
straight to the spotted object or move away from the threat. With a free-flow
tree the agent avoids the threat while it keeps moving towards the desired
object, i.e. the agent likely moves around the threat towards a spotted object.

Fig. 1 depicts a free-flow tree of the action selection of a simple robot. This
robot lives in a grid world where it has to collect objects and bring them to a
destination. The robot is supplied with a battery that provides energy to work.
The robot has to maintain its battery, i.e. when the energy level of the battery
falls below a critical value the robot has to recharge the battery at a charge
station. The left part of the depicted tree represents the functionality for the
robot to search, collect and deliver objects. On the right, functionality to main-
tain the battery is depicted. The System node feeds its activity to the Work
node and the Maintain node. The Work node combines the received activity



108 Danny Weyns, Elke Steegmans, and Tom Holvoet

with the activity from the energy level stimulus. The “+” symbol indicates that
the received activity is summed up. The negative activity of the energy level
stimulus indicates that little energy remains for the robot. As such the resulting
activity in the Work node is almost zero. The Maintain node on the other hand
combines the activity of the System node with the positive activity of the energy
need stimulus, resulting in a strong positive activity. This activity is fed to the
ToStation and the Charging nodes. The ToStation node combines the received
activity with the activity level of the not at station stimulus (the “*” symbol
indicates they are multiplied). In a similar way the Charging node combines the
received activity with the activity level of the at station stimulus. This latter is
a binary stimulus, i.e. when the robot is at the charge station its value is posi-
tive (true), otherwise it is negative (false). The ToStation node feeds its positive
activity towards the action nodes it is connected with. Each moving direction
receives an amount of activity proportional to the value of the gradient stimulus
for that particular direction. gradient is a multi-directional stimulus. The value
of this stimulus (for each direction) is based on the sensed value of the gradient
field that is transmitted by the charge station. In a similar way, the Charging
node and the child nodes of the Work node (Explore, Collect and Deliver) feed
their activity to the action nodes they are connected with. Action nodes that
receive activity from different nodes combine that activity according to a specific
function. The action nodes for moving actions use a function fm to calculate the
final activity level. A possibility definition of this function is the following:

AmoveD = max [(ANode + AstimulusD) ∗ AfreeD]

Herein is AmoveD the activity collected by a move action, D denotes one of
the four possible directions, i.e. D ∈ {N, E, S, W}. ANode denotes the activity
received from a node. The move actions are connected to four nodes: Node ∈
{Explore,Collect,Deliver,T oStation}. With each node a particular stimulus is
associated. stimulus∈{random direction, see object, see destination, gradient}
are all multi-directional stimuli with a corresponding value for each moving di-
rection. Finally, free is a multi-directional binary stimulus that indicates whether
the way to a particular direction is free for the robot to move to.

When all action nodes have collected their activity the node with the highest
activity level is selected for execution. In the example, the ToStation node is
clearly dominant over the other nodes connected to actions nodes. Currently
the East and West directions are blocked (see the free stimulus), leaving the
robot two possibilities to move towards the charge station: via North or via
South. According to the values of the guiding gradient field, the robot will move
northwards, see Fig. 1.

For the simple robot in the example, the free-flow tree is already fairly com-
plex. For a non-trivial agent however, the overall view of the tree quickly becomes
very cluttered. When a change is made in one part of such a tree it becomes
unclear how this affects the other parts. Although free-flow trees are at best
developed with a focus on a particular functionality of the agent, the archi-



Integrating Free-Flow Architectures with Role Models Based on Statecharts 109

tecture itself does not support any structure. From our experiences we learned
that it is unrealistic to assume that software engineers build a complex free-flow
architecture for complex applications, where agents can perform many actions.
For such applications, the architecture quickly becomes unmanageable, it is no
longer possible to have an overall view of the architecture.

2.2 Statechart Models

To develop non-trivial open MASs software engineers require suitable abstrac-
tions for describing and structuring agent behavior. The abstraction of a role
obviously is essential in this respect. Roles are quite general as core abstractions
for designing MASs, see e.g. Gaia [9], MESSAGE [8] and also [15][25]. Similar to
the definition in [35] we regard a role as an agent’s functionality in the context
of an organization. Roles provide the building blocks for the social organization
of a MAS. Agents are linked to other agents by the roles they play in the orga-
nization. The links can be explicit, e.g. a set of agents that pass objects along a
chain; or implicit, e.g. in an ant colony a dynamic balance exists between ants
that supply the colony with food and ants that maintain the nest.

