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Abstract. So far, the main focus of research on adaptability in multi-
agent systems (MASs) has been on the agents’ behavior, for example
on developing new learning techniques and more flexible action selection
mechanisms. In this paper, we introduce a different type of adaptabil-
ity in MASs, called time management adaptability. Time management
adaptability focuses on adaptability in MASs with respect to execution
control. First, time management adaptability allows a MAS to be adap-
tive with respect to its execution platform, anticipating arbitrary and
varying timing delays which can violate correctness. Second, time man-
agement adaptability allows the execution policy of a MAS to be cus-
tomized at will to suit the needs of a particular application. We discuss
the essential parts of time management adaptability: (1) we employ time
models as a means to explicitly capture the execution policy derived
from the application’s execution requirements, (2) we classify and eval-
uate time management mechanisms which can be used to enforce time
models, and (3) we introduce a MAS execution control platform which
combines both previous parts to offer high-level execution control.

1 Introduction and Motivation

Traditionally, the scope of research on adaptability in multi-agent systems (MASs)
has been focused on trying to improve adaptability with respect to the behavior
of individual agents and agent aggregations. As a consequence, the progress made
by improving learning techniques and developing more flexible action selection
mechanisms and interaction strategies over time is remarkable. This, however,
may not prevent us from opening up our perspective and investigating other is-
sues requiring adaptability in MASs. This paper is a report on ongoing work and
introduces time management adaptability as an important form of adaptability
with respect to the execution control of MAS applications.

1.1 The Packet-World

We introduce the Packet-World application we have developed [1], since this is
used as an example MAS throughout the text.

D. Kudenko et al. (Eds.): Adaptive Agents and MAS II, LNAI 3394, pp. 88–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:Alexander.Helleboogh@cs.kuleuven.ac.be
mailto:Tom.Holvoet@cs.kuleuven.ac.be
mailto:Danny.Weyns@cs.kuleuven.ac.be
mailto:Yolande.Berbers@cs.kuleuven.ac.be


Towards Time Management Adaptability in Multi-agent Systems 89

The Packet-World consists of a number of differently colored packets that are
scattered over a rectangular grid. Agents that live in this virtual world have to
collect those packets and bring them to their correspondingly colored destina-
tion. The grid contains one destination for each color. Fig.1 shows an example
of a Packet-World of size 10x10 wherein 5 agents are situated. Colored squares
symbolize packets and colored circles are delivery points. The colored rings sym-
bolize pheromone trails discussed below.

Fig. 1. The Packet-World: global screenshot (left) and view range of agent 4 (right)

In the Packet-World, agents can interact with the environment in a number
of ways. We allow agents to perform a number of basic actions. First, an agent
can make a step to one of the free neighbor fields around it. Second, if an agent
is not carrying any packet, it can pick one up from one of its neighboring fields.
Third, an agent can put down the packet it carries on one of the free neighboring
fields around it, which could of course be the destination field of that particular
packet.

It is important to notice that each agent of the Packet-World has only a
limited view on the world. This view only covers a small part of the environment
around the agent (see agent 4 in Fig.1).

Furthermore, agents can interact with other agents too. We allow agents to
communicate indirectly based on stygmergy [2, 3, 4]: agents can deposit
pheromone-like objects at the field they are located on. These pheromones
can be perceived by other agents. Typical characteristics of pheromones are
evaporation, aggregation and diffusion. Evaporation means that the strength of
pheromones diminishes over time. Aggregation on the other hand means that
different pheromone deposits at the same location are combined into a single
pheromone with increased strength. Finally, diffusion means that pheromones
deposited at a particular location are spread to neighboring locations over time,
making it more likely that agents further away can perceive them.
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In the Packet-World, only pheromone evaporation and aggregation are cur-
rently supported. This allows the impact of information that is not regularly
reinforced to gradually decrease over time and to disappear eventually. In Fig.1,
pheromones are symbolized by colored rings. The color of the ring corresponds
to the packet color. The radius of the ring is a measure for the strength of the
pheromone and decreases as the pheromone evaporates. In the Packet-World,
agents use stygmergy to construct pheromone trails only when they move from
clusters of packets towards the corresponding destinations [5]. Other agents
noticing such a pheromone trail can decide to follow it in the direction of in-
creasing pheromone strength to get to a specific destination (e.g. when they are
already carrying a packet of corresponding color). On the other hand, agents can
also decide to follow the trail in the direction of decreasing pheromone strength
leading to the packet cluster (e.g. when they are not carrying anything). Hence
they can help transporting the clustered packets, reinforcing the evaporating
pheromone trail on their way back from the packet cluster to the destination.
In this way, stygmergy provides a means for coordination between the agents
which goes beyond the limitations of the agents’ locality in the environment.

