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ABSTRACT
Egemin N.V. is a Belgian manufacturer of Automatic Guided
Vehicles –named E’GVs– and control software for automat-
ing logistics services in warehouses and manufactories using
E’GVs. In a joint R&D project, Egemin and the AgentWise
research group are developing an innovative version of the
E’GVs control system aimed to cope with new and future
system requirements such as flexibility and openness.

In this project, we exploit principles and mechanisms known
from situated multi-agent systems for modelling and imple-
menting a decentralized control system. Instead of a central-
istic approach, where one computer system is in charge of
numerous complex and time-consuming tasks (such as rout-
ing, collision avoidance, deadlock avoidance, etc.), we aim to
provide the E’GVs with a considerable amount of autonomy.
This allows to obtain a system that is far more flexible than
the current software – the E’GVs adapt themselves to the
current situation in their direct vicinity, order assignment is
dynamic, the system can cope with E’GVs leaving the sys-
tem (e.g. for maintenance) or adding new E’GVs, and so on.

In this paper, we describe the architecture that is em-
ployed for implementing the control of the E’GV system.
The implementation of the control software seamlessly inte-
grates with E’nsor, the low-level vehicle control system. We
illustrate a concrete control scenario in which two E’GVs
coordinate their behavior to avoid collisions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; D.2.11 [Software Engineering]: Software Archi-
tectures

General Terms
Design
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1. INTRODUCTION
In March 2004 the AgentWise research group started a

joint R&D project with Egemin, a Belgian manufacturer of
automated logistic service systems for warehouses and man-
ufactories. Egemin builds automatic guided vehicles, called
E’GVs, and deploys and maintains complete installations
of multiple E’GVs (and other logistic machines) for their
clients, see Fig. 1. This project, called EMC2 (Egemin
Modular Control Concepts), envisions a radical redesign of
the current architecture of the control software for E’GV
installations. Traditionally, E’GVs in a factory are directly

Figure 1: An E’GV at work in a cheese factory.

controlled by a central server. E’GVs have no autonomy:
the server plans the schedule for the system as a whole,
dispatches commands to the E’GVs and continually polls
their status. This system architecture has successfully been
deployed in numerous practical installations. The central-
ized server architecture has two main benefits. The control
software can be customized easily to the needs of a particu-
lar project, since the server is a central configuration point.
This allows for specific per-project optimizations. A second
benefit is that the system is deterministic and predictable.

However, the evolution of the market put forward new
requirements for E’GV transportation systems. Customers
request for flexibility of the transportation systems, E’GVs
should adapt their behavior with changing circumstances.
E’GVs should be able to exploit opportunities, anticipate
possible difficulties, and cope with particular situations. The
system should also be able to deal with E’GVs leaving the



system, e.g. for maintenance, or new E’GVs entering the
system.

In the EMC2 project, we are investigating the feasibility
of a decentralized architecture, using concepts from situ-

ated multi-agent systems (situated MAS). In this approach,
E’GVs are autonomous agents that cooperate to ensure the
functionality of the system.

Decentralized control of automated warehouse transporta-
tion systems is an active area of research. In [3], Ong gives
an extensive overview of decentralized agent-based manufac-
turing control and compares the pros and cons of centralized
versus decentralized control. According to Ong, the advan-
tages of decentralized control are: (1) it is more economical
w.r.t. required processing power, and (2) it is more reliable.
Disadvantages of decentralization are: (1) performance of
the system may be affected by the communication links be-
tween nodes, (2) while the distributed approach is designed
to cope with disturbances, there is, in general, a trade-off
between its performance and the reactivity of the system
to disturbances, and (3) myopic decision may occur due to
the lack of global information. Examples of other recent de-
centralized approaches are [4] that discusses a decentralized
cognitive planning approach for collision-free movements of
vehicles, and [1] that discusses a behavior-based approach
for decentralized control of automatic guided vehicles. How-
ever, both approaches are validated only in simulations un-
der a number of simplifying assumptions. In general, appli-
cations of decentralized control of automated transportation
systems in real industrial settings are rarely discussed in lit-
erature.