A number of researchers have proposed state-based approaches to model
agent behavior. In SmartAgent [17], UML state machine models are used to
model JADE behaviors. [24] points to the strength of statecharts as a constraint
mechanism for agent interaction protocols. These and other related work use
statecharts to model agent behavior with a focus on inter-agent communication.
[18] and [2] are examples in which state machines are used to model reactive
behavior. In previous work, we proposed statecharts as a formalism to describe
agent behavior, see [19]. In that work we used a statechart formalism to model
the behavior of situated agents in terms of roles, with a focus on reusing roles in
different applications. Therefore, we extended the standard statecharts notation
with new concepts, such as pre-action and post-action. Fig. 2 depicts an example
of a role model for a scouting agent.

Although a statechart specification of agent behavior is simple to design and
to understand, it is typically a static, rigid model in that it leaves little room
for adaptive and explorative behavior. Practical experience with the statechart
formalism brought up a number of considerations:

– Action sequences are defined statically. The designer has to enumerate all
possible state transitions that can occur, or at least he has to distinguish
between discrete categories of environmental situations and corresponding
behavioral acts.

– The statechart formalism as developed is in principle only applicable for
deterministic agent systems. MASs however, are typically non-deterministic.
It is possible to integrate non-determinism in the modeling language, however
this would complicate the models significantly. As a result, the agents in
the applications performed behavior that was sometime unable to adapt to
different environmental situations.



110 Danny Weyns, Elke Steegmans, and Tom Holvoet

unborn alive dead

new@
node

got a node
view

done@
node

observing

working

born die

observe
node

drop
pheromone

observe
neighbors

clone

walk

count
 the

operation
time

drop operation
time

filter
neighbors

on next
operation

calculate
the

number
of clones

process
finished

Fig. 2. An example of a statechart model.

– A final remark relates to the set-up of the statechart modeling language.
Although different concerns of the agent’s behavior can be modelled sepa-
rately (in terms of building blocks provided by the statechart formalism),
different concerns are mixed into one overall diagram. In the proposed stat-
echart formalism no distinction is made between perceptions and actions
in the environment, both are modeled as transitions. There is however a
fundamental difference between these two activities. For a non-trivial agent
merging the two in one model leads to poorly organized models. Another
experience relates to the integration of coordination. In [20] we developed
inter-agent coordination as a set of pre- and post-actions. The integration of
the coordination in the agent’s behavior model works well for rather simple
agents, however for more complex cases, the models quickly become less sur-
veyable. The underlying problem is that the integration of different concerns
should be described separately of the concern descriptions themselves.

Other controlled techniques for engineering agent behavior have been applied
such as Petri Nets, see e.g. [23][10][7], however the relationship between these
techniques and our statechart modeling approach is out of the scope of this
paper.

2.3 Combining the Best of Two Worlds

Agents must be able to adapt their behavior to deal with dynamism and change.
Free-flow architectures enable adaptive behavior. However developing free-flow
trees for non-trivial agents is a quasi-impossible task for software engineers. Ar-
chitectures quickly becomes too complex to be manageable. To tackle complexity



Integrating Free-Flow Architectures with Role Models Based on Statecharts 111

suitable abstractions are needed to describe and structure the behavior of the
agent. The role statechart modeling language offers a means to this. To combine
the best of the two:

1. We extended the free-flow architecture with the abstractions of a role and a
situated commitment.

2. We revised the statechart modeling language, i.e. we refrain from considering
a statechart description of agent behavior as a kind of sequence chart, but
use statecharts to describe role composition and to structure related actions
in roles only.

As such statecharts structure the agent behavior reflected in the structure of the
free-flow tree. Statecharts also provide an easy way to communicate description
of the agent behavior at a higher level of abstraction.

3 Bringing the Statechart Models
and Free-Flow Architectures Together

In this section we discuss the combined adoption of statecharts with the ex-
tended free-flow architecture. We illustrate our explanation with an example
application. We start with a brief introduction of the example application. Next
we describe the behavior of the agents with the statechart modeling language.
Then we illustrate how the statechart models facilitate the structuring of a free-
flow architecture.

