
From Reactive Robotics to Situated Multiagent Systems
A Historical Perspective on the Role of Environment in Multiagent Systems

Danny Weyns and Tom Holvoet

AgentWise, DistriNet, Katholieke Universiteit Leuven,
Celestijnenlaan 200 A, B-3001 Leuven, Belgium

{danny.weyns, tom.holvoet}@cs.kuleuven.be

Abstract. Historically, the idea of situated multiagent systems—in which the en-
vironment gets a prominent role—originates from the domain of reactive
robotics. In this paper, we give a historical perspective of research on agency
that devotes pertinent attention to the environment, and show how the role of the
environment evolved along with subsequent evolutions of agent systems. Today,
it is quite obvious that the environment offers opportunities and challenges for all
types of agency. We discuss recent research in this area, which advocates that the
environment is not only an essential part of every multiagent system, but also pro-
vides an exploitable design abstraction to build multiagent systems. The notion
of environment exceeds specific types of agency, and as such offers opportunities
for synergetic research in the interest of multiagent systems in general.

1 Introduction

Recently, the environment became subject of active research in multiagent system
[1, 2, 3, 4]. Research on environments, however, is not new. In situated multiagent sys-
tems the environment has always been a central part of the system. Historically, the
idea of situated multiagent systems originates from the domain of reactive robotics.
Throughout the different stages in the evolution, from single robotic systems to situ-
ated multiagent systems, the role of the environment evolved along with subsequent
evolutions of agent systems. Whereas the environment was initially considered as “the
external world” in which agents were situated, gradually researchers became aware that
the environment provides a medium that could be exploited for building multiagent sys-
tems. Today, it is quite obvious that the environment offers opportunities and challenges
for all types of agency.

This paper provides a background on the role of the environment in multiagent sys-
tems, aiming to help researchers to improve their understanding of the notion of envi-
ronment in multiagent systems. We give a historical overview of research on agency
that devotes pertinent attention to the environment. We show how the role of the en-
vironment evolved along with subsequent evolutions of agent systems, and we discuss
recent developments in research on environments. The notion of environment exceeds
specific types of agency, and as such offers opportunities for synergetic research in the
interest of multiagent systems in general.

This paper is structured as follows. In Sect. 2, we give an overview of single agent
systems that originate from the principles of reactivity. Section 3 discusses the evolu-
tion of multiagent systems, starting from collective reactive behavior to today’s situated

O. Dikenelli, M.-P. Gleizes, and A. Ricci (Eds.): ESAW 2005, LNAI 3963, pp. 63–88, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 D. Weyns and T. Holvoet

multiagent systems. In Sect. 4, we discuss recent developments in research on environ-
ments and we point to a number of challenging domains for future research.

2 Single Agent Systems

Around 1985, several researchers pointed to fundamental problems with deliberative
approaches to build agent systems [5, 6, 7]. Reasoning on internal symbolic models and
action planning turned out to be insufficient for agents that have to operate in a dynamic
and unpredictable environment. These researchers proposed radical new architectures
for building agents. Whereas deliberative approaches emphasize explicit knowledge
and rational choice, the emphasis of these new architectures was on direct coupling
of perception to action, modularization of behavior, and dynamic interaction with the
environment. Initially, the focus of this research was on single agent systems. In this
section, we give an overview of the subsequent evolutions of single agent architectures
and we discuss the role of the environment in this evolution.

2.1 Reactive Robotics

In the mid 1980s, researchers were faced with the problem of how to build autonomous
robots that are able to generate robust behavior in the face of uncertain sensors, an
unpredicted environment, and a changing world [8]. Attempts to build such robots
with traditional techniques from artificial intelligence showed deficiencies such as brit-
tleness, inflexibility, and no real-time reaction [9]. Besides, these systems suffered
from several theoretical problems, such as the frame problem and the problem of non-
monotonic reasoning within realistic time constraints [10]. This brought a number of
researches to the conclusion that reasoning on symbolic internal models, and planning
the sequence of actions to achieve the goals is unfeasible for agents with many—often
conflicting—goals that have to operate in complex, dynamic environments. This con-
clusion led to the development of a radically new approach to build autonomous agents.
The key characteristics of this approach are described by Brooks in [8]:

• Situatedness. The robots are situated in the world, they do not deal with abstract de-
scriptions, but with the here and now of the world directly influencing the behavior
of the system.

• Embodiment. The robots have bodies and experience the world directly, their ac-
tions are part of a dynamic with the world.

• Intelligence. Robots are observed to be intelligent. The source of intelligence is not
limited to the agents internal system, it also comes from physical coupling of the
robot with the world.

• Emergence. The intelligence of the system emerges from the system’s interactions
with the world and from indirect interactions between its components.

Architectures for these robots emphasize a direct coupling of perception to action and
the dynamic interaction with the environment. The environment is not only taken into
account dynamically, but its characteristics are exploited to serve the functioning of the
system. The internal machinery of the robots typically consists of combinatorial cir-
cuits completed with a timing circuitry. Each circuit represents a simple behavior of the

From Reactive Robotics to Situated Multiagent Systems 65

agent. These circuits are hard-wired or pre-compiled from specifications. The resulting
structure allows robots to react in real-time to the changing conditions of the world in
which they are embedded. Representative examples of approaches for reactive agents
are Pengi [6] and Situated Automata [7]. In Pengi, the penguin’s situated actions are
coded in the form of simple rules. The expressions of the rules use so called indexical-
functional representations of the environment. Pengi does not associate symbols with
individual objects in the world, but uses expressions that describe causal relationships
between the agent and indexically or functionally entities in the world. An example of
a situated action is “if there is an ice-cube-besides-me then push ice-cube-besides-me”.
In Situated Automata, an agent is specified declaratively in the Gapps language [11].
From this specification a runtime program is generated, which satisfies the declarative
specification. This program achieves real-time performance, it acts reactively without
doing any symbol manipulation.

As an illustration of reactive robots, we discuss the Subsumption Architecture devel-
oped by Brooks [5]. The Subsumption Architecture is organized as a series of parallel
working layers, each layer is responsible for a specific behavior of the agent. The prior-
ity of layers—behaviors—increases from bottom to top. Higher layers are able to inhibit
lower layers, giving priority to more important behavior. Fig. 1 depicts an example of
a Subsumption Architecture for a simple robot that has to collect packets and deliver
them at a destination. On its way, the robot must avoid obstacles in the environment.