Besides the advantages of decentralization listed by Ong,
we believe that in principle, a MAS-based E’GV transporta-
tion system also becomes more flexible. Since each E’GV
acts locally, it can better exploit opportunities and adapt
its behavior under changing circumstances. On the other
hand, the benefits of a decentralized approach do not come
for free. Since an all knowing entity in the system does
not exist, inter-E’GV coordination becomes complex. Band-
width must be considered carefully to ensure that the com-
munication network does not become a bottleneck. Another
important consequence of decentralization, not mentioned
by Ong, is an increased complexity of debugging. The gen-
eral challenge in the EMC2 project is to support the current
functionality, while aiming to improve flexibility, and keep-
ing in mind the benefits of the centralized approach.

At this point in the project, we have built a detailed agent
architecture, describing the various entities in our system.
An interesting aspect of this architecture is the virtual en-
vironment: many techniques and mechanisms in situated
MAS rely on a shared environment. However, in this project
the E’GVs do not have access to such a shared environment.
To solve this problem, we introduced a virtual environment,
which the E’GV agents can use to exchange information and
coordinate their behavior.

Eight months after the start of the project, we achieved
our first milestone, allowing one real E’GV to drive around
in an experimental setup with an agent at the wheel. Re-
cently, we added collision avoidance, allowing two E’GVs
to drive around in an industrial test setup, and allowing
any number of E’GVs to drive around in a simulated test
setup. Many challenges lie ahead, of which the most im-
portant are deadlock avoidance and order assignment. This
paper presents the first promising results of our approach in
this challenging real-world domain.

This paper is structured as follows. In section 2, we in-
troduce the E’GV application. We give a brief overview of
the traditional approach and point to new quality require-
ments. Section 3 introduces a new decentralized approach
that models an E’GV transportation system as a situated
MAS. In section 4, we zoom in on the software architecture
of the E’GV transportation systems, and illustrate a con-
crete scenario in which two E’GVs coordinate their behavior
to avoid collisions. Finally, in section 5 we draw conclusions.

2. E’GV TRANSPORTATION SYSTEM
In this section, we introduce the E’GV application and list

the required functionalities. We give a high-level overview of
the traditional centralized solution and discuss new quality
requirements for E’GV transportation systems.

2.1 The E’GV Application
An E’GV transportation system uses unmanned vehicles

that are custom made to be able to transport various kinds
of loads, from basic or raw materials to completed prod-
ucts. Typical applications are repackaging and distributing
incoming goods to various branches, or distributing man-
ufactured products to storage locations. An E’GV uses a
battery as its energy source. E’GVs can move through a
warehouse guided by a laser navigation system, or follow-
ing a physical path on the factory floor that is marked by
magnets or cables that are fixed in the floor.

The main functionality the system should perform is han-
dling transports, i.e. moving loads from one place to another.
Transports are generated by client systems. Client systems
are typically business management programs, but can also
be particular machines, employees or service operators. A
transport is composed out of multiple jobs: a job is a simple
task that can be assigned to an E’GV. For example, picking
up a load is a pick job, dropping it is a drop job and moving
over a specific distance is a move job. A transport typically
starts with a pick job, followed by a series of move jobs and
ends with a drop job.

In order to execute transports, the main functionalities
the system has to perform are:

1. Transport assignment: transports are generated by
client systems and have to be assigned to E’GVs that
can execute them.

2. Routing: E’GVs must route efficiently through the lay-
out of the warehouse when executing their transports.

3. Gathering traffic information: although the layout of
the system is static, the best route for the E’GVs in
general is dynamic, and depends on the current con-
ditions in the system. Gathering traffic information
concerns the monitoring of the current traffic status of
the system to adapt the routing of the E’GVs to these
dynamic conditions.

4. Collision avoidance: obviously, E’GVs may not collide.
E’GVs can not cross the same intersection at the same
moment, however, safety measures are also necessary
when E’GVs pass each other on closely located paths.

