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Abstract. In situated multi-agent systems (situated MASs), agents are explicitly
placed in an environment. A situated agent does not not use long-term planning
to decide what action sequence should be executed, but selects actions on the
basis of its current position, the world it perceives and limited internal state. Sit-
uated agents exploit the environment to coordinate their behavior and to reach a
common goal. In a recent project, we applied situated MASs to the control of an
automated transportation system that uses automatic guided vehicles (AGVs) to
transport loads in a warehouse. In contrast to traditional approaches where the
AGVs are controlled by a central server, in this project we model the AGVs as
agents in a situated MAS, aiming to improve flexibility and openness. Since the
physical environment of AGVs is very restricted, it offers little opportunities for
agents to use the environment. We introduce a virtual environment for agents to
live in. This virtual environment (1) offers a medium that agents can use to ex-
change information and coordinate their behavior, and (2) serves as a suitable
abstraction to shield low-level physical processing from the AGV agents. Since
the only infrastructure available to the AGVs is a wireless network, the virtual en-
vironment is necessarily distributed over the AGVs. Synchronization of the state
of the virtual environment is provided by ObjectPlaces, a middleware infrastruc-
ture that offers support to exchange and share information among nodes in mobile
and ad-hoc networks. In this paper, we demonstrate how the environment is used
creatively in the design of a MAS solution, helping to manage the complexity of
engineering a complex real-world application.

1 Introduction

In the last fifteen years, multi-agent systems (MASs) have been put forward as a
paradigm to tackle the increasing complexity of distributed applications. Our research
focusses on situated MASs, i.e. MASs in which agents are explicitly placed in an en-
vironment. In situated MASs, agents and the environment are first-order abstractions
[15]. Situated agents exploit the environment to coordinate their behavior and to reach
a common goal. Example mechanisms for environmental coordination are marks [4],
gradient fields [6] and digital pheromones [10].

In [16], M. Wooldridge lists benefits of situated MAS including efficiency, robust-
ness and flexibility, but he also points to a number of limitations of situated MASs.
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Wooldridge argues that situated agents take into account only local, current informa-
tion and thus inherently must take a “short-time” view for decision making. However,
complex problem domains suitable to apply agent-technology, such as ad-hoc networks
or manufacturing control, are by their very nature distributed and highly dynamic. In
such domains it is questionable whether it is feasible or even useful for agents to collect
global information or have a “long-term” view on the situation. Another problem raised
by Wooldridge is that there is no methodology to engineer situated agents, in particular
with respect to desired overall behavior of the system. The relationship between local
interactions of agents on the one hand and global behavior of the MAS on the other hand
is indeed a complex open problem in need of extensive further research. An interesting
approach is proposed in [3].

Situated MASs have been applied with success in practical applications over a broad
range of domains. Some examples are: manufacturing control [9], supply chains sys-
tems [12], social simulation [5] and network management [1]. In an ongoing R&D
project with Egemin1, we apply the paradigm of situated MASs to the control of auto-
matic guided vehicles (AGVs) that have to transport loads in a warehouse. In contrast
to traditional approaches where the AGVs are controlled by a central server, in this
project we model the AGVs as agents in a situated MAS, aiming to improve flexibility
and openness. Flexibility refers to a system’s capability to adapt its behavior with dif-
ferent environmental situations, and openness enables a system to cope with expansion
(new agents that join the system) and reduction (agents that leave the system). Since
the physical environment of AGVs is very restricted, it offers little opportunities for
agents to use the environment. We introduce a virtual environment for agents to live
in. This virtual environment (1) offers a medium that AGV agents can use to exchange
information and coordinate their behavior, and (2) serves as a suitable abstraction to
shield low-level physical processing from the AGV agents. Since the only infrastruc-
ture available to the AGVs is a wireless network, the virtual environment is necessarily
distributed over the AGVs. Synchronization of the state of the virtual environment is
provided by ObjectPlaces, a middleware infrastructure that offers support to exchange
and share information among nodes in mobile and ad-hoc networks. In this paper, we
demonstrate how the environment is used creatively in the design of a MAS solution,
helping to manage the complexity of engineering a complex real-world application.