A layer in the architecture directly connects perception to action by means of a fi-
nite state machine augmented with timing elements. Each layer collects its own sensor
data that is written in registers. The arrival of specific data, or the expiration of a timer,
can trigger a change of state in the interior finite state machine and possibly produce
output commands to actuators. Inhibition and suppression mechanisms resolve con-
flicts between actuator commands from different layers. In the original version of the
Subsumption Architecture, finite state machines could not share any state, each layer
encapsulated its registers and clock. Later this restriction was relaxed, allowing clusters
of finite state machines to share state and clocks. The Subsumption Architecture has
successfully been used in many practical robots.

������� ��	
��

	����	� ��	
��

����� 	����
���

������� �	������

��
��

��������
�����������

Fig. 1. Subsumption Architecture for a Simple Robot

66 D. Weyns and T. Holvoet

2.2 Behavior-Based Agents

In the early 1990s, researchers raised important limitations of the initial reactive ap-
proaches. In [9], Maes points to a number of problems with the wired or pre-compiled
action selection structures of reactive architectures. Although these approaches demon-
strate very good performance, they are typically very specific solutions, leaving little
room for reuse. For complex agents in complex environments, the architectures are
very hard to build. Another important shortcoming is the lack of explicit goals and
goal-handling. The designer must anticipate what the best action is to take in all oc-
curring situations. However, for complex systems much of the necessary information
will only be available at runtime. Goals may vary over time and now goals may come
into play.

Different approaches that support run-time decision making have been developed,
usually referred to as behavior-based or situated agents. Prominent examples are Motor
Schemas [12], Distributed Architecture for Mobile Navigation [13] (DAMN), and Free-
Flow Architectures [14, 15]. Motor schemas is based on schema theory that explains a
robot’s motor behavior in terms of the concurrent control of different activities [16].
A schema-based robot consists of a number of parallel executing motor schemas, each
schema providing a behavior. Schemas can be added or removed at runtime. Each motor
schema has as output an action vector that defines the way the robot should move in
response to the perceived stimuli. The sum of output vectors determines the behavior
of the robot. In DAMN different behaviors generate outputs as a collection of votes.
Behavior arbitration is a winner-take-all strategy in which the largest number of votes
for an action is selected for execution. Multiple parallel arbiters for different control
functions can be combined, e.g. for speed, turning, etc. A free-flow architecture consists
of a hierarchy of nodes which receive information from internal and external stimuli in
the form of activity. The nodes feed their activity down through the hierarchy until the
activity arrives at the action nodes (i.e. the leaf nodes of the tree) where a winner-take-
all process decides which action is selected. A free-flow architectures allows an agent
to take into account different preferences simultaneously.

As an illustration of behavior-based agents, we discuss Maes’ Agent Network Ar-
chitecture [9] (ANA). ANA combines the robot-oriented principles of reactivity such
as decomposition along tasks, de-emphasizing of internal world models and emergent
functionality with goal-handling at runtime, and puts this approach in a broader context
of software agent systems. An ANA consists of a network of competence modules. A
competence module is a node in the network with its own specific competence. A com-
petence module has a list of preconditions which have to be true before the competence
module becomes executable. In addition, each competence module has a level of ac-
tivity. When the activation level of an executable competence module reaches a certain
threshold, it may be selected for execution, resulting in some actions. Fig. 2 shows a
simple example of an agent network architecture.

Competence modules are linked through different types of links. Modules use these
links to activate and inhibit each other, so that after some time the activation energy
accumulates in the modules that represent the best actions to take, given the current
situation and goals. The spreading of activation among modules, as well as the input of

From Reactive Robotics to Situated Multiagent Systems 67

���� ������

��	�
��
��		���

�
�	��������������

�����

�����

���������������
��������������

���� ������

�����

������ �����
����
���� ��! �����

��"

��#������� #�����

Fig. 2. Agent Network Architecture for a Simple Robot [17]

new activation energy into the network is determined by the current observations and
the goals of the agent. Note that goals may change at runtime. Through the cumula-
tive effect of forward and backward spreading of activation energy along sequences of
competence modules, the network exhibits implicit “planning” capabilities. The contin-
uous re-evaluation of environmental input ensures that the action selection easily adapts
with changing situations. However, ANA suffers also from a number of limitations, a
detailed discussion is given by Tyrrell in [15]. One problem is the loss of information
because the approach assumes binary sensor data. However, many properties of real-
istic environments are continuous. Tyrrell has demonstrated that ANA suffers from an
inherent unbalance of competition among competence modules, resulting in inefficient
behavior. Another problem with ANA is the lack of compromise actions, i.e. ANA does
not consider preferences of more then one competence module at a time. From our ex-
periences [17], we learned that it is very difficult to design an agent network architecture
for a non-trivial agent. ANA offers little support for structuring the behavior of com-
plex agents. Moreover, adding a competence module to an existing network is almost
impossible without affecting the existing structure.

2.3 Explicit World Models and Hybrid Agent Architectures

The use of explicit world models in reactive-based agent architectures has been sub-
ject of debate from the early start of reactive agents. Brooks argued against the need
for any kind of world model or cognitive level at all [5]. Other researchers showed
how knowledge may be compiled into non-symbolic implementations, see e.g. [18].
In [19], Steels states that “autonomous agents without internal models will always be
severely limited”. He proposes to use analogical instead of symbolic representations,
and demonstrates his approach for a simple robot that has to acquire a map of the envi-
ronment by wandering around. Another argumentation for the necessity of knowledge
representation was given by Arkin in [20]. Arkin states that “despite the assumptions of

68 D. Weyns and T. Holvoet

early work in reactive control, representational knowledge is important for robot navi-
gation”, and he demonstrates how a priori and dynamically acquired world knowledge
can be exploited to increase flexibility and efficiency of reactive navigation.

Related to the issue of explicit world models is the position of plans. In [21], Agre
and Chapman elaborate on the use of plans in agents’ decision making. The authors con-
trast two views on plans: plans as a resource to the agent versus plans for actions. In the
view of plans as a resource, agents use plans as a resource among others in continually
re-deciding what to do. In the view of plans for action, agents execute plans to achieve
goals, i.e. a plan is a prescription of subsequent actions to achieve a goal. The analysis
of Agre and Chapman laid the foundation for the work on reactive planning [22, 23].

In [24], Malcolm and Smithers introduced the notion of hybrid architecture. A hy-
brid architecture combines a deliberative subsystem with a behavior-based subsystem.
The deliberative subsystem permits representational knowledge to be used for planning
purposes in advance of execution, while the behavior-based subsystem maintains the
responsiveness, robustness, and flexibility of purely reactive systems. Over the years,
many hybrid behavior-based architectures have been developed. Today, the approach is
common in the domain of robotics, for an overview see [25]. A key function in hybrid
architectures is the interface between deliberation and reactivity since it links rapid reac-
tion and long-range planning. A common approach to balance reactivity with planning
is to introduce an explicit third layer that coordinates among the reactive and delibera-
tive layer. In general however, coordination of deliberation and reactivity is not yet well
understood and is subject of active research.