1.2 Problem Statement

So far, time in MASs is generally dealt with in an implicit and ad hoc way:
once the agents have been developed, they are typically hooked together using
a particular activation regime or scheduling algorithm, without an appropriate
time management (see Fig.2). MASs with an implicit notion of time are gen-
erally not adapted at all to run-time variations of timing delays introduced by
the underlying execution platform, e.g. network delays, delays due to scheduling
policies, etc. Moreover, variations with respect to the execution of the agents can
have a severe impact on the behavior of the MAS as a whole [6, 7, 8]. The main
reason for this is that the temporal relations existing in the problem domain
differ significantly from the arbitrary and variable time relations in an execution
platform [9]. In other words, delays in an execution platform are based on quan-
tities which have nothing to do with the problem domain. This emphasizes the
need for an explicit time management. To illustrate this, consider the following
examples from the Packet-World application:

1. In the Packet-World, agents with simpler internal logic can react faster than
agents with more complex internal logic. Consider a packet lying in between
a cognitive agent and a significantly faster reactive agent, for instance the

Execution Platform

MAS

Network Delays Scheduling Delays

Fig. 2. MAS directly built upon an execution platform
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white packet between agents 2 and 3 in Fig.1. In case both agents start
reasoning at the same time, it is required that the reactive agent can pick up
the packet before the cognitive one can. However, in practice, the response
order of both agents is arbitrary, because the underlying execution platform
could cause the cognitive agent’s process to be scheduled first, allowing it to
start thinking earlier and pick up the packet before the faster reactive agent
even got a chance.

2. The agents can deposit pheromones in the environment to coordinate their
activity. These pheromones evaporate over time. Because the effectiveness
of pheromone-based communication is strongly dependent upon this evapo-
ration rate, the latter is tuned to suit the needs of a particular application.
However, fluctuations in the load of the underlying execution platform can
cause agents to speed up or slow down accordingly, leading to a significant
loss of pheromone effectiveness which affects the overall behavior of the MAS.

3. Problems can also arise with respect to the actions agents can perform. In the
Packet-World application, the time period it takes to perform a particular
action is required to be the same for all agents. However, fluctuations in
processor load can introduce variations with respect to the execution time of
actions. As a consequence a particular action of an agent can take longer than
the same action performed by other agents. This leads to agents arbitrarily
obtaining privileges compared to other agents due to the execution platform
delays, a property which is undesirable in our problem domain.

The examples above show that a MAS without time management support
is not adapted to varying delays introduced by the execution platform, which
can be the cause of unforeseen or undesired effects. The execution of all entities
within a MAS has to be controlled according to the execution requirements of
the MAS, irrespective of execution platform delays. Currently the only option
for the developer is to hardcode these requirements from scratch into the MAS
application. However, this is a complex and error-prone task which has to be
tackled by the developer without any support. In this paper, we introduce time
management adaptability as a generic solution to this problem and a structured
way to control the execution of a MAS.

1.3 Time Management Adaptability

Time management adaptability allows the execution of a MAS to be controlled
according to an execution policy that can be adapted to suit the needs of a
particular MAS application. An execution policy specifies the desired timing
behavior for a MAS application in a platform-independent way. By enforcing
a particular execution policy, even in the presence of variable execution plat-
form delays, time management adaptability allows all temporal relations that
are essential for the application to be correctly reproduced in the software sys-
tem. In this way, a MAS application is adapted to varying delays introduced
by the execution platform. Moreover, time management adaptability allows easy
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adaptation of a MAS’s timing behavior, because it deals with time in an explicit
manner and introduces execution control into a MAS as a separate concern. In
order to achieve this, time management adaptability consists of three main parts
(see Fig.3):

1. Time models are necessary to explicitly model the MAS’s required timing
behavior, irrespective of the underlying execution platform. As such, time
models capture an execution policy according to which the MAS’s execution
has to be controlled. Time models are explicit which allows them to be
adapted to reflect the customized needs of a particular MAS application.

2. Time management mechanisms are a means to enforce a MAS’s cus-
tomized time model, even in the presence of arbitrary delays introduced by
the execution platform.