5. Deadlock avoidance: since E’GVs are relatively con-
strained in their movement (they cannot divert from
their path), the system must ensure that E’GVs do not
find themselves in a deadlock situation.



When an E’GV is idle it can park at a free park location;
however, when the E’GV runs out of energy, it has to charge
its battery at one of the charging stations.

2.2 Traditional Centralistic Approach
Traditionally, vehicles are controlled by one central server,

using wireless communication. The server receives transport
requests from the client systems. According to the incoming
transports, the server plans routes for E’GVs and instructs
E’GVs to perform the jobs. The server continuously polls
the E’GVs about their status. The low-level control of the
E’GVs, in terms of sensors and actuators (staying on track,
turning, determining the current position, reading out the
battery level, etc.) is handled by the E’GV control soft-
ware called E’nsor1. To this end, the layout of the factory
is divided into logical elements: segments and nodes. Each
segment and node is identified by a unique identifier. A
logical segment typically corresponds to a physical part of a
path of three to five meters. E’nsor is able to steer the E’GV
per segment, and the E’GV can stop on every node, possibly
to change direction. E’nsor understands five basic actions:
(1) Move(segment): this instructs E’nsor to drive the E’GV
over the given segment; (2) Pick(segment): instructs E’nsor
to drive the E’GV over the given segment and pick up a
load at the end of it; (3) Drop(segment): the same as pick,
but drops a load the E’GV is carrying; (4) Park(segment):
instructs E’nsor to drive the E’GV over the given segment
and park at the park location at end of the segment; (5)
Charge(segment): instructs E’nsor to drive the E’GV over a
given segment to a battery charging station and start charg-
ing batteries there. When a transport is finished, the server
reports the completion of the transport to the corresponding
client system.

2.3 New quality requirements
The centralized approach has successfully been applied in

numerous practical systems. The main quality properties of
the traditional approach are efficiency, configurability and
predictability. However, the evolution of the market put
forward new requirements for E’GV transportation systems.

Customers request for flexibility of the transportation sys-
tems, E’GVs should adapt their behavior with changing cir-
cumstances. In the traditional approach, the assignment of
transports, the routing of E’GVs and the control of traffic
are all planned by the central server. Although this planning
is efficient, is lacks flexibility. Most of the planning is based
on rigid predefined schedules. Schedules are rules associ-
ated with E’GVs, segments or nodes, e.g. “if an E’GV a has
dropped a load on node x, then that E’GV has to move to
node y to wait for a transport assignment, however if node y

is already occupied by another E’GV b, then E’GV a has to
move to node z to park.” A plan can be changed, however
only under exceptional conditions, e.g. when an E’GV be-
comes defective on the way to a load, the transport can be re-
assigned to another E’GV. Customers have various requests
with respect to flexibility. E’GVs should be able to exploit
opportunities, e.g., when an E’GV is assigned a transport
and moves toward the load, is should be possible for this
E’GV to switch tasks along the way if a more interesting
transport pops up. E’GVs should also be able to anticipate
possible difficulties, e.g., when the battery level of an E’GV
decreases, the E’GV should anticipate this and prefer a zone

1E’nsor r© is an acronym for Egemin Navigation System On
Robot.

near to a charge station. Another desired property is that
E’GVs should be able to cope with particular situations,
e.g., when a truck with loads arrives at the factory, the sys-
tem should be able to reorganized itself smoothly. Finally,
customers expect that the system is able to deal with E’GVs
leaving the system, or new E’GVs entering the system. One
example is maintenance. Currently, maintenance of E’GVs
is based on fixed worst-case rules. This leaves room for im-
provement by allowing E’GVs to decide themselves when
service is necessary. E’GVs can then leave or enter the sys-
tem arbitrary. Note that self-monitoring the physical state
of the machine is out the scope of this work. As another
example, customers expect to be able to intervene during
the execution of the system. In particular situations, cus-
tomers expect to be able to “use” an E’GV to perform a
specific job. In summary, flexibility are openness are high-
ranking quality requirements for today E’GV transportation
systems.