2.4 Reflection

Starting from the initial principles of reactivity, a wide range of architectural approaches
have been developed. Three classes of approaches are identified:

1. Reactive robots emphasize the dynamic interaction with the environment. The inter-
nal machinery of the robots directly couples perception to action, enabling real-time
reaction.

2. Behavior-based agents stress the need for dynamic and flexible action selection,
aiming to cope with complex environments. Architectures for behavior-based
agents support runtime arbitration among parallel executing behaviors and allow
goals to vary dynamically over time.

3. Hybrid agents exploit representational knowledge of static aspects of the environ-
ment. Architectures for hybrid agents integrate cognition (reasoning over internal
representations of the world and planning) with reactivity (real-time reaction to
stimuli) aiming to combine the advantages of planning and quick responsiveness.

These approaches share two properties:

1. The focus is on the architecture of single agents. Architectures differ in the way
they solve the problem of action selection. Architectures do not support social
interaction.

2. The approaches stress the importance of environmental dynamics. However, the
environment itself is considered as external to the system, i.e. the environment is
not an explicit part of the models or architectures.

From Reactive Robotics to Situated Multiagent Systems 69

3 From Collective Reactive Behavior to Situated Multiagent
Systems

Since the early 1990s, researchers which devote pertinent attention to the environment
have been investigating systems in which multiple agents work together to realize the
system’s functionality. In these systems, the agents exploit the environment to share
information and coordinate their behavior. In this section, we take a look at a number
of relevant approaches that have been developed.

3.1 Collective Reactive Behavior

In [26], Reynolds demonstrated flocking behavior between a set of agents. The aggre-
gate behavior of the multiagent system emerged from the interaction of multiple agents
that each follows a set of simple behavioral rules. Mataric adopted these techniques to
real robots [27], showing how a set of robots produced pack behavior. Each robot was
provided with a set of simple behaviors from which it selects the most suitable behavior
according to its current environmental context, i.e. its current position relative to other
robots. In [28], Zeghal demonstrated another form of reactive coordination. Zeghal used
vector fields to control the landing and movements of a large group of aircrafts in a sim-
ulation. In this approach, each agent is guided by a potential field that it constructs based
on attracting and repulsing forces resulting from goals and obstacles (including other
agents) respectively. An advanced example of behavior-based coordination among un-
manned guided vehicles is demonstrated in the DARPA UGV programme.1 In this case,
a DAMN arbiter was used to coordinate the vehicle’s behavior given its position in the
formation. Although very attractive, several researchers have pointed to the complexity
of designing collective reactive behavior, see e.g. [30, 29].

3.2 Stigmergic Agent Systems

In [31], Grassé introduced the term stigmergy to explain nest construction in termite
colonies. The concept indicates that individual entities interact indirectly through a
shared environment: one individual modifies the environment and others respond to
the modification, and modify it in turn. Deneubourgh [32] and Steels [33] demonstrated
how explorer robots can improve the search of target objects by putting marks in the
environment. When a robot finds a source of target objects, it puts a trail of marks in the
environment from the source of objects toward the robot base, while returning home
with an object. This trail allows other exploring robots to find the source of objects
efficiently, similar to ants that inform each other about sources of food by depositing
pheromone trails in the environment. To ensure that the robots are not mislead when
the source becomes exhausted, the marks must be dynamical elements that vanish over
time. This mechanism of indirect coordination through the environment combines posi-
tive feedback (reinforcement of the trail) with negative feedback (decay of the trail over
time).

Stigmergy has been a source of inspiration for many researcher in the multiagent
systems. In [34], Parunak describes how principles of different natural agent systems

1 For a detailed discussion see [29].

70 D. Weyns and T. Holvoet

(ants, wasps, wolves, etc.) can be applied to build self-organizing artificial agent sys-
tems. Example applications of stigmergy are ant colony optimization [35], routing calls
through telecommunication networks [36], supply chain systems [37], manufacturing
control [38], and peer to peer systems [39].

We illustrate the use of marks in the environment with two prominent examples from
literature: first we look at Synthetic Ecosystem developed by Brueckner [38], after that
we briefly discuss the Co-Fields approach proposed by Mamei and Zambonelli [40].

Synthetic Ecosystem. A synthetic ecosystem enables indirect coordination among
software agents in the same way social ants coordinate, the software environment
emulates the “services” provided by the real world of ants. The part of the software en-
vironment realizing the services is called the pheromone infrastructure. The pheromone
infrastructure models a discrete spatial dimension. It comprises a finite set of places and
a topological structure linking the places. A link connecting two places has a down-
stream and an upstream direction. Each agent in a synthetic ecosystem is mapped
to a place, i.e. the current location of the agent, which may change over time. The
pheromone infrastructure models a finite set of pheromone types. A pheromone type is
a specification of a software object comprising a strength-slot (real number) and other
data-slots. For each pheromone type, a propagation direction (downstream or upstream)
is specified. The pheromone infrastructure handles a finite set of software pheromones
for each pheromone type. Every data-slot is assigned a value of a finite domain to form
one pheromone (type, direction, propagation, evaporation, etc.). The strength value (i.e.
the value in the strength-slot) is interpreted as a specific amount of the pheromone.
Different pheromones of a synthetic ecosystem may be stored in each place.

The pheromone infrastructure manipulates the values in the strength-slot of the
pheromones at each place in three different ways:

1. External input (aggregation): Based on a request by an agent, the strength of the
specified pheromone is changed by the specified value.

2. Internal propagation (propagation/diffusion): When an agent injects pheromone at
a place, the input event is immediately propagated to the neighbors of that place
in the direction of the pheromone. There the local strength of the pheromone is
increased with the arriving pheromone value reduced by the propagation parameter.
This process is recursively repeated until the remaining pheromone value crosses a
minimal threshold.

3. Without taking changes caused by external input or propagation into account, the
strength of each pheromone is constantly reduced in its absolute value (evapora-
tion). The reduction is influenced by the evaporation parameter of the pheromone.

The pheromone infrastructure realizes an application-independent support for synthetic
ecosystems designed according to a number of design principles, such as decentral-
ization, locality, parallelism, indirect communication, information sharing, feedback,
randomization and forgetting. In [38, 34], Brueckner and Parunak describe a set of en-
gineering principles for designing synthetic ecosystems, including: agents are things,
not functions – keep agents small – decentralize control – support agent diversity –
enable information sharing – support concurrency.

From Reactive Robotics to Situated Multiagent Systems 71

The principles of synthetic ecosystems and the proposed pheromone infrastructure
are applied to a manufacturing control system [38]. V. Parunak and his colleagues have
applied digital pheromones in many other practical applications, for an overview we
refer to [41].