3. A MAS execution control platform combines both time models and
time management mechanisms to control the execution of a MAS. In a MAS
execution control platform, time models capture the execution requirements,
and time management mechanisms are employed to prevent time models
from being violated during execution. In this way, time as experienced from
the point of view of the MAS application can be decoupled from the timing
delays of the platform on which the MAS executes.

MAS

Execution Platform

MAS Execution Control
Platform

Time model

Time Management Mechanism

Network Delays Scheduling Delays

Logical Time Delays

Fig. 3. Time management adaptability in MASs

Outline of the paper. We first clarify the concept of time in MASs in Sect.2.
Then we discuss the various parts of time management adaptability: in Sect.3
we elaborate on time models. In Sect.4, we give an overview of the main time
management mechanisms existing today, and Sect.5 discusses MAS execution
control platforms in more detail. Finally, we look forward to future work in
Sect.6 and draw conclusions in Sect.7.
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2 Time in MAS

2.1 Time and Execution Requirements

MASs are characterized by a high degree of parallelism. A MAS consists of a
(large) number of active, autonomous agents which coexist in a shared, active
environment. A MAS does not have a global control flow, but instead each agent
has its own, local flow of control [10] which allows the agent to have control over
its own behavior. Because a MAS consists of several agents, the execution of all
agents relative to each other has to be organized appropriately. More precisely,
the execution of all agent activities within a MAS needs to be managed in a way
that reflects the requirements of that particular MAS application. Because all
agents run in parallel, each activity an agent can perform is related in time to
the activities of other agents within the MAS. Moreover, also the environment of
the MAS can contain activity, such as evaporating pheromones used for indirect
communication [11]. The temporal relations between all activities (originating
from the agents as well as from the environment) determine the relative timing
and order in which these activities are executed. In MASs, these temporal re-
lations between activities generally depend upon the semantic properties of the
activities within the MAS application, and are independent of the time it takes
to execute the corresponding code instructions. As such, the temporal relations
determine execution requirements for the MAS application. These execution re-
quirements of a MAS need to be enforced at run-time, irrespective of arbitrary
delays in the execution platform.

2.2 Different Concepts of Time

One of the most common points of confusion with respect to time management
is what is actually meant by time in software systems. In order to use time to
express execution requirements of a MAS application, which are dependent upon
semantic properties of the MAS, we need to make a clear distinction between
two sorts of time [9] which are of relevance for the rest of the paper:

– Wallclock time is the (execution) time as measured on a physical clock
while running the software system. For example, in the Packet-World the
execution of a particular agent performing a move action might take 78
milliseconds on a specific processor, while a pick up packet action takes 140
milliseconds on the same processor.

– Logical time (also called virtual time) is a software representation of time.
Logical time could for instance be represented by an integer number. From
the viewpoint of the MAS application, only logical time is experienced. As
such, temporal relations between activities in the MAS application can be
expressed by means of logical time. For example, in the Packet-World a move
action for an agent could take 2 units of logical time, while a pick up packet
action semantically only takes 1 unit of logical time, and after executing the
program for 3 minutes of wallclock time, 634 units of logical time may have
passed in the Packet-World.
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According to the way logical time advances in a system, a number of execution
modes can be distinguished [9]. In a real-time execution, logical time advances
in synchrony with wallclock time. In as-fast-as-possible executions, logical time
is advanced as quickly as possible, without direct relationship to wallclock time.
An example: suppose that in a software system 100 units of logical time are
processed after 5 minutes of wallclock time. As a consequence, the total number
of logical time units processed after another 5 minutes of wallclock time must
be 200 in case of a real-time execution, and can be any number greater than 100
in case of an as-fast-as-possible execution.

3 Time Models

Time models are inspired by research in the distributed simulation community,
where they are used implicitly to assign logical time stamps to all events occur-
ring in the simulation [12][13]. In software simulations, the logical time stamp
of an event corresponds to the physical time the event was observed in the real
world which is being simulated.

However, we extend the use of time models from pure simulation contexts to
execution control for MAS applications in general. Here, logical time is not used
to obtain correspondence to physical time, which has no meaning outside the
scope of simulation, but as a means to express the semantic time relations that
reflect the execution requirements of a MAS (see Sect.2.1). Also in contrast to
software simulations, time models are now explicitly represented, which has the
advantages that all execution requirements are made explicit on the one hand
and can be adapted on the other hand.