3.1 Example Application

In a current research project with an industrial partner we investigate how the
paradigm of situated MASs can be applied to the control of logistic machines.
Traditional systems use one central controller that instructs the machines to per-
form jobs based on a calculated plan. The centralized approach lacks flexibility
to deal with the increasing demands of adaptability and scalability. By looking
at machines as agents of a situated MASs, we aim to convert the centralized
control system into a self-managing distributed system, improving adaptability
and scalability.

For the case in this paper we limit the discussion to the Automated Guided
Vehicle (AGV) transport system. The AGV transport system is typically one, yet
a crucial part, of an integral logistic warehouse system. AGV’s are unmanned
vehicles that transport goods from one place to another. AGV’s can supply
basic/raw materials to a production department, serve as a link between different
production lines or store goods between different processes and connect to the
dispatch area.

In a central controlled approach, the functionality of the individual AGV’s
is rather limited. Each AGV is provided with basic infrastructure to ensure
safety, and a typical AGV is able to perform the pick and drop functionality



112 Danny Weyns, Elke Steegmans, and Tom Holvoet

autonomously. The distribution of jobs, the routing through the warehouse, col-
lision avoidance at junctions etc. are all handled by the central control system.

In this section we look at a number of basic roles for an AGV to deal with
jobs autonomously. We take into account functionality for the AGV to find a
job, to handle a job, to park when no more work has to be done and finally to
ensure that the battery is charged in time.

3.2 AGV’s Role Modeling

We distinguish two diagrams and one schema for role modeling. The role dia-
gram structures the agent roles and their interdependencies. The action diagrams
structure the related actions within the roles. Finally the commitment schema
defines the activation and deactivation conditions for a situated commitment.

Role Diagram. The roles and their interdependencies that describe the behav-
ior of an agent are described in a role diagram. Fig. 3 depicts the role diagram
of the AGV’s. A role diagram consists of a hierarchy of roles of which some are
related through situated commitments.

������ ������	 
������

���	���

��	��� ����

�������

��	���	���

���	������

����

Fig. 3. The role diagram of the AGV.

A role is represented by a white oval and the name of the role is written
in the oval. A role can consist of a number of sub-roles, and sub-roles of sub-
sub-roles etc. As such the role diagram is typically composed as a hierarchy of
roles. Roles at the bottom of the hierarchy are called basic roles. The first role
of the AGV is the Active role consisting of two sub-roles, Search, i.e. a basic
role, and Work. The Work role is further split up in two sub-roles, Collect and
Deliver, two basic roles. In the Search role the AGV searches for a new job.
Once the AGV finds a job it will Collect the good associated with the job and
subsequently Deliver the good at the requested destination. Besides the Active
role, the AGV has the Maintain role and the Park role. The AGV executes the



Integrating Free-Flow Architectures with Role Models Based on Statecharts 113

Park role when it has no more work to do. In this role the AGV simply moves
to the nearest parking place. The Maintain role ensures that the AGV keeps its
battery loaded. When the energy level crosses a critical value, the AGV finishes
its current job and moves towards the nearest charging station. To find its way
to the charging station an AGV uses an internal gradient map. At regular time
intervals all charging stations broadcast their current status. AGV’s use these
messages to keep their gradient maps up to date.

A situated commitment is represented by a rounded rectangle and the name
of the situated commitment is written in the rectangle. A situated commitment
is defined as a relationship between one role, i.e. the goal role, and a non-empty
set of other roles, i.e. the source roles of the agent. When a situated commit-
ment is activated the behavior of the agent tends to prefer the goal role of the
commitment over the source roles. Favoring the goal role results in more con-
sistent behavior of the agent towards the commitment. An agent can commit
to itself, e.g. when it has to fulfill a vital task. However, in a collaboration,
agents commit relatively to one another, typically through communication. [34]
discusses mutual commitments between collaborating agents in detail. In Fig. 3,
the Maintaining commitment ensures that the AGV maintains its energy level.
Since energy is vital for the AGV to function, all roles (except the Maintain role
of course) are connected as source roles to the Maintaining commitment. The
Activation commitment is activated when the AGV starts to work. This com-
mitment ensures that the AGV remains active once it decides to start working.
Working is an example of a commitment in a collaboration. The commitment is
activated once the AGV accepts a job. This commitment ensures that the AGV
acts consistently with the job in progress. As soon as the job is finished, the
Working commitment is deactivated.