This paper is structured as follows. In Sect. 2, we elaborate on situated MASs, and
we discuss opportunities that environments offer for situated MASs. Section 3 intro-
duces the AGV application. We discuss the traditional centralized solution briefly, and
then explain how we have modelled this application as a situated MAS. In Sect. 4, we
zoom in on the virtual environment and illustrate how AGV agents exploit this environ-
ment to coordinate their behavior. Finally, in Sect. 5 we draw conclusions.

2 Situated MASs and Environments

2.1 Situated MASs

A situated MAS consists of a (distributed) environment populated with a set of agents
that cooperate to solve a complex problem in a decentralized way. Situated agents have

1 http://www.egemin.com/
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local access to the environment, i.e. each agent is placed in a local context which it can
perceive and in which it can act and interact with other agents. A situated agent does not
use long-term planning to decide what action sequence should be executed, but selects
actions on the basis of its current position, the state of the world it perceives and limited
internal state. Intelligence in a situated MAS originates from the interactions between
the agents, rather than from their individual capabilities.

Situated agents exploit the environment to share information and coordinate their
actions. A digital pheromone, for example, is a dynamic structure in the environment
that aggregates with additional pheromone that is dropped, diffuses in space and evap-
orates over time. Agents can use pheromones to dynamically form pheromone paths to
locations of interest. Another example is a gradient field that propagates through the
environment and changes in strength the further it is propagated. Agents can use a gra-
dient field as a guiding beacon. The environment is thus a crucial part of any situated
MAS: both agent and environment are first-order abstractions.

2.2 Opportunities for Exploiting the Environment

Inspired by research and our own experiences with situated MAS, we discuss opportu-
nities that environments offer for MASs [15].

1. Structuring entity: the agents as well as the objects and resources of a MAS are dy-
namically related to each other. It is the role of the environment to define the rules
under which these relationships can exist and can evolve. As such the environment
acts as a structuring entity for the MAS. For MASs with an explicit spatial struc-
ture, the layout as well as the constraints associated with this layout are part of the
environment.

2. Maintenance of shared state: an environment can serve as a robust, self-revising,
shared memory for agents. This unburdens the individual agents from continuously
keeping track of their knowledge about the system. The state of digital pheromones
is an example of shared state that is maintained by the environment.

3. Service support: the environment can provide services for the situated agents to
pursue their assigned goals. For example, the environment can provide support to
propagate and maintain gradient fields in a distributed environment.

4. Coordination: the environment enables situated agents to coordinate their interac-
tions. Communication required to coordinate can take very different forms: agents
can communicate directly via message transfer, or communicate anonymously via
a shared space, or communicate indirectly through marks in the environment.

5. Regulating entity: the environment can serve as a means to enforce system-wide
constraints (laws) on all agents within a MAS. The environment, e.g., regulates the
access to resources. In general, the environment defines the rules for, and enforces
the effects of, the agents’ actions.

3 The AGV Transportation System

We apply the approach of situated MASs to a real-world application in the domain of
automating logistics services in warehouses and manufactories. This application is in-
vestigated in a joint R&D research project between the AgentWise research group and
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Egemin, a manufacturer of automated warehouse systems. In this section, we first in-
troduce the application and list the required functionalities. We discuss the traditional
centralized solution briefly. Next, we discuss new quality requirements for the appli-
cation and we give a high-level overview of the decentralized solution with a situated
MAS. We introduce the virtual environment and illustrate how AGV agents exploit this
environment to coordinate their behavior. In the next section, we explain the virtual
environment in depth.

3.1 The AGV Application

An AGV transportation system uses unmanned vehicles (AGVs) to transport loads
through a warehouse. Typical applications are repackaging and distributing incoming
goods to various branches, or distributing manufactured products to storage locations.
An AGV uses a battery as its energy source. AGVs can move through a warehouse,
following a physical path on the factory floor, guided by a laser navigation system, or
by magnets or cables that are fixed in the floor. An AGV can pick a load at a certain
location and drop it at another location. An AGV can also park at particular locations
when it is idle, and charge its battery at a charging station.

Functionalities. The main functionality the system should perform is handling trans-
ports, i.e. moving loads from one place to another. Transports are generated by client
systems. Client systems are typically business management programs, but can also be
other logistic machines, employees or service operators. A transport is composed out
of multiple jobs: a job is a simple task that can be assigned to an AGV. For example,
picking a load is a pick job, dropping it is a drop job and moving over a specific distance
is a move job. A transport typically starts with a pick job, followed by a series of move
jobs (probably interrupted by one or more wait jobs) and ends with a drop job.