Co-fields. Computational Fields (Co-Fields) is an approach to model and engineer the
coordinated movements of a group of agents such as mobile devices (possibly carried
by users), mobile robots, or sensors of a dynamic sensor network. In Co-Fields, the
movements of the agents are driven by abstract (computational) force fields. By let-
ting agents follow the shape of the fields, global coordination and self-organization can
emerge.

The Co-Fields model is essentially based on the following three principles:

1. The environment is represented by fields that can be spread by agents or by the en-
vironment itself. These fields convey useful information for the agents to coordinate
their behavior.

2. The coordination among agents is essentially realized by letting the agents follow-
ing the waveform of these fields.

3. Environment dynamics and movements of the agents induce changes in the surface
of the fields, realizing a feedback cycle that influences agents’ movement. This
feedback cycle enables the system (agents and environment) to auto-organize.

A field is defined as a distributed data structure composed of a unique identifier, a value
that represents the field magnitude, and a propagation rule. Fields can be generated by
the agents or by the environment, and are propagated through the space according to the
propagation rule. The propagation rule determines the shape of the field surface. Fields
can be static or dynamic. A field is static if its magnitude does not change over time,
while a the magnitude of a dynamic field may change. Agents combine the values of
the fields they perceive, the resulting new field is called the agents coordination field.
Agents follow (deterministically or probabilistically) the shape of their coordination
field. Agents can follow the coordination field downhill, uphill, or along one of the
equipotential lines of the field. Complex movements are achieved by dynamically re-
shaping the surface of the field.

In principle, the approach can be generalized toward coordination fields spread in
abstract spaces to encode coordination among agents that is related to actions differently
from physical movements. In such a case, the agents follow their coordination field, not
by moving from one place to another, but by making other kinds of actions.

The Co-Fields model is applied to a number of experimental applications, including
a case study in urban traffic management [42] and a video game [43].

3.3 Situated Multiagent Systems

Stigmergic agent systems have proven their value in practice, yet, a number of com-
ments are in order:

• Stigmergic agents are considered as “simple” entities. However, there is little or no
attention for the architecture of agents.

72 D. Weyns and T. Holvoet

• Stigmergic agents are not able to set up explicit collaborations to exploit contextual
opportunities.

• The environment is considered as infrastructure for coordination, typically sup-
porting one particular form of coordination. However, these infrastructures are not
concerned with other environmental aspects such as perception, direct communica-
tion, or synchronization of actions. As for agents, there is little or no attention for
the architecture of the environment.

Motivated by these considerations, researchers have extended the vision of stigmergic
agents and developed architectures for a family of agent systems that is generally re-
ferred to as situated multiagent systems.

Multilayered Multi Agent Situated System. In the Multilayered Multi Agent Situ-
ated System [44, 45] (MMASS) agents and the environment are explicitly modelled.
MMASS introduces the notion of agent type which defines agent state, perceptual
capabilities and a behavior specification. Agent behavior can be specified with a be-
havior specification language [46] that defines a number of basic primitives, such as
emit (starts the diffusion of a field), transport (defines the movement of the agent),
or trigger (specifies state change when a particular condition is sensed in the envi-
ronment). MMASS models the environment as a multi-layered structure, where each
layer is represented as a connected graph of sites. Layers may represent abstractions
of a physical environment, but can also represent logical aspects, e.g. the organiza-
tional structure of a company. Between the layers specific connections (interfaces)
can be defined that are used to specify that information generated in one layer, may
propagate into other layers. In MMASS, agents can (1) interact through a reaction
among adjacent entities, (2) emit fields that are diffused in the environment, and (3)
can be perceived by other agents.

Influence–Reaction Model. In [47], Ferber and Müller propose a basic architecture
for situated multiagent systems. This architecture builds upon earlier work of Gene-
sereth and Nilson [48]. Ferber and Müller distinguish between tropistic and hysteric
agents. Tropistic agents are essentially reactive agents without memory, whereas hys-
teric agents may have complex behaviors that use past experiences for decision making.
Central to the model is the way actions are modelled. The action model distinguishes
between influences and reactions to influences. Influences are produced by agents and
are attempts to modify the course of events in the world. Reactions, which result in state
changes, are produced by the environment by combining influences of all agents, given
the local state of the environment and the laws of the world. This clear distinction be-
tween the products of the agents’ behavior and the reaction of the environment provides
a way to handle simultaneous activity in the multiagent systems. In [49], Ferber uses
the BRIC formalism (Block-like Representation of Interactive Components) to model
situated multiagent systems. In BRIC, a multiagent system is modelled as a set of inter-
connected components that can exchange messages via links. BRIC components encap-
sulate their own behavior and can be composed hierarchically. An interesting model for
action that extends the influence–reaction model with the notion of activity as first-class
concept is proposed in [50].

From Reactive Robotics to Situated Multiagent Systems 73

������� ����	��
������� ����	��

���������	

����	��
���	

�������	 �����	
��������	

����
��
��������	�

��������

��
��
��������

����	�
�	�������

�����

��	�
������

������������	�
������

����� ���
�����

���
�����

�������

�	
��
�	

��
����

	�����	�

�����

�����

���
������

�����

�����

�����

�

�

� �

�
�

�

�

�

�

������� ����	��

��������

��	��
���

�����

��
����

�����

� ���

�������

�
�����

���
���� �	����

Fig. 3. Reference Architecture for Situated Multiagent Systems

Reference Architecture for Situated Multiagent Systems. Inspired by the work of
Ferber and Müller, in our research we have developed a reference architecture for situ-
ated multiagent systems. This reference architecture generalizes and extracts common
functions and structures from various applications we have studied and built, includ-
ing the Packet-World [51], a peer-to-peer file sharing system [52], a number of simple
robot applications [53], and an simulator for Automatic Guided Vehicle systems [54].
Fig. 3 shows a high-level module view of the reference architecture. The architecture
integrates three primary abstractions: agents, ongoing activities and the environment.
We successively look at the architecture of each abstraction.

Agents. The agent architecture models different concerns of the agent (perception, de-
cision making and communication) as separate modules. The Perception module maps
a local representation of the state of the environment to a percept for the agent. We de-
veloped a model for selective perception that enables an agent to direct its perception at
the most relevant aspects in the environment according to its current task [55]. To sense
its environment, the agent selects a set of foci. Sensing results in a representation of the
agent’s surrounding that can be interpret by the agent producing a percept. Finally, the
percept is filtered by a set of selected filters, restricting the perceived data according to
specific context relevant selection criteria.