3. A DECENTRALIZED APPROACH
The general idea of the decentralized approach is to put

more autonomy in the E’GVs allowing for more flexibility.
In the decentralized solution, vehicles become autonomous
agents which make decisions based on their current situa-
tion, and who coordinate with other agents to ensure the
system as a whole processes the transports.

In this section we start with a brief introduction of sit-
uated MASs. Then we discuss the decentralized solution
for E’GV transportation systems based on a situated MAS.
We give a overview of the decentralized system architecture
and discuss the responsibilities of the agents and the envi-
ronment in the system. In the following section, we zoom
in on the software architecture of the E’GV agents and the
environment.

3.1 Situated MASs
A situated MAS consists of a (distributed) environment

populated with a set of agents that cooperate to solve a com-
plex problem in a decentralized way. Situated agents have
local access to the environment, i.e. each agent is placed in
a local context which it can perceive and in which it can
act and interact with other agents. A situated agent does
not use long-term planning to decide what action sequence
should be executed, but selects actions on the basis of its
current position, the state of the world it perceives and lim-
ited internal state. Intelligence in a situated MAS originates
from the interactions between the agents, rather than from
their individual capabilities.

In situated MASs, agents and the environment are first-
order abstractions [11]. Situated agents exploit the envi-
ronment to share information and coordinate their actions.
A digital pheromone, for example, is a dynamic structure in
the environment that aggregates with additional pheromone
that is dropped, diffuses in space and evaporates over time.
Agents can use pheromones to dynamically form pheromone
paths to locations of interest. Another example is a gradient
field that propagates through the environment and changes
in strength the further it is propagated. Agents can use a
gradient field as a guiding beacon. Situated MASs have been
applied with success in practical applications over a broad
range of domains. Examples are manufacturing control [5],
supply chains systems [6], and network management [2].

Cooperating agents situated in an environment is a nat-
ural concept to manage complexity in a decentralized man-



ner. Agents encapsulate their own behavior and are able to
adapt to changes in their environment. Well known bene-
fits of situated MAS are efficiency, robustness and flexibility
[13]. These fundamental properties make situated MASs a
suitable approach for building self-managing applications.

3.2 Decentralized Architecture
Since E’GVs are situated in an explicit environment and

interaction is at the core of an E’GV transportation sys-
tem (load manipulation, collision avoidance, etc.) an E’GV
transportation system maps naturally to a situated MAS.
Fig. 2 depicts the system architecture of the decentralized
E’GV transportation system. The situated MAS consists
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Figure 2: Decentralized E’GV system

of two kinds of agents, transport agents and E’GV agents.
Transport agents are located at transport bases. A trans-
port base is a computer system that is charge to manage
the transports of a particular area in the warehouse. To-
gether, the transport bases cover the whole layout of the
warehouse. Distribution of the transport bases has several
advantages, it improves robustness and reduce complexity of
deployment and maintenance of the system. E’GV agents
are located in E’GVs that are situated on the factory floor.
A transport agent represents a transport that needs to be
handled by an E’GV. E’GV agents are responsible for exe-
cuting the assigned transports. We fully reused the E’nsor
software that deals with the low-level control of the E’GVs.
As such, the E’GV agents control the movement and actions
of E’GVs on a fairly high level.

The communication infrastructure provides a wired net-
work that connects client systems and transport bases, and
a wireless network that enables mobile E’GVs to communi-

cate with each other and with transport agents on transport
bases.

E’GVs are situated in a physical environment, however,
this environment is very constrained: E’GVs cannot ma-
nipulate the environment, except by picking and dropping
loads. This restricts how E’GV agents can use their environ-
ment. We introduce a virtual environment for E’GV agents
to live in. This virtual environment offers a medium that
E’GV agents can use to exchange information and coordi-
nate their behavior. Besides, the virtual environment serves
as a suitable abstraction that shields the E’GV agents form
low-level issues, such as the physical control of the E’GV.