A time model captures the execution requirements in terms of logical time,
according to the semantic properties of the MAS application. More precisely, a
time model defines how the duration of various activities in a MAS is related to
logical time [14], and these logical durations of activities are used as a means
to determine the relative execution order of all activities within a MAS. In this
way a time model allows the developer to describe the required execution of the
MAS in a platform-independent way. The execution of a MAS application on a
particular execution platform must be controlled according to the defined time
model.

Because time models capture time relations that reflect the semantic proper-
ties of activities within the MAS application, we first investigate the structure of
a MAS in order to identify the relevant activities that need to be time modeled.

3.1 Agent Activities

Agents within a MAS are generally able to perform several agent activities1,
and each agent can autonomously decide which activity to perform. As a conse-

1 With the general term agent activities, we refer to all internal deliberations, as well
as all actions in the environment and all perceptions of the environment, insofar they
(1) can be performed by an agent and (2) are considered semantically relevant.
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Deliberation

Perception

Action

Fig. 4. A typical agent control flow cycle

quence, time modeling requires assigning logical durations to all of the agent’s
activities. Each time an agent decides to perform a particular activity, the agent’s
logical clock is advanced with a logical time period equal to the duration of that
activity. For our discussion, we assume that an agent has a control flow cycle as
the one depicted in Fig.4.

Agent Deliberation. A first important activity an agent can perform, is inter-
nal deliberation. The purpose of this deliberation is determining the next action
the agent is going to perform. As such, agent deliberation is an activity that
does not cross the agent’s boundaries. Depending on the context, agent’s delib-
eration can be very simple (e.g. stimulus-response behavior in reactive agents)
or immensely complex (e.g. sophisticated learning and planning algorithms used
in cognitive agents).

In the context of agent-based simulation, modeling the duration of an agent’s
deliberation activity has received a lot of interest. We describe various models
which have been proposed to model how much logical time the deliberation of the
agents takes, and discuss their relevance for specifying execution requirements.

– A constant time model for the agents’ deliberation [15] implies that the
deliberation of all agents is performed in a constant logical time, irrespec-
tive of the actual wallclock time that is needed to execute the deliberation.
As a consequence, constant time models are independent of the underly-
ing execution platform, which makes them suitable for specifying execution
requirements. The advantage of a constant deliberation time model is the
fact that it is simple and easy to understand and use. By assigning constant
logical time durations to the deliberation activity of each agent, one can for
instance specify the relative reaction speed of all agents within a MAS, irre-
spective of their implementation or execution efficiency. However, constant
time models suffer from a lack of expressiveness since the agent’s deliberation
is considered as a single, course-grained, and black box activity.

– The deliberation activity of an agent can also be time modeled in a more
fine-grained way. The time model has to take into account what the agent is
actually deliberating about. In this case, a number of deliberation primitives
[16] that are semantically relevant are distinguished within the deliberation
activity of an agent, e.g. evaluating a board position for a chess playing
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agent, or calculating the shortest path to reach a particular destination, etc.
A logical duration is assigned to each of the deliberation primitives, and only
the deliberation primitives the agent actually uses are taken into account
to determine the logical duration of its deliberation activity. This kind of
time model is also suitable for specifying execution requirements since it is
independent of the actual implementation or underlying execution platform.

– A popular approach counts the actual computer instructions as a basis for
determining the logical deliberation time [16]. Modeling the logical delib-
eration time of an agent as a function of the number of code instructions
executed during deliberation is then considered as an extreme example of
the previous approach in which each computer instruction is treated as a de-
liberation primitive. However counting computer instructions is dependent
on the programming language of the underlying execution platform. As a
consequence, this way of time modeling cannot be used for specifying execu-
tion requirements, since it is not platform-independent. Moreover, changes
in the implementation and the presence of GUI or debug code can have a
significant influence on the logical deliberation time, although these issues
have no semantic value.

– The logical deliberation time can be modeled as a function of the wallclock
time used for executing the deliberation [17]. This approach is also not fea-
sible for specifying execution requirements, since the logical duration is now
susceptible to the load and performance of the underlying computer system.

Agent Action. Another important activity of an agent is performing actions
(see Fig.4). In contrast to agent deliberation, agent actions are activities that
cross the agent’s boundaries: actions typically change the state of the environ-
ment. Compared to agent deliberation, time modeling agents’ actions in the
environment has received little interest. However, in the context of defining ex-
ecution requirements, imposing time models on the actions agents perform is
indispensable. Depending on the semantic context, actions can be assigned a
period of logical time. This period can be considered as the time it takes until
the effects of the action are noticeable in the environment. In our initial time
model, we assume that the agent is not allowed to perform anything else until
the action has completed. However, we are currently investigating an extension
which allows overlap of the activities of one agent. This could for example allow
us to model an agent that can think while it is moving, something that is not
possible in the current time model.