The CurrentKnowledge module integrates percepts to update the current knowledge
of the agent. The Decision module is responsible for action selection [56, 57]. We

74 D. Weyns and T. Holvoet

developed the decision module as a free-flow architecture. Free-flow architectures allow
flexible and adaptive action selection [15]. Since existing free-flow architectures lack
explicit support for social behavior, we introduced the concepts of a role and a situated
commitment. A role covers a logical functionality of the agent, while a situated commit-
ment allows an agent to adjust its behavior towards the role in its commitment. An agent
can commit to itself, e.g. when it has to fulfill a vital task. However, in a collaboration,
agents commit to one another via communication. Roles and situated commitments are
building blocks for explicit collective behavior. The operator selected by the decision
module is passed to the ActionExecution module that invokes an influence in the en-
vironment. The action model is based on the influence—reaction model of Ferber and
Müller [47].

The Communication module takes care of the communicative interactions. We devel-
oped a communication module that processes incoming messages and produces outgoing
messages according to well-defined communication protocols [58]. The module consists
of three functional modules: message decoding, communicating and message encoding.
The message decoding module extracts the information from the received messages. The
core of the model, the communicating module (1) interprets decoded messages and reacts
to them in accordance with the applicable protocol, and (2) initiates or continues con-
versations when the conditions imposed by the applicable protocol are satisfied. Finally,
the message encoding module encodes new messages and passes them to the message
transport system of the environment. Communication enables agents to exchange infor-
mation, and set up collaborations reflected in mutual situated commitments.

Ongoing Activities. Next to agents, we introduced the concept of an ongoing activ-
ity [59]. An ongoing activity provides an abstraction for an environmental process that
happens independent of agents. An ongoing activity is defined by an Operation that
produces influences in the environment according to the state of the world. Examples
of ongoing activities are an evaporating pheromone, a self-managing gradient field, a
moving object, or a timer. Ongoing activities are generic building blocks for indirect
coordination, and as such it forms a basis for collective behavior.

Environment. The environment architecture decomposes the environment into different
functional modules (perception, communication, action and interaction). The Percept-
Generator module is responsible for perception management [55]. When an agent is
interested in perceiving its surroundings, it invokes a sense command in the environ-
ment. Such a sense command contains a set of foci that expresses the agent’s current
interests of perception. The PerceptGenerator then composes a representation based on
the foci, the current state of the environment and a set of perceptual laws. A perceptual
law constrains the composition of a representation according to the requirements of the
modelled domain. An example of a perceptual law in the context of a simulation is a
law that specifies how an area behind an obstacle is out of scope of a perceiving agent.
However, perceptual laws can also serve as an instrument for the designer to introduce
“synthetic” constraints on perception. E.g., for reasons of efficiency a designer can in-
troduce default limits for perception in order to restrain the amount of information that
has to be processed, or to limit the occupied bandwidth.

From Reactive Robotics to Situated Multiagent Systems 75

The MessageDelivering module is responsible for message transfer. When a message
arrives, the MessageDelivering module passes the message to the list of addressees in-
dicated in the message. It is possible to provide communication laws that are applied
when messages are transferred. An examples is a communication law that specifies the
maximal distance that messages can be delivered. Communication laws are interest-
ing for simulation purposes, but can also be a useful instrument for designers, e.g. to
regulate the message transfer.

The Collector—Reactor—Effector modules take care of action handling [59]. The
Collector collects the influences of simultaneously performed activity in the system
and passes them to the Reactor. Simultaneity of activity can be based on transactional
semantics, or it can be determined by a synchronization mechanism, see e.g. [47, 60].
The Collector passes the influences to the Reactor that calculates, according to a set of
domain specific interaction laws, the reaction, i.e. state changes in the environment. An
example of an interaction law in the context RoboCup soccer is a law that determines
the effects of two football players that kick the ball simultaneously. The Reactor finally
passes the effects to the Effector that applies the outcome of the interaction by updating
the state of the environment.

It is important to notice that the module view of the architecture as depicted in Fig. 3
abstracts from distribution. For a practical application, the state of the environment,
the delivering of messages, ongoing activities, etc., have to be implemented according
to the domain at hand, i.e. centralized or distributed. Another important remark is that
the presented model also abstracts from physical resources, external to the multiagent
system. The state of the environment may represent external resources. Support to keep
the state of the representation consistent with external resources is not covered by the
presented model.

The reference architecture for situated multiagent systems has been applied in an in-
dustrial system for logistics services in warehouses and manufactories. This real-world
application uses a situated multiagent system to control an automated guided vehicle
(AGV) transportation system [61, 62]. We briefly discuss this application in Sect. 4.2.

3.4 Reflection

In multiagent systems, multiple agents work together to realize system functionality.
We identified three classes of systems in which the environment has a central role:

• Agents with collective reactive behavior follow a set of simple behavioral rules.
Each agent is driven by what it perceives in the environment. The aggregate behav-
ior of the multiagent system emerges from the local behavior of agents.

• In stigmergic agent systems, the environment serves as a medium for coordination.
Stigmergic agents coordinate their behavior through the manipulation of marks in
the environment. The environment is an active entity that maintains processes in-
dependent of the activity of the agents. Stigmergic coordination combines positive
feedback (reinforcement of interesting information) with negative feedback (decay
of information over time).

• Situated multiagent systems emphasize the importance of architecture for agents
and the environment. Basic concerns of agent architecture are perception, commu-
nication, and decision making. Advanced types of situated agents support social

76 D. Weyns and T. Holvoet

behavior enabling them to set up explicit collaborations. Basic concerns of the en-
vironment include perception management, message delivering, action handling,
and maintenance of processes independent of agents. Laws represent domain spe-
cific constraints, but can also be used as a design instrument to impose rules in the
multiagent system.

Important characteristics of these multiagent systems are:

• Agents and the environment are explicit parts of the system, each with its specific
responsibilities.

• System functionality emerges from the indirect interactions of agents through the
environment.

Along the evolution from collective reactive behavior to situated multiagent systems,
the role of the environment evolved from (1) the context that drives the agents, to (2)
an active coordination medium, to (3) an explicit abstraction with its specific concerns
that differ from agent concerns.

Today’s situated multiagent systems integrate the architectural perspective of the ear-
lier reactive and behavior-based agent systems with the explicit role of environment of
stigmergic agent systems. Moreover, architectures for situated agents extend the initial
architectures for single agents by (1) providing support not only for action selection,
but for different concerns of agents (perception, communication, etc.), and (2) provid-
ing support for explicit social behavior (roles, situated commitments, etc.). Similarly,
architectures for the environment extend the role of the environment from a an infras-
tructure for coordination to a design abstraction that covers specific concerns that differ
from agent concerns (perception management, action handling, maintenance of pro-
cesses, laws, etc.).

Fig. 4 shows a time line with the introduction of subsequent agent systems, to-
gether with the main steps in the evolution of the role of the environment in the agent
systems.