3.3 Responsibilities of Agents and Environ-
ment

To describe how we apply a situated MAS to control an
E’GV system, we revisit the five core functionalities of the
application described in section 2.1. We describe the main
responsibilities of the two types of agents in our solution, as
well as the responsibilities of the virtual environment.

Transport Assignment. Transport bases receive trans-
port requests from client systems. For each new transport,
a new transport agent is created that is responsible to assign
the transport to an E’GV and to ensure that the transport
is completed correctly. Each transport has a priority that
depends on the kind of transport, the pending time since
its creation, and the nature of other transports in the sys-
tem. Therefore, transport agents interact with other related
transport agents to determine the correct priority over time.
To assign the transport, we study two different tracks, one
with a flexible version of the Contract-Net protocol and one
with a gradient field based approach. In this latter approach,
each transport agent emits a gradient field in the virtual en-
vironment that attracts interested E’GVs to the pick loca-
tion of the load, while each interested E’GV emits a gradi-
ent field that repels other competitor E’GVs. The gradient
fields guide idle E’GVs toward the most appropriate trans-
ports, ensuring maximal flexibility (e.g., E’GVs take into
account opportunities –new transports that pop up– when
they drive toward a load). Once the transport is assigned,
the awarded E’GV handles the transport. As soon as the
transport is completed, the E’GV agent informs the trans-
port agent, that in its turn informs the client system after
which the transport agent is removed. The transport agent
guarantees the persistence of the transport in the system.
If for some reason the assigned E’GV is unable to complete
the transport, the transport agent may negotiate with other
E’GVs to reassign the order.

Routing. For routing purposes, the virtual environment
has a static map of the paths through the warehouse. This
graph-like map corresponds to the layout used by E’nsor.
To allow agents to find their way through the warehouse ef-
ficiently, the virtual environment provides signs on the map
that the agents use to find their way to a given destination.
These signs are similar to traffic signs by the road that pro-
vide directions to drivers. At each node in the map, a sign
in the virtual environment represents the cost to a given
destination for each outgoing segment. The cost of the path
is the sum of the static costs of the segments in the path.
The cost per segment is based on the average time it takes
for an E’GV to drive over the segment. The agent perceives
the signs in their environment, and uses them to determine



which segment it will take next.

Gathering Traffic Information. Besides the static rout-
ing cost associated with each segment, the cost is also depen-
dent on dynamic factors, such as congestion of a segment.
To warn other agents that certain paths are blocked or have
a long waiting time, agents mark segments with a dynamic
cost on a traffic map in the virtual environment. Agents
mark the traffic map by dropping pheromones on the appli-
cable segments. When E’GVs come in each others neigh-
borhood, the information of the traffic maps is exchanged
and merged to provide up-to-date information to the E’GV
agents. Since pheromones evaporate over time, outdated in-
formation automatically vanishes over time. E’GV agents
take the information on the traffic maps into account when
they decide how to drive through the warehouse.

Collision Avoidance. E’GV agents avoid collisions by
coordinating with other agents through the virtual environ-
ment. E’GV agents mark the path they are going to drive
in their environment using hulls. The hull of an E’GV is
the physical area the E’GV occupies. A series of hulls then
describes the physical area an E’GV occupies along a cer-
tain path. If the area is not marked by other hulls (the
E’GV’s own hulls do not intersect with others), the E’GV
can move along and actually drive over the reserved path.
Afterwards, the E’GV removes the markings in the virtual
environment. We zoom in on collision avoidance in Sect. 4.4.

Deadlock Avoidance. The basic mechanisms for dead-
lock avoidance provided in the traditional approach could
be adopted in the MAS approach. E.g., when an E’GV ap-
proaches a bidirectional path in the layout, the E’GV agent
can lock that path via the hull reservation mechanism, or
when an E’GV reaches an entry point of a critical area where
only a limited number of E’GVs are allowed, the E’GV agent
can instruct the EGV to wait there until the area is accessi-
ble. However, those rules only provide a partial solution to
avoid deadlock. Currently, we study two additional tracks
to deal with deadlock, one with a supervising MAS that
monitors the E’GV movements and provides feedback to the
E’GV agents, and another where E’GVs themselves moni-
tor their neighborhood and exchange information regarding
deadlock threats via the environment.