Action Diagram. Action diagrams are defined for the basic roles. An action
diagram describes the structure of the related actions for a basic role. In Fig. 4
the action diagram of the Maintain role of the AGV is depicted.

��
������� ���	
��


���	
��

�����

��	
�

��
�������

���	
� �����
�

�� ��	
�

��������

���	
� �����
�

��	
��

�

��������

������

	������

���
�� �������

Fig. 4. Action diagram of the Maintain role.



114 Danny Weyns, Elke Steegmans, and Tom Holvoet

A state is represented by a white circle in the diagram. In Fig. 4 three states
can be distinguished: ToStation, Charging and Charged. Besides regular states
there are two special states. The default state, represented by a black circle,
indicates the typical start state of the action sequence of the modelled role. On
the other hand, there is the final state, represented by a circle with an F written
in it, that indicates the typical end state of the action sequence of the modelled
role. The default and final state are connected to the corresponding regular state
via an arrow.

A transition connects two states with each other. A transition expresses a
change of state due to the execution of an action. An action, which is added
to a transition, models the functionality that must be performed by an agent
to achieve a new desired state from an old state. An action is represented by a
white rectangle in which the name of the action is written and which is attached
to a transition. To fulfill the Maintain role the AGV has to perform four differ-
ent actions: follow gradient to find the charge station, and connect, charge and
disconnect to charge the battery (see Fig. 4). The execution of an action may be
constrained by a precondition. Only when the condition is satisfied the attached
action can be executed. A precondition is represented by a gray rectangle in
which the precondition is written and which is attached to an action. In Fig. 4
the gray rectangle with not at station denotes that the AGV keeps following
the gradient until it reaches the charge station. At that time the precondition
at station becomes true and that enables the AGV to connect to the charge sta-
tion. As long as the condition energy level < charged level holds, the AGV keeps
charging. Finally when condition energy level = charged level becomes true, the
AGV disconnects and that finishes the Maintain role.

Commitment Schema. For each situated commitment a commitment schema
is defined that describes the source roles and the goal role of the commitment
as well as its activation and deactivation conditions. Activation and deactiva-
tion conditions are boolean expressions based on the internal state of the agent,
perceived information or information derived from received messages. Activat-
ing situated commitments through communication enable situated agents to
setup explicit collaborations in which each participant plays a specific role. In
this paper we do not elaborate on this latter scenario, for a detailed discus-
sion we refer to [34]. Fig. 5 depicts the commitment schema for the situated
commitment Maintaining. This commitment schema expresses that when the
energy level of the AGV falls below the threshold to charge the situated commit-
ment Maintaining is activated. This will urge the AGV to execute the Maintain
role over the Active and Park roles. Once the battery is recharged the condition
energy level = charged becomes true and that deactivates the Maintaining
commitment.

3.3 Free-Flow Architecture

The free-flow tree describes the behavior of the agent in detail. The high-level
diagrams for roles and situated commitments described in the previous section



Integrating Free-Flow Architectures with Role Models Based on Statecharts 115

�������� ��		��	�
�� ���
���
�


������ ������ ������� ����

���� ����� ���
���


���������
 ��
�����
� �
��� ����� � �� �����

�����������
 ��
�����
� �
��� ����� � ������

Fig. 5. The commitment schema for the situated commitment Maintaining.

�������

��	�
�

���
��
����	

����

������ ����

��	�
�	���

����	������

����	���

Fig. 6. Skeleton structure of the free-flow tree according to the role diagram of Fig. 3.

serve as a basis for structuring the free-flow tree. The role structure as described
in the role diagram (see Fig. 3) is reflected in the skeleton structure of the
tree. Fig. 6 depicts the skeleton structure for the AGV example. Roles match
to trees in the free-flow tree, sub-roles to sub-trees etc. Situated commitments
on the other hand corresponds to connectors that connect the source roles of
the situated commitment with the goal role. When a situated commitment is
activated extra activity is injected in the goal role relative to the activity levels
of the source roles. Details are discussed shortly.