Fig. 4. Subsequent Agent Systems and the Evolution of the Role of Environment

From Reactive Robotics to Situated Multiagent Systems 77

4 Environment, a First-Order Abstraction in Multiagent Systems

Originating from research on behavior-based agent systems and multiagent systems,
and stimulated by a number of recent efforts [1, 2, 3], the environment is now a focus
of research in multiagent systems in general. In this section, we first zoom in on the
role of the environment in multiagent systems. After that, we discuss a real-world ap-
plication in which the environment is exploited for coordinating agents behavior. The
section concludes with a number of pointers to interesting domains for future research
on environments for multiagent systems.

4.1 Role of the Environment in Multiagent Systems

Today’s research on environments considers a dual role of the environment in multia-
gent systems. On the one hand, the environment is an essential part of every multiagent
system that encapsulates parts of a multiagent system that conceptually do not belong
to agents, such as infrastructure for communication, the topology of a spatial domain,
or laws of an e-institution. Basically, the environment provides the surrounding condi-
tions for agents to exist, it offers an abstraction of the external world to agents in which
they can act and interact. This abstraction bridges the conceptual gap between the agent
abstraction and low-level issues, such as details of communication, or resources ac-
cess. On the other hand, the environment provides an exploitable design abstraction to
build multiagent systems. The environment can serve as a medium for agents to share
information and coordinate their behavior.

Distinguishing between agents and the environment supports separation of concerns
in multiagent systems. A clean separation of agent and environment concerns helps to
manage the huge complexity of engineering complex real-world applications. To clar-
ify the role of the environment in multiagent systems, we list a number of important
functionalities of the environment:

The Environment Structures the Multiagent System. The environment is first of
all a shared “space” for the agents, resources and services, which structures the whole
system. Resources are objects with a specific state. Services are considered as reactive
entities that encapsulate functionality. The agents as well as resources and services are
dynamically interrelated to each other. It is the role of the environment to define the
rules which these relationships have to comply to. As such the environment acts as a
structuring entity for the multiagent system. In general, different forms of structuring
can be distinguished:

• Physical structure refers to spatial structure, topology, and possibly distribution,
see e.g. [38, 44].

• Communication structure refers to infrastructure for message transfer, infrastruc-
ture for stigmergy [38, 40], or support for implicit communication [63, 64].

• Social structure refers to the organizational structure of the environment in terms
of roles, organizations, and societies, e.g. [65, 66].

Structuring is a fundamental functionality of the environment. Structures of the envi-
ronment may be imposed by constraints of the domain at hand, or they may be carefully
considered design choices.

78 D. Weyns and T. Holvoet

The Environment Manages Recourses, Services, and Dynamics. The environment
embeds resources and services. An important functionality of the environment is to
enable and control the access to these resources and services, hiding the complexity of
low-level issues to agents. In general, resources can be read/perceived, written/modified
or generated/consumed by agents. Services on the other hand provide functionality to
the agents on their request. The extent to which agents are able to access a particular
resource or service may depend on several factors such as the nature of the resource
or service, the capabilities of the agent, the (current) interrelationships with other re-
sources, services or agents, etc.

The environment also embeds the agents. The environment may provide support for
maintaining external state of agents, examples are tags for coordination or reputation
mechanisms.

Besides the activity of the agents, the environment can assign particular activities
to resources as well. A digital pheromone, for example, is a dynamic structure as it
aggregates with additional pheromone that is dropped, it diffuses in space and it evap-
orates over time. Other examples of environmental activities are a self-managing field
in a network, or in the context of simulation a rolling ball that moves on, or the local
temperature that evolves over time. Maintaining such dynamics is an important func-
tionality of the environment.

The Environment is Locally Observable to Agents. Contrary to agents, the environ-
ment must be observable. Agents must be able to inspect the different structures of the
environment, as well as resources, services, and possibly external state of other agents.
Observation of a structure is typically limited to the current context (spatial context,
communication context and social context) in which the agent find itself. In general,
agents should be able to inspect the environment according to their current tasks. Ex-
amples of selective perception are [55] where “foci” are proposed to enable agents to
perceive their environment according to their current tasks, and [67, 68] where “views”
are proposed as selector for perception. Perception is constrained not only by agents’
capabilities, but also by environmental properties. In [55], the perceptual constraints are
made explicit in the form of “perceptual laws”.

Related to observability is the semantic description of the domain, which can be de-
fined by an environment ontology, see e.g. [69]. The ontology must cover the different
structures of the environment as well as the observable characteristics of resources, ser-
vices and agents, and possibly the regulating laws. In an open system, it would be useful
for agents to be able to understand at run-time a new environment they are discovering.
For symbolically-oriented agents, an explicit ontology should be available to the agents
to enable them to interpret their environment and reason about it. For non-reasoning
agents, the designer/developer applies the ontology to encode the agents’ internal struc-
tures. As such, these kinds of agents have an implicit ontology that enables them to
make decisions.

The Environment is Locally Accessible to Agents. Agents must be able to access
the different structures of the environment, as well as resources, services, and possibly
external state of other agents. As for observability, accessing a structure is limited to

From Reactive Robotics to Situated Multiagent Systems 79

the current context in which the agent find itself. Access to spatial structure refers to
support for metrics, mobility, etc. Access to communication infrastructure refers to sup-
port for direct communication (message transfer), support for indirect communication
(pheromones, etc.), or support for implicit communication (over-hearing, over-sensing,
etc.). Access to social structures refers to group membership, etc.

The Environment Can Defines Rules for the Multiagent System. The environment
can define different types of rules on all entities in the multiagent system. Rules may
refer to constraints imposed by the domain at hand (e.g. mobility in a network), or refer
to “synthetic laws” imposed by the designer (e.g. limitation of access to neighboring
nodes in a network for reasons of performance). Rules may restrict access to specific
resources or services to particular types of agents, or determine the outcome of agents’
interactions.

Dealing with interactions in multiagent systems in general is a very complex matter.
[70] points out the difficulties to control the activities of agents operating in distributed
systems and propose coordination policies to deal with control. According to the au-
thors, coordination policies need to be formulated explicitly rather than being implicit
in the code of the agents involved and they should be enforced by means of a generic,
broad spectrum mechanism. The environment is the natural candidate to embed such
control mechanism.

In electronic institutions [71], agents interact through agent group meetings that
are called scenes. Interactions in a scene have to follow a well-defined communica-
tion protocol. Scenes can be composed in a performative structure. The specification
of a performative structure contains a description of how the different roles can legally
move from scene to scene. Agents within a performative structure may participate in
different scenes at the same time with different roles. Agent actions in the context of
an institution may have consequences that either limit or enlarge its subsequent acting
possibilities. Such consequences will impose obligations to the agents and affect its
possible paths within the performative structure. The environment can define and en-
force the rules imposed on the movements and interactions of agents in an electronic
institution.