Agent Perception. Another important agent activity is perception, which al-
lows an agent to observe its environment. Agent perception is also an activity
that crosses the agent’s boundaries, but it differs from agent actions as percep-
tion does not alter the state of the environment. Time modeling agent perception
is often neglected, but its duration could be significant. Assigning a logical du-
ration to agent’s perceptions is analogous to time modeling the agent’s actions,
and allows a developer to specify the time it takes for an agent to perceive its
neighborhood.
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3.2 Ongoing Activities

Besides activities originating from the agents, there can be other activities within
a MAS which require time modeling. In the MAS research community, there is
an increased environmental awareness. The environment itself is often dynamic
and evolves over time [11]. As a consequence the environment itself can contain
a number of ongoing activities [18] which are essential for the correct working of
the MAS as a whole. An example of ongoing activities in the Packet-World appli-
cation are the pheromone trails which evaporate continuously. Ongoing activities
are characterized by a state which evolves over time, even without agents affect-
ing it. Agents can often initiate ongoing activities and influence their evolution.
As a consequence the environment is not passive, but active, and responsible for
managing all ongoing activities.

In many MAS applications however, the dynamics of ongoing activities are
dealt with in an ad hoc way. Typically the evaporation rate of pheromones is
modeled in wallclock time and the correlation between agent activity on the one
hand and pheromone activity on the other hand is not specified. As a consequence
optimal coordination efficiency can hardly be maintained: varying loads on the
execution platform cause agent activity to slow down or speed up accordingly.
Because pheromone evaporation is determined upon wallclock time, it does not
adapt itself to the changes in the execution speed of the agents, and coordination
efficiency drops. Therefore, to guarantee the correct execution behavior, it is
essential to specify the logical duration of ongoing activities in the environment,
because this allows us to relate their execution to other activities within a MAS
application.

3.3 Execution Requirements for the Packet-World

We now return to the Packet-World application, and illustrate the use of time
models to capture the execution requirements that are necessary for the correct
working of the MAS.

In the Packet-World, the following activities can be distinguished for each
agent: the deliberation activity of deciding upon its next action, the perception
activity of perceiving its neighborhood, and a number of activities corresponding
to the actions an agent can perform in the environment: move to a neighboring
field, pick up a packet, put down a packet and drop pheromone. Stated formally:

E = {think, look, move, pick, put, drop}
with think: deliberate upon next action

look: perceive neighborhood
move: move to neighboring field
pick: pick up packet
put: put down packet
drop: drop pheromone

S = {move, pick, put, drop} ⊂ E
P = {look} ⊂ E
D = {think} ⊂ E
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E is the set of all possible activities of an agent, S the set of agent actions,
P the set of agent perception activities, D the set of agent deliberation activi-
ties, and S, P and D are subsets of E.

We further distinguish between two types of agents in the Packet-World: re-
active agents and cognitive agents. Each agent is either reactive or cognitive.
Stated formally:

AR = {ar
1, a

r
2, ..., a

r
n}

AC = {ac
1, a

c
2, ..., a

c
m}

A = AR ∪ AC = {a1, a2, ..., am+n}

AR is the set of all reactive agents in the Packet-World application, AC the
set of all cognitive agents, and A the set of all agents, reactive and cognitive.

The problem statement (see Sect.1.2) mentions a number of typical problems
which arise in the Packet-World application. We now elaborate on these problems
to derive execution requirements in terms of logical time models.

Action Requirements. We take a closer look at the third problem mentioned
in Sect.1.2. In the Packet-World application it was observed that the underlying
execution platform can have an arbitrary influence on the time it takes to per-
form an action. However, in the problem domain it is required the same amount
of time is needed for all agents to perform a particular action. Stated formally:

∀ai ∈ A; move, pick, put, drop ∈ S :
∆Tmove(ai) = cstmove

∆Tpick(ai) = cstpick

∆Tput(ai) = cstput

∆Tdrop(ai) = cstdrop

cstmove, cstpick, cstput, cstdrop ∈ IN

A is the set of all agents, S the set of all agent actions, ∆Ts(ai) the logical
duration of action s ∈ S performed by agent ai ∈ A, and IN the set of natural
numbers.