In order to execute transports, the main functionalities the system has to perform are:

1. Transport assignment: transports are generated by client systems and have to be
assigned to AGVs that can execute them.

2. Routing: AGVs must route efficiently through the layout of the warehouse when
executing their transports.

3. Gathering traffic information: although the layout of the system is static, the best
route for the AGVs in general is dynamic, and depends on the current conditions
in the system. For example, some paths may be busy and cause more delay than a
longer path that is not busy. Gathering traffic information concerns the monitoring
of the current traffic status of the system to adapt the routing of the AGVs to these
dynamic conditions.

4. Collision avoidance: obviously, AGVs may not collide. AGVs can not cross the
same intersection at the same moment, however, safety measures are also necessary
when AGVs pass each other on closely located paths.

5. Deadlock prevention: since AGVs are relatively constrained in their movement
(they cannot divert from their path), the system must ensure that at least one of
the necessary conditions for deadlock can never hold.

When an AGV is idle it can park at a neighboring park location; when the AGV
runs out of energy, it has to charge its battery at one of the charging stations.
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3.2 Traditional Approach

Traditionally, vehicles are controlled by one central server, using wireless communi-
cation. The server has global knowledge of the system and plans routes for AGVs
according to incoming transports and instructs AGVs to perform the jobs. The server
continuously polls the AGVs about their status. The low-level control of the AGVs, in
terms of actuators, sensors, etc., is handled by the AGV control software called E’nsor2.
To this end, the layout of the factory is divided into logical elements: segments and
nodes. A logical segment typically corresponds to a physical part of a path of three to
five meters. E’nsor is able to steer the AGV per segment, and the AGV can stop on
every node, possibly to change direction. E’nsor understands five basic actions:

• Move(segment): instructs E’nsor to drive the AGV over the given segment. Each
segment and node is identified by a unique identifier.

• Pick(segment): instructs E’nsor to drive the AGV over the given segment and to
pick the load at the end of it.

• Drop(segment): the same as pick, but drops a load the AGV is carrying.
• Park(segment): instructs E’nsor to drive the AGV over the given segment and to

park at the end of the segment.
• Charge(segment): instructs E’nsor to drive the AGV over a given segment to a

battery charge station and start charging batteries there.

The physical execution of these actions, such as staying on track on a segment,
turning, and manipulation of loads are handled by E’nsor. Reading out specific sen-
sor data, such as the current position and the battery level is also provided by E’nsor.
When the transport is finished, the server reports the completion of the transport to the
corresponding client system.

New Quality Requirements for AGV Transportation Systems. The centralized approach
has successfully been applied in numerous practical systems. The main quality proper-
ties of the traditional approach are efficiency, configurability and predictability. How-
ever, the evolution of the market put forward new requirements for AGV transportation
systems.

First, customers request for flexibility of the transportation systems, AGVs should
adapt their behavior with changing circumstances. In particular, AGVs should be able
to exploit opportunities, e.g., when an AGV is assigned a transport and moves toward
the load, it should be possible for this AGV to switch tasks along the way if a more
interesting transport pops up. AGVs should also be able to anticipate possible difficul-
ties, e.g., when the battery level of the AGV decreases, the AGV should prefer a zone
close to a charge station. Another desired property is that AGVs should be able to cope
with particular situations, e.g., when a truck with loads arrives at the factory, the system
should be able to reorganize smoothly.

Second, customers expect that the AGV transportation system is open, i.e., the sys-
tem should be able to deal with leaving AGVs, or new AGVs entering the system. One
example is maintenance. Currently, maintenance of AGVs is based on fixed worst-case

2 E’nsor R© is an acronym for Egemin Navigation System On Robot.
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rules. However, the time an AGV should go into maintenance depends on the number
of movements (turns, picks, drops, . . . ) the AGV has executed. Since this information
can be locally collected on each AGV, it is more precise (and efficient) to allow each
AGV to decide individually whether to go into maintenance or not. AGVs can then
leave and enter the system at arbitrary moments. As another example of openness, some
customers want to interact with the AGVs on the factory floor, by directly assigning a
job to a particular AGV.

In summary, flexibility and openness are high-ranking quality requirements for to-
day’s AGV transportation systems.

3.3 A Decentralized Solution with a Situated MAS

The general idea of the decentralized approach is to put more autonomy in the AGVs
allowing for improved flexibility and openness. In the decentralized solution, vehicles
become autonomous agents which make decisions based on their current situation, and
who coordinate with other agents to ensure the system as a whole processes transports.