A particular problem is the regulation of simultaneous actions in simulations. To al-
low multiple agents to act in the environment in parallel, explicit models are needed
to deal with actions that range far beyond the scope of state changes based on sim-
ple individual manipulation of objects. [47, 59, 50] discusses models for simultaneous
actions.

4.2 Exploiting the Environment in Practice

In this section, we illustrate how the reference architecture for situated multiagent sys-
tems discussed in Sect. 3.3 is applied to an automated transportation system for ware-
house logistics. This real-world application is developed in a joint R&D project between
the AgentWise research group and Egemin, a manufacturer of automating logistics ser-
vices in warehouses and manufactories [61, 72].

The automated transportation system uses automatic guided vehicles (AGVs) to
transport loads through a warehouse. Typical applications are distributing incoming

80 D. Weyns and T. Holvoet

goods to various branches, or distributing manufactured products to storage locations.
An AGV is provided with a battery as its energy source. AGVs can move through a
warehouse, following fixed paths on the factory floor, typically guided by a laser navi-
gation system, or by magnets or cables that are fixed in the floor. The low-level control
of the AGVs in terms of sensors and actuators (such as staying on track on a path,
turning, and determining the current position, etc.), is handled by the AGV control soft-
ware. Fig. 5 depicts a high-level model of the situated multiagent system. The situated

���

��������
��	��
��

�����	
�� ��
���

�����
�
���
����

������
������

���
��
����
��������

�����
���

�����
�
���
����

������
������

�����
���

�����	
�� ���

�
��� ������� �����
��
�� �
��� �������
�����
��
��

�������
�����
��
��

��� ��
��

���

�����
�
���
����

������
������

���
��
����
��������

�����
���

�
��� ������� �����
��
��

��� ��
��

Fig. 5. High-level model of the AGV transportation system

multiagent system consists of two kinds of agents, transport agents and AGV agents.
Transport agents are located at transport bases. AGV agents are located in AGVs that
are situated on the factory floor. The communication infrastructure provides a wireless
network that enables mobile AGVs to communicate with each other and with transport
agents on transport bases.

A transport agent represents a transport that needs to be handled by an AGV. AGV
agents are responsible for executing the assigned transports. AGVs are situated in a
physical environment, however, this environment is very constrained: AGVs cannot
manipulate the environment, except by picking and dropping loads. This restricts how
AGV agents can exploit their environment. Therefore, a virtual environment was intro-
duced for agents to live in. This virtual environment offers a medium that agents can
use to exchange information and coordinate their behavior. Besides, the virtual environ-
ment serves as a suitable abstraction that shields the AGV agents form low-level issues,
such as the physical control of the AGV. The AGV control software that deals with the
low-level control of the AGVs is fully reused. As such, the AGV agents control the
movement and actions of AGVs on a fairly high level.

In the AGV application, the only physical infrastructure available to the AGVs is a
wireless network for communication. In other words, the virtual environment is nec-
essarily distributed over the AGVs and transport bases. In effect, each AGV and each
transport base maintains a local virtual environment, which is a local manifestation of
the virtual environment. Local virtual environments are merged with other local virtual

From Reactive Robotics to Situated Multiagent Systems 81

environments opportunistically, as the need arises. In other words, the virtual environ-
ment as a software entity does not exist; rather, there are as many local virtual environ-
ments as there are AGVs and transport bases. Some of these local virtual environments
may have been synchronized recently with each other, while others may not. From the
agent perspective, the virtual environment appears as one entity. The synchronization
of the state of neighboring local virtual environments is supported by the ObjectPlaces
middleware [68].

We now illustrate the use of the virtual environment with a couple of examples.

Routing. For routing purposes, the virtual environment has a static map of the paths
through the warehouse. This graph-like map corresponds to the layout used by low-
level AGV control software. To allow agents to find their way through the warehouse
efficiently, the virtual environment provides signs on the map that the agents use to find
their way to a given destination. These signs can be compared to traffic signs by the
road that provide directions to drivers. At each node in the map, a sign in the virtual
environment represents the cost to a given destination for each outgoing segment. The
cost of the path is the sum of the static costs of the segments in the path. The cost per
segment is based on the average time it takes for an AGV to drive over the segment. The
agent perceives the signs in its environment, and uses them to determine which segment
it will take next.

Traffic Information. Besides the static routing cost associated with each segment, the
cost is also dependent on dynamic factors, such as congestion of a segment. To warn
other agents that certain paths are blocked or have a long waiting time, agents mark seg-
ments with a dynamic cost on a traffic map in the virtual environment. Agents mark the
traffic map by dropping pheromones on the applicable segments. When AGVs come in
each others neighborhood, the information of the traffic maps is exchanged and merged
to provide up-to-date information to the AGV agents. Since pheromones evaporate over
time, outdated information automatically vanishes over time. AGV agents take the in-
formation on the traffic map into account when they decide how to drive through the
warehouse.

Collision Avoidance. AGV agents avoid collisions by coordinating with other agents
through the virtual environment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is the physical area the AGV
occupies. A series of hulls then describes the physical area an AGV occupies along a
certain path. If the area is not marked by other hulls (the AGV’s own hulls do not inter-
sect with others), the AGV can move along and actually drive over the reserved path.
Afterwards, the AGV removes the markings in the virtual environment. [62] discusses
collision avoidance through the virtual environment in detail.

In summary, the virtual environment serves as a flexible coordination medium, which
hides much of the complexity of the system (distribution, mobility, etc.) from the agents:
agents coordinate by putting marks in the environment, and observing marks from other
agents. The virtual environment creates opportunities beyond a physical environment
that situated AGV agents can exploit.

82 D. Weyns and T. Holvoet

4.3 Challenging for Future Research on Environments

Many issues are open for future research on environments in multiagent systems. [73]
gives an extensive overview of challenges in the domain. One particular challenge we
stress here is environment engineering. Environment engineering poses challenges a
three levels: (1) Architectural design, (2) Detailed design, and (3) Implementation. Suc-
cessively, we zoom in on each level.