The action diagrams and commitment schemas enable to refine the skeleton
tree. Fig. 7 depicts the refined sub-tree for the Maintain role and the Maintaining
commitment.

States in the action diagram correspond to activity nodes in the tree. Pre-
conditions correspond to binary stimuli connected to the corresponding nodes.
Examples are the stimuli at station or connected (compare Fig. 4 and Fig. 7).
Each action in the action diagram of the basic role corresponds with an action
node in the tree. A number of other non-binary stimuli in the tree represent data
in the action diagram that determines the action selection. An example is the
stimulus gradient that guides the AGV to move towards the station.

The activation and deactivation conditions of the situated commitments,
described in the commitment schema, correspond to the conditions associated



116 Danny Weyns, Elke Steegmans, and Tom Holvoet

��������

��������� �	�
����

���� �
������ �	�
��

�
������

���
�� ����

�� �������
��� �� �������

������������ ���������

������� ����������

������

��
�

�����������

���
�� ��� � �	�
���

���
�� ��� � �� �	�
��

Fig. 7. Refined Maintain role and Maintaining commitment.

with the corresponding connectors in the free-flow activity tree. Fig. 7 illustrates
this for the Maintaining commitment.

3.4 The Complete Free-Flow Tree

The complete free-flow contains all detailed information needed for action selec-
tion. Fig. 8 depicts the completed subtree of the Maintain role and the situated
commitment Maintaining. The abstract action node follow gradient in Fig. 7 is
refined towards the different moving actions of the AGV. The stimulus gradient
is split up in a multi-directional stimulus. Each segment represents the tendency
(based on the value of the gradient field) of the AGV to move in a particular
direction. Besides, a number of extra stimuli represent data that influences the
action selection. An example is the multi-directional stimulus free that denotes
in which direction the AGV is able to drive.

Stimuli needed to verify the activation and deactivation condition are con-
nected to the situated commitment. The Maintaining commitment is activated
when the value of the energy level crosses the threshold to charge. The com-
mitment then calculates the extra activity to inject in the Maintain role. For
the Maintaining commitment this extra activity is calculated as the sum (“+”
symbol) of the activity level of the Active and Park role, i.e. the activity levels
of the top nodes of these roles. As soon as the battery level reaches the thresh-
old value charged the Maintaining commitment is deactivated and it then no
longer injects extra activity in the Maintain role.



Integrating Free-Flow Architectures with Role Models Based on Statecharts 117

������

���	


�������

�������
��������


����������

����� ������

����

��������

������ ����

�� ������

������ ����� � �������

������ ����� � � ������

������ �����

������ �����

�� �� ������

����������� ��������

������ �������������
���	

����
�����

����
����

���������� �������� �����

�������� ��������

�������

��

�

�

�� ��

Fig. 8. The complete Maintain role and Maintaining commitment.

4 Discussion

This paper introduces a practical approach to combine adaptiveness of agents
and MAS with rigid/controlled engineering. The approach enables engineers to
manage the complexity of designing free-flow architectures. The proposed role
abstraction allows to represent local agent activity. Roles however, not only
“chop up” the behavior of the agent into smaller logical parts, they also intro-
duce a means to enable explicit collaboration between situated agents, reified in
situated commitments. In the AGV case e.g., when an Searching AGV accepts
a job, it activates the Working commitment and that will bias the action selec-
tion of the AGV towards the Work role. As such, the AGV will act consistently
towards its commitment in the collaboration, i.e. its agreement to perform the
job in progress.

The focus of this paper is mainly on the integration of free-flow architectures
with role modeling based on statecharts. In ongoing work [30] we described a
design process for adaptive agent behavior as part of a multi-agent oriented
methodology. This process integrates the engineering approach for behavior de-
sign we have proposed in this paper and rigorously describes the subsequent
design steps. At the highest level, roles and their interdependencies are caught
into a high level model described making use of the statechart modeling lan-
guage. This model is used as a basis for designing a skeleton of the free-flow



118 Danny Weyns, Elke Steegmans, and Tom Holvoet

architecture. Next the skeleton is refined such that it contains all details needed
for action selection. Finally, the free-flow tree is mapped onto a class diagram
that serves as a basis for the implementation of the agent’s behavior.