Decentralized control of automated warehouse transportation systems is an active
area of research. In [7], Ong gives an extensive overview of decentralized agent-based
manufacturing control and compares the pros and cons of centralized versus decentral-
ized control. According to Ong, the advantages of decentralized control are: (1) it is
more economical w.r.t. required processing power, and (2) it is more reliable. Disad-
vantages of decentralization are: (1) performance of the system may be affected by the
communication links between nodes, (2) while the distributed approach is designed to
cope with disturbances, there is, in general, a trade-off between its performance and
the reactivity of the system to disturbances, and (3) myopic decision may occur due to
the lack of global information. Examples of other recent decentralized approaches are
[8] that discusses a decentralized cognitive planning approach for collision-free move-
ments of vehicles, and [2] that discusses a behavior-based approach for decentralized
control of automatic guided vehicles. However, both approaches are validated only in
simulations under a number of simplifying assumptions. In general, applications of de-
centralized control of automated transportation systems in real industrial settings are
rarely discussed in literature.

Besides the advantages of decentralization listed by Ong, we believe that in princi-
ple, a MAS-based AGV transportation system also becomes more flexible. Since each
AGV acts locally, it can better exploit opportunities and adapt its behavior under chang-
ing circumstances. On the other hand, the benefits of a decentralized approach do not
come for free. Since an all knowing entity in the system does not exist, inter-AGV coor-
dination becomes complex. Bandwidth must be considered carefully to ensure that the
communication network does not become a bottleneck. Another important consequence
of decentralization, not mentioned by Ong, is an increased complexity of debugging.

The general challenge in the project is to support the current functionality, while
aiming to improve flexibility and openness, and keeping in mind the benefits of the
centralized approach. So far, we have implemented AGV routing, information sharing
and collision avoidance. We have validated the solution in a test setup with two physical
AGVs, and in a number of advanced simulation cases with up to six AGVs. Many
challenges lie ahead. Currently, we are developing architectural models to cope with
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order assignment and deadlock prevention. Only when these models are implemented
and tested, we can start the validation of the integral solution in an advanced setup.

High-Level Model of the Situated MAS. The situated MAS consists of two kinds
of agents, transport agents and AGV agents. Transport agents are located at transport
bases. AGV agents are located in AGVs that are situated on the factory floor. Figure 1
depicts a high-level model of the situated MAS with one transport base and two AGVs.
A transport agent represents a transport that needs to be handled by an AGV. AGV
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Fig. 1. High-level model of the AGV transportation system

agents are responsible for executing the assigned transports. We fully reused the E’nsor
software that deals with the low-level control of the AGVs. As such, the AGV agents
control the movement and actions of AGVs on a fairly high level. The communication
infrastructure provides a wired network that connects client systems and transport bases,
and a wireless network that enables mobile AGVs to communicate with each other and
with transport agents on transport bases.

AGVs are situated in a physical environment, however, this environment is very
constrained: AGVs cannot manipulate the environment, except by picking and dropping
loads. This restricts how AGV agents can exploit their environment. We introduce a
virtual environment for agents to live in. This virtual environment offers a medium
that agents can use to exchange information and coordinate their behavior. Besides, the
virtual environment serves as a suitable abstraction that shields the AGV agents from
low-level issues, such as the physical control of the AGV.

In the AGV application, the only physical infrastructure available to the AGVs is
a wireless network for communication. In other words, the virtual environment is nec-
essarily distributed over the AGVs and transport bases. In effect, each AGV and each
transport base maintains a local virtual environment, which is a local manifestation of
the virtual environment. Local virtual environments are merged with other local virtual
environments opportunistically, as the need arises. In other words, the virtual environ-
ment as a software entity does not exist; rather, there are as many local virtual environ-
ments as there are AGVs and transport bases. Some of these local virtual environments
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may recently be synchronized with each other, while others may not. From the agent
perspective, the virtual environment appears as one entity. The synchronization of the
state of neighboring local virtual environments is supported by the ObjectPlaces mid-
dleware [11]. We elaborate on state management in the virtual environment in Sect. 4.

Responsibilities of Agents and the Environment. To describe how we apply a situ-
ated MAS to control an AGV system, we revisit the five core functionalities of the AGV
application described in Sect. 3.1. We describe the main responsibilities of the two types
of agents in the MAS, as well as the responsibilities of the virtual environment.