Since perception is considered as a kind of action in our application, we ob-
tain the following expression:

∀ai ∈ A; look ∈ P :
∆Tlook(ai) = cstlook

cstlook ∈ IN

A is the set of all agents, P the set of all agent perception activities, ∆Tp(ai)
the logical duration of perception activity p ∈ P performed by agent ai ∈ A,
and IN the set of natural numbers.
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Both expressions above can be combined in a more compact notation:

∀ai ∈ A; ∀e ∈ S ∪ P :
∆Te(ai) = cste
cste ∈ IN

Deliberation Requirements. We now return to the first example of the Packet-
World application (see Sect.1.2). The problem was the fact that the underlying
execution platform can influence the reaction speed of the agents, leading to a re-
sponse order which is arbitrary. However, this is not desired in the Packet-World,
where it is required that a reactive agent always reacts faster than a cognitive
agent, in case both start deliberating at the same moment in time. Based on
the agent’s control flow cycle as depicted in Fig.4, the duration in logical time
it takes an agent to complete a control flow cycle can be stated formally as:

∀ai ∈ A; ∀s ∈ S; ∀p ∈ P ; ∀d ∈ D :
∆T cycle(p, d, s, ai) = ∆Tp(ai) + ∆Td(ai) + ∆Ts(ai)

∆T cycle(p, d, s, ai) is the duration in logical time it takes agent ai ∈ A to com-
plete a control flow cycle consisting of perception activity p ∈ P , followed by
deliberation activity d ∈ D and by action s ∈ S. ∆Tp(ai) is the logical duration
of perception activity p ∈ P performed by agent ai ∈ A, ∆Td(ai) the logical
duration of deliberation activity d ∈ D performed by agent ai ∈ A and ∆Ts(ai)
the logical duration of action s ∈ S performed by agent ai ∈ A.

In the Packet-World, P = {look} and D = {think} are singletons. As a
consequence, the moment in logical time an agent completes an action can be
defined as:

∀ai ∈ A; ∀s ∈ S :
Tend(s, ai) = T0 + ∆T cycle(look, think, s, ai)

Tend(s, ai) is the moment in logical time agent ai completes action s. T0 is the
moment in logical time that a new cycle in the control flow of agent ai starts
(which corresponds to the moment in logical time the previous action of agent
ai was completed).

The requirement that a reactive agent can always pick up the packet before
a cognitive agent in case both start deliberating at the same moment time, is
hence formalized as follows:

∀ar
i ∈ AR; ∀ac

j ∈ AC ; pick ∈ S :
Tend(pick, ar

i ) < Tend(pick, ac
j)

AR is the set of reactive agents, AC the set of cognitive agents, and S the set of
all agent actions in the environment.

By substitution we obtain:

T0 + ∆T cycle(look, think, pick, ar
i ) < T0 + ∆T cycle(look, think, pick, ac

i )
or

T0 + cstlook + ∆Tthink(ar
i ) + cstpick < T0 + cstlook + ∆Tthink(ac

j) + cstpick
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Simplifying both sides of the equation gives us:

∆Tthink(ar
i ) < ∆Tthink(ac

j)

With ar
i ∈ AR a reactive agent, and ac

j ∈ AC a cognitive agent.
Hence to assure that the reactive agent always acts faster than the cognitive

one, the logical duration of the agents’ deliberation needs to be modeled such that
the reactive agent’s deliberation duration is smaller than the cognitive agent’s
deliberation time. This also corresponds to our intuition.

Pheromone Requirements. Finally, we take a closer look at the second prob-
lem of Sect.1.2. The load on the underlying execution platform causes the agents’
execution speed to change accordingly. However, if we want to maintain pheromone
effectiveness, we need a continuous adaptation of the pheromone evaporation rate
to the agents’ execution speed. Hence we want the duration of pheromone activ-
ity to be semantically related to the duration of agent activities. As a first step,
we use a simple model for pheromone activity. For the pheromone evaporation
rate in the Packet-World application we can state more formally:

∆Tevap = cstevap

cstevap ∈ IN

with ∆Tevap the logical duration it takes for a pheromone to evaporate until
only half of its initial strength is remaining. Agent activity is related to logi-
cal time. Relating pheromone activity to the same logical clock, instead of the
wallclock, allows the dynamics of both agents and pheromones to be coupled.