Several agent-oriented methodologies acknowledge the abstraction of a role
as a core abstraction for designing multi-agent systems, examples are Gaia [36],
MESSAGE [8] or SODA [26]. In these methodologies the design process is de-
scribed independent of a particular multi-agent architecture, for a recent dis-
cussion see Chapter 4 of [21]. When it comes to building a concrete multi-agent
application however, the gap between the high level design models and the cho-
sen multi-agent architecture that is used to implement the multi-agent system
has to be filled. We aim to bridge this gap enabling designers to build concrete
multi-agent systems applications. In particular, the design process described in
[30] that builds upon the software engineering approach for behavior design pro-
posed in this paper, enables a designer to incrementally refine the model of the
agent behavior from a high level role model toward a concrete agent architecture
for adaptive behavior, in casu a free-flow architecture.

5 Conclusion

Engineering software for non-trivial open multi-agent systems is a challenging
task. In this paper we proposed a software engineering approach that combines
free-flow architectures for adaptive behavior with a statechart modeling lan-
guage that offers suitable abstractions. Free-flow trees are extended with the
abstraction of a role and a situated commitment. The earlier developed stat-
echart formalism is revised and adapted from a rigid description of action se-
quences towards a description of the role composition of the agent behavior and
a structuring of the related actions within the roles. In the paper we illustrated
the approach for a case study on controlling a collection of automated guided
vehicles.

Currently we are working on a design process for adaptive agent behavior
that integrates the engineering approach for behavior design we have proposed
in this paper. In future work we intend to extend the design process towards
other concerns that need to be engineered in situated MASs such as agent com-
munication and coordination, and the design of the environment of the MAS.

Acknowledgement

The research results presented in this paper have been obtained in the Con-
certed Research Action on Agents for Coordination and Control - AgCo2 project
(K.U.Leuven) and in the Egemin Modular Controls Concept - EMC2 project
(Flemish Institute for the Advancement of Scientific-technological Research in
the Industry - IWT).



Integrating Free-Flow Architectures with Role Models Based on Statecharts 119

References

1. Babaoglu, O., Meling, H., Montresoret, H.: Anthill: A Framework for the Devel-
opment of Agent-Based Peer-to-Peer Systems. International Conference on Dis-
tributed Computing Systems, Vienna, Austria (2002)

2. Balch, T., Arkin, R.C.: Communication in Reactive Multiagent Robotic Systems.
Autonomous Robots 1(1) (1995)

3. Bonabeau, E., Henaux, F., Guerin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Rout-
ing in Telecommunications Networks with Ant-Like Agents. IATA (1998)

4. Brooks, R.: Intelligence without representation. Artificial Intelligence Journal,
Vol. 47 (1991)

5. Brooks, R.: Intelligence Without Reason, MIT AI Lab Memo No. 1293 (1991)
6. Bryson, J.: Intelligence by Design, Principles of Modularity and Coordination for

Engineering Complex Adaptive Agents. PhD Dissertation, MIT (2001)
7. Cabac, L., Moldt, D.: Formal Semantics for AUML Agent Interaction Protocol

Diagrams. 5th International Workshop on Agent-Oriented Software Engineering,
AOSE at AAMAS, New York (2004)

8. Caire, G., Leal, F., Chainho, P., et al.: Agent Oriented Analysis Using MES-
SAGE/UML. Agent-Oriented Software-Engineering II, Lecture Notes in Computer
Science, Vol. 2222, Berlin Heidelberg New York, Springer (2001)

9. Cernuzzi, L., Juanand, T., Sterling, L., Zambonelli, F.: The Gaia Methodology:
Basic Concepts and Extensions. Methodologies and Software Engineering for Agent
Systems, Kluwer (2004)

10. Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Modeling agent conversations
with colored petri nets. Workshop on Specifying and Implementing Conversation
Policies, Seattle, Washington (1999)

11. Deneubourg, J.L., Aron, A., Goss, S., Pasteels, J.M., Duerinck, G.: Random Be-
havior, Amplification Processes and Number of Participants: How they Contribute
to the Foraging Properties of Ants. Physics 22(D) (1986)

12. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation 1(1) (1997)

13. Drogoul, A., Ferber, J.: Multi-Agent Simulation as a Tool for Modeling Societies:
Application to Social Differentiation in Ant Colonies. Decentralized A.I. 4, Elsevier
North-Holland (1992)