Transport Assignment. As stated above, transports are represented by transport agents
that reside on transport bases. Transport bases receive transports from client systems.
For each new transport, a new transport agent is created that is responsible to assign
the transport to an AGV and to ensure that the transport is completed correctly. Each
transport has a priority that depends on the kind of transport, the pending time since its
creation, and the nature of other transports in the system. Therefore, transport agents
interact with other related transport agents to determine the correct priority over time.
Transport agents use the virtual environment to find AGV agents to assign the trans-
ports, and to follow the progress of the assigned transports. To assign a transport, the
transport agent negotiates with AGV agents of AGVs near to the pick location of the
load. Once the transport is assigned, the awarded AGV handles the transport. As soon
as the transport is completed, the AGV agent informs the transport agent, that in its
turn informs the client system after which the transport agent is removed. The transport
agent guarantees the persistence of the transport in the system. If for some reason the
assigned AGV is unable to complete the transport, the transport agent may negotiate
with other AGVs to reassign the order.

Routing. For routing purposes, the virtual environment has a static map of the paths
through the warehouse. This graph-like map corresponds to the layout used by E’nsor.
To allow agents to find their way through the warehouse efficiently, the virtual envi-
ronment provides signs on the map that the agents use to find their way to a given
destination. These signs can be compared to traffic signs by the road that provide direc-
tions to drivers. At each node in the map, a sign in the virtual environment represents
the cost to a given destination for each outgoing segment. The cost of the path is the
sum of the static costs of the segments in the path. The cost per segment is based on
the average time it takes for an AGV to drive over the segment. The agent perceives
the signs in its environment, and uses them to determine which segment it will take
next.

Gathering Traffic Information. Besides the static routing cost associated with each seg-
ment, the cost is also dependent on dynamic factors, such as congestion of a segment.
To warn other agents that certain paths are blocked or have a long waiting time, agents
mark segments with a dynamic cost on a traffic map in the virtual environment. Agents
mark the traffic map by dropping pheromones on the applicable segments. When AGVs
come in each others neighborhood, the information of the traffic maps is exchanged and
merged to provide up-to-date information to the AGV agents. Since pheromones evapo-
rate over time, outdated information automatically vanishes over time. AGV agents take
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the information on the traffic map into account when they decide how to drive through
the warehouse.

Collision Avoidance. AGV agents avoid collisions by coordinating with other agents
through the virtual environment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is the physical area the AGV
occupies. A series of hulls then describes the physical area an AGV occupies along
a certain path. If the area is not marked by other hulls (the AGV’s own hulls do not
intersect with others), the AGV can move along and actually drive over the reserved
path. Afterwards, the AGV removes the markings in the virtual environment. We zoom
in on collision avoidance in Sect. 4.4.

Deadlock Prevention. The basic mechanisms for deadlock prevention provided in the
traditional approach can be adopted in the MAS approach. E.g., when an AGV ap-
proaches a bidirectional path in the layout, the AGV agent can lock that path via the
hull reservation mechanism, or when an AGV reaches an entry point of a critical area
where only a limited number of AGVs are allowed, the AGV agent can instruct the
AGV to wait there until the area is accessible. However, those rules only provide a par-
tial solution to avoid deadlock. Currently, we study two additional tracks to deal with
deadlock, one with a supervising MAS that monitors the AGV movements and provides
feedback to the AGV agents, and another where AGVs themselves monitor their neigh-
borhood and exchange information regarding deadlock threats via the environment.

4 A Virtual Environment for AGV Agents

This section describes the virtual environment in the AGV transportation application.
We focus on the virtual environment from the viewpoint of AGV agents. First we give a
broad overview of the structure of the virtual environment, in three parts. The first part
gives a brief overview of the high-level model of an AGV and situates the virtual en-
vironment in this model. The second part describes how the local virtual environment
synchronizes its state with other local virtual environments. The third part describes
how the virtual environment handles perception, action and communication. Conclud-
ing with an example, we describe how the virtual environment is exploited by the AGV
agents to avoid collisions.