4. SOFTWARE ARCHITECTURE
This section zooms in on the software architecture of the

E’GV transportation system. We focus on the software ar-
chitecture deployed on E’GVs, the architecture of the trans-
port bases is currently in development. First we give a broad
overview of the software architecture deployed on E’GVs.
Then we explain the decision making of E’GVs. Next we
zoom in on the virtual environment (VE). We explain how
the VE maintains its state in the distributed setting, and we
describe how the VE handles perception, action and com-
munication. Concluding with an example, we describe how
the VE is exploited by the E’GV agents to avoid collisions.

4.1 Software Architecture Deployed on E’GVs
Fig. 3 depicts an overview of the software deployed on

an E’GV. The E’GV agent is shown in the top layer of the
model. The E’GV agent is situated in the virtual environ-
ment, shown as a layer below the top layer. The VE uses the
middleware layer, that is composed of a Message Transfer
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Figure 3: E’GV software architecture

System, the ObjectPlaces middleware [7] and E’nsor. The
middleware layer is connected to the communication infras-
tructure and the actuators and sensors of the E’GV.

In the E’GV application, the only physical infrastructure
available are the E’GVs and the wireless network to allow
communication between the E’GVs. In other words, the VE
is necessarily distributed over the E’GVs. In effect, each
E’GV maintains a local virtual environment, which is a local
manifestation of the VE. Local VEs are merged with other
local VEs opportunistically, as the need arises. In other
words, the virtual environment as a software entity does
not exist; rather, there are as many local VEs as there are
E’GVs. Some of these local VEs may recently be synchro-
nized with each other, while others may not. From the agent
perspective, the VE appears as one entity. To synchronize
state, the VE make use of the ObjectPlaces middleware.

4.2 E’GV agents
We now zoom in on the E’GV agents. The architecture of

the agents is based on the reference architecture for situated
MASs described in [10] and [12]. Fig. 4 depicts an overview
of architecture of the E’GV agents. The agent architecture
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Figure 4: The E’GV agent architecture

is basically modelled as a data repository pattern. Differ-



ent concerns of the agent behavior, i.e., perception, commu-
nication, and decision making, are modelled as a separate
modules of the architecture. The current knowledge module
serves as data repository for the different modules.

Here, we limit the discussion to the agent’s decision mak-
ing module. Fig. 5 depicts the architecture of this module.
The decision making module is responsible to select appro-
priate actions to perform the current transport. Selection of
transports is a responsibility of the communication module

(see Fig.4) of the agent. When the agent becomes idle, it will
either park or charge its battery. The agent’s current knowl-
edge serves as a shared data repository for the sub-modules
of decision making. The action controller coordinates the
selection of an appropriate action. When a job is finished,
the action selector instructs the job selector to select the
next job. After job selection, the action selection module
selects an action at a fairly high level (move, pick, park
etc.). The action selection module is set up as a free-flow
architecture [9]. For a detailed study of the action selection
module, we refer to [8]. The action generation module trans-
forms this action into a concrete preliminary action (e.g.,
move(segment x)). The collision avoidance module is re-
sponsible to lock the trajectory associated with the selected
action. As soon as the trajectory is locked, the collision
avoidance module passes the confirmed action to the virtual
environment. If during the subsequent phases the selected
action can not be executed (e.g., an obstacle is detected
on the trajectory), feedback is sent to the action controller
that will inform the appropriate module to revise its deci-
sion. This feedback loop enables flexible decision making.
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Figure 5: Decision making module

4.3 The Virtual Environment
We now zoom in on the VE. First we explain how the VE

maintains its state across the E’GVs. Then we discuss how
the VE offers abilities for perception, communication and
actions to E’GV agents.