14. Ferber, J.: An Introduction to Distributed Artificial Intelligence. Addison-Wesley
(1999)

15. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Orga-
nizational View on Multi-Agent Systems. 3th International Workshop on Agent
Oriented Software Engineering, AOSE, Melbourne, Australia (2003)

16. Genesereth, M.R., Nilsson, N.: Logical Foundations of Artificial Intelligence, Mor-
gan Kaufmanns (1997)

17. Griss, M.L., Fonseca, S., Cowan, D., Kessler, R.: Using UML State Machine Models
for More Precise and Flexible JADE Agent Behaviors. 2th International Workshop
on Agent Oriented Software Engineering, AOSE, Bologna, Italy (2002)

18. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8(3) (1987)

19. Holvoet, T., Steegmans, E.: Application-Specific Reuse of Agent Roles. Software
Engineering for Large-Scale Multi-Agent Systems, Lecture Notes in Computer Sci-
ence, Vol. 2603, Berlin Heidelberg New York, Springer (2003)



120 Danny Weyns, Elke Steegmans, and Tom Holvoet

20. Janssens, N., Steegmans, E., Holvoet, T., Verbaeten, P.: An Agent Design Method
Promoting Separation Between Computation and Coordination. Symposium on
Applied Computing SAC, Nicosia, Cyprus (2004)

21. Luck, M., Ashri, R., D’Inverno, M.: Agent-Based Software Development. Artech
House (2004)

22. Maes, P.: Modeling Adaptive Autonomous Agents. Artificial Life Journal 1(1-2)
(1994)

23. Ferber, J., Magnin, L.: Conception de systemes multi-agents par composants mod-
ulaires et reseaux de Petri. Actes des journees du PRC-IA, Montpellier (1994)

24. Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for Agents. AOIS Workshop
at AAAI, www.auml.org (2000)

25. Odell, J., Parunak, H.V.D., Fleisher, M.: The Role of Roles. Journal of Object
Technology 2(1) (2003) http://www.jot.fm/

26. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design
of Agent-Based Systems. Agent-Oriented Software Engineering, Lecture Notes in
Computer Science, Vol. 1957, Berlin Heodelberg New York, Springer (2001)

27. Parunak, H.V.D.: Go to the Ant: Engineering Principles from Natural Agent Sys-
tems. Annals of Operations Research 75 (1997)

28. Parunak, H.V.D.: The AARIA Agent Architecture: From Manufacturing Require-
ments to Agent-Based System Design. Integrated Computer-Aided Engineering
8(1) (2001)

29. Rosenblatt, K., Payton, D.: A fine grained alternative to the subsumbtion architec-
ture for mobile robot control. International Joint Conference on Neural Networks,
IEEE (1989)

30. Steegmans, E., Weyns, D., Holvoet, T., Berbers, Y.: Designing Roles for Situ-
ated Agents. 5th International Workshop on Agent-Oriented Software Engineering,
AOSE at AAMAS, New York (2004)

31. Steels, L.: Cooperation between distributed agents through self-organization. Pro-
ceedings of the First European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, Elsevier Science Publishers, Holland (1990)

32. Tyrrell, T.: Computational Mechanisms for Action Selection. Ph.D Thesis, Uni-
versity of Edinburgh (1993)

33. Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-agent Systems. Formal
Approaches for Multi-Agent Systems, Special Issue of Fundamenta Informaticae,
63(2–3) (2004)

34. Weyns, D., Steegmans, E., Holvoet, T.: Protocol Based Communication for Sit-
uated Multi-agent Systems. 3th International Joint Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS, New York (2004)

35. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3)
(2000)

36. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems:
The Gaia Methodology. ACM Transactions on Software Engineering and Method-
ology 12(3) (2003)


	1 Introduction
	2 Free-Flow Architectures and Statechart Models
	2.1 Free-Flow Architecture for Adaptive Behavior
	2.2 Statechart Models
	2.3 Combining the Best of Two Worlds

	3 Bringing the Statechart Models and Free-Flow Architectures Together
	3.1 Example Application
	3.2 AGV’s Role Modeling
	3.3 Free-Flow Architecture
	3.4 The Complete Free-Flow Tree

	4 Discussion
	5 Conclusion
	References