4.1 High-Level Model of an AGV

Figure 2 depicts an overview of an AGV. The AGV agent is shown in the top layer of the
model. We do not elaborate on the architecture of the AGV agent; it is based on the ref-
erence architecture discussed in [13] and [14]. The AGV agent is situated in the virtual
environment, shown as a layer below the top layer. The virtual environment uses the
middleware layer, that is composed of a Message Transfer System, the ObjectPlaces
middleware [11] (both discussed later) and E’nsor. The operating system is located
below the middleware. Finally, the bottom layer represents the physical infrastructure
of the AGV, including a processor, communication infrastructure, actuators and sen-
sors. We further elaborate on the virtual environment and the supporting middleware
hereafter.
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Fig. 2. High-level model of an AGV

4.2 Managing State in the Virtual Environment

Since the virtual environment is necessarily distributed over the AGVs and transport
bases, each local virtual environment is responsible to keep its state synchronized with
other local virtual environments. The state of the local virtual environment on an AGV
is divided into three categories:

1. Static state: this is state that does not change over time. A typical example is the
layout of the factory floor, which is needed for the AGV to navigate. Static state
must never be exchanged between local virtual environments, since it is common
knowledge and never changes.

2. Observable state: this is state that can be changed in one local virtual environment,
while other local virtual environments can only observe the state. An AGV typically
obtains this kind of state from its sensors directly. An example is an AGV’s position.
Local virtual environments are able to observe another AGV’s position, but only
the local virtual environment on the AGV itself is able to read it from its sensor,
and change the representation of the position in the local virtual environment. No



228 D. Weyns, K. Schelfthout, and T. Holvoet

conflict ever arises between two local virtual environments concerning the update
of observable state.

3. Shared state: this is state that can be modified in two local virtual environments
concurrently. So, two or more local virtual environments can conflict on what is the
“right” state. The traffic map, containing dynamic costs associated with segments,
is an example of shared state. Several AGV agents can modify the cost on the
same segment concurrently. When the local virtual environments on these AGVs
synchronize, costs of the local virtual environments’ traffic maps are mutually ex-
changed and conflicts are resolved to generate an up-to-date traffic map in both
local virtual environments.

In order to manage and maintain this state, the local virtual environment performs
three basic activities. We describe each of these in turn.

The first activity is synchronizing the state of the local virtual environment with the
AGV’s sensors. The local virtual environment uses E’nsor to regularly poll the vehi-
cles’s current status and adjust its own state appropriately. For example, if the AGV’s
position has changed, the AGV position in the local virtual environment is updated.

The second activity the virtual environment performs is synchronizing the state of
the local virtual environment with other AGVs. This is supported by the ObjectPlaces
middleware. ObjectPlaces offers high-level abstractions to deal with communication in
mobile and ad hoc networks. The local virtual environment uses the middleware by
sharing objects in a tuplespace-like container, called an objectplace. Every AGV has
one objectplace locally available. Objects in objectplaces on remote AGVs can be gath-
ered using a view. The local virtual environment can define a view by (1) specifying
which AGVs’ objectplaces need to be included in the view (e.g. the objectplaces of
all AGVs within a specific range), and (2) specifying what objects need to be included
in the view (e.g. hull objects). Based on these specifications, the ObjectPlaces mid-
dleware then builds a local collection of objects reflecting the current contents of the
remote objectplaces. In other words, a local virtual environment shares data with other
AGVs by putting objects in the local virtual environment’s objectplace. Local virtual
environments gather data from other AGVs by defining a view on the objectplaces of
those AGVs. For example, when an AGV agent marks a hull in the environment, this
hull is published in the local virtual environment’s objectplace. When the AGV agent
wants to perceive hulls in its vicinity, the local virtual environment defines a view on all
hull objects in objectplaces of AGVs within a certain physical distance from the AGV.
The middleware then gathers the hull objects from the objectplaces on the appropriate
AGVs. The local virtual environment can then use the hull objects to determine whether
the requested path is free or not and return this results to the agent.

The third and last activity is maintaining the state of the virtual environment lo-
cally. This is done by maintenance processes in the local virtual environment itself. An
example is the maintenance of pheromones. A change of local state possibly triggers
an update of state in the local virtual environment’s objectplaces, so that other virtual
environments can synchronize with the new state.

In summary, the virtual environment deals with the management of state in the dis-
tributed system, hiding many aspects of distribution from the AGV agent. Agents can
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act and perceive in the local virtual environment, which in turn contacts local environ-
ments on other AGVs to synchronize state.