4.3.1 Managing State in the Virtual Environment

An important responsibility of the local VE is to keep its
state synchronized with other local VEs. The state a local
VE maintains is divided into three categories:

1. Static state: this is state that does not change in the
system. A typical example is the layout of the fac-
tory floor, which is needed for the E’GV to navigate.
Static state must never be exchanged between local
VEs, since it is common knowledge and never changes.

2. Observable state: this is state that can be changed in
one local VE, while other local VEs can only observe
the state. An E’GV typically obtains this kind of state
from its sensors directly. An example is an E’GV’s po-
sition. Local VEs are able to observe another E’GV’s
position, but only the local VE on the E’GV itself is
able to read it from its sensor, and change the repre-
sentation of the position in the local VE. No conflict
ever arises between two local VEs concerning observ-
able state.

3. Shared state: this is state that can be modified in two
local VEs concurrently. So, two or more local VEs can
conflict on what is the ”right” state. The traffic map,
containing dynamic costs associated with segments, is
an example of shared state. Several E’GV agents can
modify the cost on the same segment concurrently.
When the local VEs on these E’GVs synchronize, costs
of the local VEs’ traffic maps are mutually exchanged
and conflicts are resolved to generate an up-to-date
traffic map in both local VEs.

In order to manage and maintain this state, the local VE
performs three basic activities. We describe each of these in
turn.

The first activity is synchronizing the state of the local
VE with the E’GV’s sensors. The local VE uses E’nsor to
regularly poll the vehicles’s current status and adjust its own
state appropriately. For example, if the E’GV’s position has
changed, the E’GV’s position in the local VE is updated.

The second activity the VE performs is synchronizing the
state of the local VE with other E’GVs. This is supported by
the ObjectPlaces middleware [7]. ObjectPlaces offers high-
level abstractions to deal with communication in mobile and
ad hoc networks. The local VE uses the middleware by
sharing objects in a tuplespace-like container, called an ob-

jectplace. Every E’GV has one objectplace locally available.
Objects in objectplaces on remote E’GVs can be gathered
using a view. The local VE can define a view by (1) speci-
fying which E’GVs’ objectplaces need to be included in the
view (e.g. the objectplaces of all E’GVs within a specific
range), and (2) specifying what objects need to be included
in the view (e.g. hull objects). Based on these specifications,
the ObjectPlaces middleware then builds a local collection
of objects reflecting the current contents of the objectplaces.
In other words, a local VE shares data with other E’GVs by
putting objects in the local VE’s objectplace. Local VEs
gather data from other E’GVs by defining a view on the
objectplaces of those E’GVs. For example, when an E’GV
agent marks a hull in the environment, this hull is published
in the local VE’s objectplace. When the E’GV agent wants
to perceive hulls in its vicinity, the local VE defines a view
on all hull objects in objectplaces of E’GVs within a cer-
tain physical distance from the E’GV. The middleware then



gathers the hull objects from the objectplaces on the appro-
priate E’GVs. The local VE can then use this view to return
the results to the agent.

The third and last activity is maintaining the state of the
VE locally. This is done by maintain processes in the local
VE itself. An example is the maintenance of pheromones.
A change of local state possibly triggers an update of state
in the local VE’s objectplaces, so that other VEs can syn-
chronize with the new state.

In summary, the virtual environment deals with the man-
agement of state in the distributed system, hiding complex
aspects of distribution from the E’GV agent.

4.3.2 Perceiving, Acting and Communicating
The virtual environment offers abilities for perception, ac-

tion and communication to the E’GV agent, shielding low-
level details from the agent.

Perception in the VE is handled by the perception man-

ager. The perception manager’s task is straightforward:
when the agent requests a percept, for example the cur-
rent positions of neighboring E’GVs, the perception man-
ager queries the necessary information from the local VE
and returns it to the agent.

Actions are handled by the action manager. A first kind
of actions concerns the physical actions of the E’GV, for
example moving over a segment or picking up a load. These
actions are handled fairly easily by passing them on to the
E’nsor control software. A second kind of actions does not
actually have an effect on the behavior of the E’GV, but
manipulates the VE. Marking hulls is one example of this,
which is described in detail in section 4.4. In general, an
action can be handled by passing it down to the Ensor layer,
and/or by changing the local VE.

