
Architecture-Centric Development of an
AGV Transportation System

Danny Weyns, Kurt Schelfthout, and Tom Holvoet

DistriNet, Department of Computer Science K.U.Leuven,
Celestijnenlaan 200 A, B-3001 Leuven, Belgium

{danny.weyns, kurt.schelfthout, tom.holvoet}@cs.kuleuven.be

Abstract. Architectural design plays a key role in software engineering. The
software architecture is the backbone of the designed solution, it has the func-
tional requirements of the system and satisfies the quality requirements. In our
research, we put forward situated multiagent systems (situated MAS) as an ap-
proach to build distributed applications with demanding quality requirements
such as flexibility and openness. In this paper we illustrate how we apply sit-
uated MAS to an Automatic Guided Vehicle (AGV) transportation system. We
discuss the high-level structure of the software architecture and explain how the
architecture aims to meet important quality requirements.

1 Introduction

Software architecture is generally acknowledged as a crucial part of the design of a
software system [1]. The software architecture has the functional requirements of the
system and aims to satisfy the quality requirements. A common practice to document
a software architecture is by using a set of related views [2]. A view is a representation
of a set of system elements and the relationships associated with them. A module view
enumerates principal implementation units and relationships among these units such as
“is-part-of” or “uses”. A process view focuses on dynamic aspects of the system such as
synchronization between process elements. Other views can be part of the documenta-
tion of an architecture such as a deployment view that describes the allocation of system
elements to available processors.

In the last three years, we have studied the engineering of distributed applications
with demanding quality requirements such as flexibility and openness. Example do-
mains we focus on are network management and decentralized control of logistic ma-
chines in a warehouse. In our research, we put forward situated MASs as an approach
to build such distributed applications. A situated MAS consists of a distributed envi-
ronment populated with a set of agents that cooperate to solve a complex problem in a
decentralized way. Intelligence in a situated MAS originates from the interactions be-
tween the agents, rather than from their individual capabilities. Situated agents exploit
the environment to coordinate their behavior, e.g. via digital pheromones or gradient
fields [3]. We have developed a reference architecture for situated MASs that offers a
blueprint for developing the intended applications. This reference generalizes and ex-
tracts common functions and structures from various experimental applications we have
studied. For a detailed discussion of the reference architecture we refer to [4,5,6].

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 640–644, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Architecture-Centric Development of an AGV Transportation System 641

In this paper, we illustrate the architectural design of an AGV transportation system
that is based on the reference architecture for situated MASs. The AGV transportation
system is investigated in a R&D project in close cooperation with Egemin, a manufac-
turer of automated warehouse systems (http://www.egemin.com/). An AGV transporta-
tion system uses unmanned vehicles (AGVs) to handle transports, i.e. to move goods
through a warehouse. Transports are generated by a client system, typically a busi-
ness management program. An AGV uses a battery as energy source. AGVs can move
through a warehouse guided by a laser navigation system, or by magnets or cables that
are fixed in the floor. The low-level control of the AGVs such as staying on track on a
segment, turning, picking a load or dropping it, determining the current position, etc.,
is handled by the AGV control software called E’nsor R© (Egemin Navigation System
On Robot).

Besides traditional qualities such as performance and robustness, the market for
AGV transportation systems requests for more flexibility. AGVs should be able to ex-
ploit opportunities, e.g., when an AGV is assigned a transport and moves toward the
load, it should be possible for this AGV to switch tasks on its way if a more inter-
esting transport pops up. AGVs should also be able to anticipate possible difficulties,
e.g., when the battery level of an AGV decreases, the AGV should anticipate this and
prefer a zone near a charge station. Customers also expect that the system is able to
deal with AGVs leaving the system, or new AGVs entering the system. One example is
maintenance. Currently, maintenance of AGVs is based on fixed worst-case rules. This
leaves room for improvement by allowing AGVs to decide themselves when to leave
the system for service.

In the next section we discuss the main high-level views of the software architecture
and we illustrate how the quality requirements are realized. Finally, Sect. 3 concludes
the paper.

2 Architectural Design of an AGV Transportation System

Contrary to the traditional approach applied by Egemin, where vehicles are controlled
by one central server, in this project, we explore the feasibility of applying the paradigm
of situated MASs to decentralize the control of the AGVs. In [7], Ong compares decen-
tralized with centralized control. According to Ong, decentralized control: (1) is more
economical w.r.t. required processing power, and (2) is more reliable. Limitations of
decentralization are: (1) performance of the system may be affected by the commu-
nication links between nodes, (2) there is a trade-off between its performance and the
reactivity of the system to disturbances, and (3) myopic decision making may occur due
to the lack of global information.

Besides the advantages of decentralization listed by Ong, we believe that in princi-
ple, a MAS-based AGV transportation system also becomes more flexible. Since each
AGV acts locally, it can better exploit opportunities and adapt its behavior under chang-
ing circumstances. On the other hand, bandwidth must be considered carefully to en-
sure that the communication network does not become a bottleneck. The challenge in
the project is to support the current functionality, while aiming to improve flexibility
and openness.