3.4 A Time Model for the Packet World

In Sect.3.3 we formulated a number of execution requirements which have to be
met to allow the execution of our MAS to evolve according to the semantic prop-
erties of all activities within the Packet-World application. To formulate a simple
time model, specific values to the various activities have to be assigned, express-
ing the logical durations. These values are expressed in logical time units (LTU).
The execution requirements derived above give rise to an array of constraints
which all have to be satisfied in a time model for the application.

An example time model which satisfies all requirements of the Packet-World
application is given:

∀ai ∈ A :
∆Tmove(ai) = 3 LTU
∆Tpick(ai) = 2 LTU
∆Tput(ai) = 2 LTU
∆Tdrop(ai) = 1 LTU
∆Tlook(ai) = 1 LTU
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∀ar
i ∈ AR :

∆Tthink(ar
i ) = 4 LTU

∀ac
j ∈ AC :

∆Tthink(ac
j) = 12 LTU

∆Tevap = 100 LTU

Note that this time model is only one example which satisfies all requirements
of the Packet-World application. Alternative time models that also satisfy the
requirements can be modeled. As such, there exists a degree of freedom for the
developer, enabling her/him to further tune and refine the working of the appli-
cation within the boundaries defined by the execution requirements.

4 Time Management Mechanisms

By specifying time models, the developer can define execution requirements for
a MAS. By relating MAS activities to logical time, time models impose an order
on all MAS activities, dictated by logical time. However, as illustrated in the
introduction, the temporal characteristics of the execution platform are not nec-
essarily the same as those described in the logical time model. As a consequence,
we additionally need time management mechanisms to ensure that all activities
are executed according to the time model specification. These mechanisms avoid
that any event with a logical time in the future can have influence on things
with a logical time in the past, even in the presence of arbitrary network de-
lays or computer loads. In other words, time management mechanisms preserve
causality dictated by logical time.

Distributed simulation communities have been investigating the consistency
of logical time in simulations for a long time. All events happening are or-
dered and hence causally related by means of the global notion of logical time.
Therefore various time management mechanisms have been developed to prevent
causality errors:

– Execution directed by clock. In this approach the logical time of the
system is discretized in a number of intervals of equal size. The interval
size is called time-step. Global synchronization schemes force all entities to
advance together in a lock-step mode, and hence the execution of the system
proceeds synchronously. In the case of MASs, a drawback is that synchronous
execution forces all agents to act at the pace of the slowest one, which severely
limits execution speed [19][20]. Moreover, since a central authority must
control and keep track of the execution of all agents in the system, the cost
of synchronous approaches increases rapidly as the number of agents grows.

– Execution directed by events. In this case, events are generated by all
entities [12], and each event has a precise logical time stamp which allows
sorting them. During execution, the next event to be processed is the one
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with the smallest logical timestamp, ensuring causality and thereby skipping
periods of inactivity. However in a distributed context (distributed discrete
event simulation [13]), a system is modeled as a group of communicating
entities, referred to as logical processes (or LPs). Each LP contains its own
logical clock (indicating its local logical time) and all LPs process events
asynchronously and advance at different rates, which allow a significant
speedup, but may cause causality errors. Hence, for asynchronous execu-
tion additional synchronization is needed to ensure that each LP processes
messages in increasing logical time order:

• Conservative synchronization. In conservative synchronization [21]
each LP only processes events when it can guarantee that no causality
errors (out of (logical) time order messages) will occur. This causes some
LPs to block, possibly leading to deadlock. The performance of conser-
vative synchronization techniques relies heavily on the concept of looka-
head, but the autonomous, proactive behavior of agents could severely
restrict the ability to predict events [22]. Moreover, to determine whether
it is safe for an agent to process an event, information about all other
agents must be taken into account, limiting the scalability of this ap-
proach.

• Optimistic synchronization. In optimistic approaches, causality er-
rors are allowed, but some roll-back mechanism to recover from causality
violations is defined (e.g. time warp [23]). While this approach is feasi-
ble for simulations, providing roll-back for MAS applications in general
(outside the scope of simulation) is not feasible at all. Moreover, the cost
imposed by the roll-back mechanisms can easily outweigh the benefits
[22], and increases rapidly as the number of agents grows.

5 MAS Execution Control Platform

To control the execution of a MAS in an appropriate way, a MAS execution
control platform must provide support for both explicit time models on the one
hand and time management mechanisms on the other hand.