4.3 Perceiving, Acting and Communicating

The virtual environment offers abilities for perception, action and communication to the
AGV agent, shielding low-level details from the agent.

Perception is handled by the perception manager. The perception manager’s task is
straightforward: when the agent requests a percept, for example the current positions of
neighboring AGVs, the perception manager queries the necessary information from the
local virtual environment and returns it to the agent.

Actions are handled by the action manager. A first kind of actions concerns the phys-
ical actions of the AGV, for example moving over a segment or picking a load. These
actions are handled fairly easily by passing them on to the E’nsor control software. A
second kind of actions does not actually have an effect on the behavior of the AGV,
but manipulates the virtual environment. Marking hulls is one example of this, which is
described in detail in Sect. 4.4. Another is dropping a virtual pheromone. In general, an
action can be handled by passing it down to Ensor, and/or by changing the local virtual
environment which in turn may change the content of the objectplace.

Communication is handled by the communication manager. Agents can communicate
directly with other agents through the virtual environment. A typical example is an
AGV agent that communicates with a transport agent. Another example is an AGV
agent that requests the AGV agent of a waiting AGV to move out of the way. The
virtual environment is responsible for translating high level messages to messages that
can be sent through the network (resolving agent names to IP numbers for example).
For this, it uses the message transfer system in the middleware layer.

In summary, the virtual environment offers high level primitives to the AGV agent
to act in the world, perceive the world, and communicate with other agents. The virtual
environment shields the agent from having to deal with lower level issues.

4.4 A Specific Scenario: Collision Avoidance

We now describe a specific scenario, to illustrate how collision avoidance works. In
the centralized approach, collision avoidance is realized as follows: for each AGV in
the system, a series of hulls are calculated along the path each AGV is going to drive.
When two or more such hull projections overlap, AGVs are on a collision course and
all except one AGV are commanded to wait.

In a decentralized architecture, a central arbitrator does not exist. However, the vir-
tual environment enables the agents to act as if they are situated in a shared environment,
while the virtual environment takes on the burden of coordination. Figure 3 shows a se-
ries of screenshots of a simulation run in a realistic map. In Fig. 3(a), two AGVs are
approaching one another. We call the AGV approaching from the top AGV A, and the
other AGV B. Both are projecting hulls in the environment. At this point, no conflict is
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(a) (b)

(c) (d)

Fig. 3. (a) Two AGVs approaching, (b) A conflict is detected, (c) One AGV passes safely, (d) The
second AGV can pass as well

detected. In Fig. 3(b), AGV B has projected further ahead, and is now in conflict with
the hull projection of AGV A. However, since AGV A’s hull projection was already
locked, AGV B must wait. In Fig. 3(c), AGV A is taking the curve, passing AGV B.
Finally, in Fig. 3(d), AGV A has parked at the bottom, and AGV B can start moving.

We now describe the collision avoidance mechanism in more detail. First, we focus
on how the agent avoids collision without being aware of the actual underlying collision
avoidance protocol, then we study the work behind the scenes (i.e. the protocol) in the
virtual environment.

In order to drive, the agent takes the following actions:
1. The agent determines the path it intends to follow over the layout. The agent deter-

mines how much of this path it wants to lock. This is determined by a safe stopping
distance on the one hand, and the application of basic rules for deadlock avoid-
ance on the other hand. As an example of the latter, if the AGV tries to lock a bi-
directional path, it must lock that path until the end, since otherwise another AGV
might enter it from the other direction, leading directly to a deadlock situation.

2. The agent marks the path it intends to drive with a requested hull projection. This
projection contains the agents id and a priority, that depends on the current transport
the AGV is handling.
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3. The agent perceives the environment to observe the result of its action.
4. The agent examines the perceived result. There are two possibilities:

(a) The hull is marked as “locked” in the environment; it is safe to drive.
(b) The hull is not marked as locked. This means that the agent’s hull projection

conflicted with that of another agent. The agent may not pass; at this point
the agent may decide to wait and look again at a later time, or remove its hull
projection and take another path altogether.

The virtual environment plays an important role in this coordination approach: it
must make sure that a hull projection becomes locked eventually. To this end, the local
virtual environment of the AGV agent that requests a new hull projection, executes a
collision avoidance protocol with local virtual environments of nearby AGVs.

It is desirable to make the set of nearby AGVs not larger than necessary, since it is
not scalable to interact with every AGV in the system. On the other hand, the set must
include all AGVs with which a collision is possible: safety must be guaranteed.