642 D. Weyns, K. Schelfthout, and T. Holvoet

������ �����

	���
������

��� ���

����� �������

�������� ��������

�������� ������

���������

�����

���������
 ���

���
������ ������

���
������ ������ ���
������ ������ ���
������ ������

!������
���������
 ���

Fig. 1. Deployment view of the AGV transportation system

Deployment View of the System. The decentralized architecture consists of two sub-
systems, transport bases and AGV control systems. Transport bases receive transport
requests from the client system, and are responsible to assign the transports to AGVs.
The AGV control software is responsible to ensure that the AGV completes the assigned
transport. Fig. 1 depicts the deployment view of the software architecture. Transport
bases are deployed on stationary hosts. The AGV control systems are deployed on the
mobile AGV machines. The communication infrastructure provides a wired network
that connects the client system with the transport bases and a wireless network that
enables communication between AGVs and transport bases.

Module Decomposition View of the Subsystems. Fig. 2 depicts the module decomposi-
tion view of the AGV control system and the transport base. For each requested trans-
port, the transport base manager creates a new transport agent at the transport base.
A transport agent is responsible for assigning its transport to an AGV agent. the client
system. AGV agents, that are located in the AGVs, are responsible for executing the
assigned transports.

Since the physical environment of the AGVs restricts how agents can use their envi-
ronment, we introduced a virtual environment for agents to live in. This virtual environ-
ment offers a medium that agents can use to exchange information and coordinate their
behavior. For example, to avoid collisions, AGV agents coordinate with other agents
through the virtual environment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is the physical area the AGV
occupies. A series of hulls then describes the physical area an AGV occupies along a
certain path. If the area is not marked by other hulls, the AGV can move along and
actually drive over the reserved path. If the AGV’s hull intersects with others, only the
AGV with the highest priority is allowed to move on. Afterwards, the AGV removes
the markings in the virtual environment.

Since the only physical infrastructure available to the AGVs is a wireless network
to communicate, the virtual environment is necessarily distributed over the AGVs. In

Architecture-Centric Development of an AGV Transportation System 643

����� ����	��
���������

������������
����������

� �

���	��

� 	��� �
�
�

��� �����

�����

����� ����	��
���������

������������
����������

� �

���	��

� 	��� �
�
�

��������� �����

��������� ����
�������

Fig. 2. Module view of the AGV control system on the left and the transport base on the right

effect, each AGV and each transport base maintains a local virtual environment, which
is a local manifestation of the virtual environment. Synchronization of the state of the
local virtual environment with neighboring machines is supported by the ObjectPlaces
middleware [8].

Besides a medium for coordination, the virtual environment also serves as a suitable
abstraction that shields the AGV agents form low-level issues, such as the physical
control of the AGV. Therefore, we fully reused the E’nsor software.

Quality requirements. We have applied several architectural approaches to realize flex-
ibility in the system. One example is transport assignment that is based on a flexible
version of the Contract Net protocol. This protocol postpones final transport assignment
until the load is picked. While the AGV is driving towards the load, the AGV agent and
the transport agent are able to switch transport and AGV respectively. Openness in the
system is basically realized by the virtual environment supported by the ObjectPlaces
middleware. When an AGV leaves the system, or a new AGV enters, the ObjectPlaces
middleware on neighboring machines will notice this and the local virtual environments
will be updated accordingly.

3 Conclusion

In this paper, we illustrated how we have applied situated MASs as an approach to
design an automated AGV transportation system. We discussed three high-level archi-
tectural views and illustrated how the architecture supports flexibility and openness.
From the initial project phase we learned that the the reference architecture for situated
MAS that underlies the software architecture of the AGV transportation system turned
out to be an excellent guide for architectural design. On the other hand, the complex-
ity of the application forced us to further decompose several modules of the reference
architecture.

644 D. Weyns, K. Schelfthout, and T. Holvoet

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
(2003)

2. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures. Addison-Wesley (2003)

3. Weyns, D., Parunak, V., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent sys-
tems, state-of-the-art and research challenges. Lecture Notes in Computer Science, Vol. 3374
(2005)

4. Weyns, D., Holvoet, T.: Formal model for situated multi-agent systems. Fundamenta Infor-
maticae, Vol. 63(1-2) (2004)

5. Weyns, D., Steegmans, E., Holvoet, T.: Protocol based communication for situated multiagent
systems. 3th Joint Conference on Autonomous Agents and Multi-Agent Systems, New York
(2004)

6. Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated multi-agent
systems. Journal on Applied Artificial Intelligence, 18(8-9) (2004)

7. Ong, L.: An investigation of an agent-based scheduling in decentralised manufacturing con-
trol. Ph.D Disseration, University of Cambridge (2003)

8. Schelfthout, K., Holvoet, T., Berbers, Y.: Views: Customizable abstractions for context-
aware applications in MANETs. Software Engineering for Large-Scale Multi-Agent Systems,
St. Louis (2005)

	Introduction
	Architectural Design of an AGV Transportation System
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