First, logical time models are needed as a means for the developer to explic-
itly express the execution policy for all MAS activities. However, the execution
policy expressed in the time model has to be enforced in the MAS application,
irrespective of delays in the underlying execution platform. For this reason, time
management mechanisms are needed. They prevent time models from being vi-
olated, and ensure the execution of the MAS behaves according to the execution
policy which is described.

We refer to our previous work [24] for a more technical description of the
structure of a MAS execution control platform, and limit our discussion to its
most important characteristics:

– Higher level of abstraction. The execution policy is described by means
of an explicit model. This model focuses on what the execution policy of a
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particular MAS application is, while hiding the developer from how this ex-
ecution policy is enforced. The model provides a higher level of abstraction
to MAS developers: from a developer’s point of view, only the logical dura-
tions described in the time model apply and determine the execution. As a
consequence, abstraction can be made of the unreliable execution platform
delays. By means of a time model as execution policy description, all activi-
ties within the MAS can be identified and can be assigned logical durations.

– Separation of concerns. A MAS’s functionality can be developed without
taking into account the execution policy. Controlling the execution of a MAS
is considered as a separate concern. This relieves the developer from tack-
ling execution control from scratch and from hard-coding it into the agents’
functional behavior. Based on an explicit execution policy description pro-
vided by the developer, all time management mechanisms are integrated
automatically into the MAS’s functionality using aspect-oriented program-
ming, without requiring the developer to change the design of the MAS. In
this way, the complexity of time management mechanisms that enforce the
execution policy can be hidden from the developer.

– Independence with respect to the execution platform. By combining
a logical time model and a time management mechanism to enforce it, a MAS
can be developed without taking into account the specific timing character-
istics of the execution platform. A MAS application is subjected to logical
delays defined in the time model, and execution platform delays can no longer
introduce unforeseen effects. This results in MASs being unconstrained with
respect to the timing characteristics of their execution platforms.

– Adaptability of the execution policy. The explicit representation of
the execution requirements of a MAS in a time model has the advantage
that execution requirements can be adapted. This enables fine-tuning of
the existing execution policy and allows the integration of new execution
requirements.

6 Future Work

This paper reports on ongoing work investigating a generic and structured way to
deal with execution control in the context of MASs. The approach was described
in general, and a lot of work still needs to be done on various issues described
in this paper:

– We are currently working to improve the formalism for describing logical
time models, to come to an approach which is generally applicable and more
theoretically founded. It should for instance be possible to specify potential
overlap of activities (see Sect.1). Also the dynamics of ongoing activities in
the environment, such as pheromone evaporation, still needs to be investi-
gated more in depth.

– As shown in Sect.4, mechanisms enforcing time models and ensuring global
causality are limited in scalability, making these approaches inefficient for
use in a large-scale distributed MASs. A possible alternative presumes we
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abandon the notion of a global (logical) clock to determine causal relation-
ships. Hence not all parts of the MAS are related in time, and there is only a
locally shared notion of time. This follows from the observation that agents
within a MAS typically perceive and act locally. Based on this, it makes
sense only to ensure temporal relationships between agents residing in each
other’s neighborhood, without modeling causality between agents far away
from each other, at the benefit of increased scalability. Regional synchro-
nization [20] provides a flexible mechanism to dynamically detect clusters of
agents, based on the overlap of so called spheres of influence. Within such
clusters of agents, the mechanisms discussed in Sect.4 could be applied lo-
cally, hence avoiding scalability limitations at the cost of a loss of a global
notion of logical time.

7 Conclusion

In this paper, we emphasized time management adaptability as a type of adapt-
ability which has significant importance, although this type of adaptability is
not often considered in the context of adaptive MASs. Time management adapt-
ability allows the execution requirements for a MAS application to be described
explicitly and enforced transparently, irrespective of the unpredictable execution
platform delays. A time model is employed to explicitly capture the execution
policy and relate all MAS activities to logical time. Time management mecha-
nisms form a second important part of time management adaptability: they are
needed to enforce time models. Time models and time management mechanisms
are combined in MAS execution control platforms.

The advantage of time management adaptability it twofold. First, time man-
agement adaptability allows a MAS to be independent of the underlying execution
platform: the combination of time models and time management mechanisms pre-
vents the MAS’s behavior from being affected by timing issues introduced by the
execution platform. More precisely, the relative execution order of all MAS activ-
ities remains invariant under various execution conditions. Second, time manage-
ment adaptability allows the execution policy to be adapted to suit the needs of the
MAS application, providing a higher level of abstraction to organize the execution
of a MAS, and a means to introduce execution control as a separate concern.
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