Communication is handled by the communication man-

ager. Agents can communicate directly with other agents
through the VE. A typical example is an E’GV agent that
communicates with a transport agent. Another example is
an E’GV agent that requests the E’GV agent of a waiting
E’GV to move out of the way. The VE is responsible for
translating high level messages to messages that can be sent
through the network (resolving agent names to IP numbers
for example). For this, it uses the message transfer system

in the middleware layer.
In summary, the VE offers high level primitives to the

E’GV agent to act in the world, perceive the world, and
communicate with other agents. The VE shields the agent
from having to deal with lower level issues.

4.4 A Scenario: Collision Avoidance
We now describe a specific scenario, to illustrate how col-

lision avoidance works. In the centralized approach collision
avoidance is realized as follows: for each E’GV in the sys-
tem, a series of hulls are calculated along the path each
E’GV is going to drive. When two or more such hull projec-

tions overlap, E’GVs are on a collision course and all except
one E’GV are commanded to wait.

In a decentralized architecture, a central arbitrator does
not exist. However, since the virtual environment emulates
a shared environment, the agents can act as if they are sit-
uated in a (real) shared environment, while the virtual en-
vironment takes on the burden of coordination.

Fig. 6 shows a series of screenshots of a simulation run.
The code for the agents and virtual environment is the same
whether the software runs in simulation or not; we have also

tested on a real setup, but only with two E’GVs on a smaller
layout. The system shown is part of a real layout used for
one of the clients of Egemin.

In Fig. 6(a), two E’GVs can be seen that are approaching
each other. From now on, we will call the E’GV approaching
from the top E’GV A, and the other E’GV B. Both E’GVs
are projecting hulls in the environment. At this point, no
conflict is detected. In Fig. 6(b), the E’GV B has projected
further ahead, and is now in conflict with the hull projection
of the E’GV A. However, since E’GV A’s hull projection
was already confirmed to it, E’GV B must wait (its hull
projection is shown in red). In 6(c), E’GV A is taking the
curve, passing E’GV B. Finally, in 6(d), E’GV A has parked
at the bottom, and E’GV B can start moving as well.

In a decentralized setting, the E’GVs execute a mutual ex-
clusion protocol to make sure collision does not occur. The
protocol is a variant of well-known distributed mutual ex-
clusion algorithms based on voting. Informally, each E’GV
wishing to project its hull further ahead, asks all E’GVs
within a given area for permission. If it does not receive this
permission from every E’GV in the area, it waits; otherwise,
it proceeds. The size of the area is based on the position and
the length of the hull projection of each E’GV; this infor-
mation is exchanged periodically between all E’GVs in the
system. Based on other E’GVs positions and length of hull
projections, an E’GV knows with whom it might collide, and
start negotiating.

This example shows the strength of the virtual environ-
ment abstraction: it relieves the agents from the complexity
of distribution, and offers a high-level abstraction to lower-
level infrastructure.

5. CONCLUSIONS
The evolution of the market of logistic services in ware-

houses and manufactories put forward new challenging re-
quirements. Customers request for flexibility and openness
of the transportation systems, vehicles must be able to adapt
their behavior with changing circumstances. In this paper,
we presented an innovative approach to the control of an
E’GV transportation system that aims to cope with these
new requirements, while keeping in mind the benefits of the
traditionally centralized approach. In this approach, we ex-
ploit principles and mechanisms from situated multiagent
systems for modelling and implementing a decentralized con-
trol system. One of the main concerns in this approach is
careful consideration of bandwidth.

At this moment, real E’GVs are able to manipulate loads,
drive around, and avoid collisions in an industrial test setup.
The next challenges are order assignment and deadlock avoid-
ance. Currently, we are developing architectural models to
cope with these challenges. It would be unfair to state that
the current status of the project is production software. Yet
we will do field testing –not only lab testing– in the near fu-
ture, and we aim to deliver a fully functional decentralized
control system within the term of the project.
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