Fig. 4. Determining nearby AGVs

A solution to this problem is shown in Fig. 4. The local virtual environment of a
requesting AGV will interact with the local virtual environments of other AGVs whose
hull projection circle overlaps with the hull projection of the requesting AGV. The hull
projection circle is defined by a center point, which is the position of the AGV itself,
and a radius, which is equal to the distance from the AGV to the furthest point on its
hull projection. If two such circles overlap, this indicates (to a first approximation) that
the two AGVs might collide. We call the set of AGVs with overlapping hull projection
circles the requested AGVs.

The local virtual environment of the requesting AGV executes the following proto-
col with the local virtual environment’s of requested AGVs. The protocol is a variant
on well-known mutual exclusion protocols based on voting.

1. The local virtual environment of the requesting AGV sends the requested hull
projection to the local environments of all requested AGVs.
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2. The local environments of requested AGVs check whether the projection overlaps
with their hull projection. There are three possibilities for each of the requested
AGVs:
(a) No hull projections overlap. The local virtual environment of the requested

AGV sends an “allowed” message to the local virtual environment of the re-
questing AGV.

(b) The requesting AGV’s hull projection overlaps with the requested AGV’s hull
projection, and the requested AGV’s hull is already locked. The local virtual
environment of the requested AGV sends a “forbidden” message to the local
virtual environment of the requesting AGV.

(c) The requesting AGV’s hull projection overlaps with the requested AGV’s hull
projection, and the requested AGV’s hull is not locked. Since each of the re-
quested hulls contains a priority, the local virtual environment of the requested
AGV can check which hull projection has precedence. If the hull projection of
the requesting AGV has a higher priority than that of the requested AGV, the
local virtual environment of the requested AGV replies “allowed”; it replies
“forbidden” otherwise.

3. The local virtual environment of the requesting AGV waits for all “votes” to come
in. If all local virtual environments of the requested AGVs have voted “allowed”,
the hull projection can be locked and the local virtual environment is updated. If
not, the local virtual environment of the requesting AGV waits a random amount
of time and then tries again from step 1.

If at any time, the agent removes the requested hull from the virtual environment,
the protocol is aborted.

In this scenario, the virtual environment serves as a flexible coordination medium,
which hides much of the distribution of the system from the agents: agents coordinate
by putting marks in the environment, and observing marks from other agents.

5 Conclusions

Situated agents exploit the environment to coordinate their behavior and reach their
goals. Research in this area almost invariably assumes the existence of an exploitable
environment a priori that is accessible for all agents, either by centralizing or by pro-
viding infrastructural support especially for environments. A possible critique on this
research is that it takes the access to the environment as a common shared entity for
granted, whereas the absence of such an entity is the essence of many multi-agent based
systems. On the contrary, we have shown that an environment does not need to be a
common shared entity to be useful. We introduced the concept of virtual environment,
a decentralized entity in an application where a centralized approach is undesirable and
no shared infrastructure is available to deploy an environment as a common accessible
entity. We also showed that offering an observable and moldable environment to agents
living in a constrained physical environment, strengthens the MAS approach instead of
diluting it. The virtual environment is a first-order abstraction in the designed solution
of the AGV transportation application.
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So far, we have implemented AGV routing, information sharing and collision avoid-
ance. We have validated the solution in a test setup with two physical AGVs, and in a
number of advanced simulation cases. The next challenges are order assignment and
deadlock avoidance. With respect to order assignment we study two different tracks,
one with an adaptive version of the Contract-Net protocol and one with a gradient field
based approach. In this latter approach, each transport agent emits a gradient field in
the virtual environment that attracts interested AGVs to the pick location of the load,
while each interested AGV emits a gradient field that repels other competitor AGVs.
The gradient fields guide idle AGVs toward the most appropriate transports, ensuring
maximal flexibility (e.g., AGVs take into account opportunities –new transports that
pop up– when they drive toward a load). To deal with deadlock, we also follow two
possible approaches, one with a supervising MAS that monitors the AGV movements
and provides feedback to the AGV agents, and another where AGVs themselves mon-
itor their neighborhood and exchange information regarding deadlock threats via the
virtual environment.

We are convinced that exploiting the environment in our ongoing AGV research
case is an asset, and will continue our validation of situated MAS in this complex real-
world application.

References
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