Architectural Design. Starting from system requirements, including functional and
quality requirements (robustness, flexibility, openness, etc.) as well as project and
business constraints (budgets, schedules, etc.), the first step in environment engi-
neering is defining a suitable software architecture [74]. Software architecture urges
engineers to think first in abstract terms about the structure of the environment, dis-
tilling away low-level design and implementation details. Software elements of the
software architecture provide the functionality of the environment, while the required
quality requirements are primarily achieved through the structures of the software
architecture. Integration with legacy systems and middleware are important issues
when designing the software architecture of an environment. An important chal-
lenge for research on environments will be the development of reusable architec-
tural approaches for architectural design of environments. Architectural patterns [75]
(or architectural styles) are recurring architectural approaches with particular qual-
ity attributes that can be reused for building software architectures of environments.
A reference architecture combines a set of architectural patterns and can serve as
a blueprint for developing software architectures for a family of environments that
share a common base of functional and quality attributes. One interesting challenge
is to develop support for the architectural design of different environment structures
(physical, communication, social; see Sect. 4). Interesting work on architectural de-
sign of environments is discussed in [76, 62, 77, 78].

Detailed Design. A software architecture constrains the concrete development of an
environment, yet, it does not define it. Detailed design is concerned with the concrete
design of the software architectures of environments. One important challenge here is
the development of suitable description languages. Examples of open problems for de-
tailed design of environments are support for indirect interaction or environmental laws.
Another interesting area for research are the development of specific design and imple-
mentation patterns for environments [79, 80].

Implementation. Support for the implementation of environments can come from
frameworks, libraries, and development platforms. Existing agent tools can be extended
with explicit support for environments, or new tools can be developed that support en-
vironments within which different kinds of agents can interact. An important aspect
of implementation of environments is the integration with middleware platforms. Mid-
dleware hides hardware and platform details, and offers powerful capabilities such as
remote method invocation, threading, transaction, etc. Moreover, middleware provides
a software platform on which distributed environments can run, hiding complex issues

From Reactive Robotics to Situated Multiagent Systems 83

such as low-level details of communication or mobility. A number of proven middle-
ware infrastructures for multiagent systems are [81, 82, 83, 68, 84].

5 Concluding Remarks

In this paper, we discussed the evolution of the role of the environment in multiagent
systems from an historical perspective of situated multiagent systems. We have showed
how the role of the environment evolved along with subsequent types of agent systems.
We identified three phases in the evolution of the role of the environment:

1. Single agent systems emphasize environmental dynamics. The environment is con-
sidered as “the external world”, which is not an explicit part of models and archi-
tectures.

2. In stigmergic agent systems, the environment is considered as coordination infras-
tructure. Stigmergic agents coordinate their behavior through the manipulation of
marks in the environment.

3. In situated multiagent systems, agents and the environment are first-order abstrac-
tions, each with its own specific responsibilities. Basic concerns of the environment
include perception management, message delivering, action handling, and mainte-
nance of processes independent of agents.

Originating from the area of situated multiagent systems, research on environments
today exceeds specific types of agency. Distinguishing between agents and the envi-
ronment supports separation of concerns in multiagent systems. Separating agent and
environment concerns helps to manage the huge complexity of engineering complex
real-world applications. Today’s research on environments considers a dual role of the
environment in multiagent systems:

1. The environment is an essential part of every multiagent system that provides the
surrounding conditions for agents to exist.

2. The environment provides an exploitable design abstraction to build multiagent
systems.

We illustrated how the environment is exploited in a industrial system for logistic ser-
vices in warehouses. This practical application shows how a virtual environment creates
opportunities for agents to share information and coordinate their behavior an a way that
would be impossible in a physical environment.

Environments offers numerous opportunities for future research. Interesting chal-
lenges for environment engineering are the development of reusable architectural ap-
proaches, including architectural patterns and reference architectures for environments;
the development of description languages for environment concerns such as indirect
interaction or laws; and the development of frameworks and libraries to support the
implementation of environments. Developing such reusable tools for environment en-
gineering is the result of extensive practical experiences with building concrete envi-
ronments in practical multiagent system applications.

We hope that this paper helps researchers to improve their understanding of the
notion of environment in multiagent systems. The notion of environment provides a

84 D. Weyns and T. Holvoet

challenging area for synergetic research in multiagent systems, the environment offers
opportunities for all types of agency, from ant systems to rational agent systems such
as BDI agents. Understanding the background of environments is essential to carry on
the exploration and exploitation of environments in multiagent systems.

References

1. Weyns, D., Parunak, V., Michel, F., eds.: Proceedings of the First International Workshop on
Environments for Multi-Agent Systems, New York, 2004. Volume 3374 of Lecture Notes in
Computer Science., Springer-Verlag (2005)

2. Weyns, D., Parunak, V., Michel, F., eds.: Proceedings of the Second International Workshop
on Environments for Multi-Agent Systems, Utrecht, 2005. Volume 3830 of Lecture Notes in
Computer Science., Springer-Verlag (to appear)

3. AgentLink III Technical Forum Group on Environments for Multiagent Systems.
(http://www.cs.kuleuven.ac.be/∼distrinet/events/e4mas/tfg2005/)

4. Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environment in Multiagent
Systems. Knowledge Engineering Review 20 (2005)

5. Brooks, R.A.: Achieving Artificial Intelligence through Building Robots. AI Memo 899,
MIT Lab (1986)

6. Agre, P.E., Chapman, D.: Pengi: An Implementation of a Theory of Activity. In: Proceedings
of National Conference on Artificial Intelligence, Seattle, WA. (1987)

7. Rosenschein, S.J., Kaelbling, L.P.: The Synthesis of Digital Machines With Provable Epis-
temic Properties. In: Proceedings of the First Conference on Theoretical Aspects of Reason-
ing about Knowledge, Monterey, CA. (1986)

8. Brooks, R.A.: Intelligence Without Reason. In: Proceedings of 12th International Joint
Conference on Artificial Intelligence, Sydney, Australia (1991)

9. Maes, P.: Situated Agents Can Have Goals. Designing Autonomous Agents, MIT Press
(1990)

10. Pylyshyn, Z.: The Robot’s Dilemma. The Frame Problem in Artificial Intelligence. Ablex
Publishing Corp., Norwood, New Jersey (1987)

11. Kaelbling, L.P., Rosenschein, S.J.: Action and Planning in Embedded Agents. Designing
Autonomous Agents, MIT Press (1990)

12. Arkin, R.C.: Motor Schema-Based Mobile Robot Navigation. International Journal of
Robotics Research 8 (1989)

13. Rosenblatt, J.: DAMN: A Distributed Architecture for Mobile Navigation. In: Proceedings
of the Spring Symposium on Lessons Learned from Implemented Software Architectures for
Physical Agents, AAAI Press (1995)

14. Rosenblatt, K., Payton, D.: A Fine Grained Alternative to the Subsumption Architecture
for Mobile Robot Control. Proceedings of the International Joint Conference on Neural
Networks, IEEE (1989)

15. Tyrrell, T.: Computational Mechanisms for Action Selection. University of Edinburgh (1993)
16. Arbib, M.A.: Schema Theory. Encyclopedia of Artificial Intelligence (1992)
17. Custers, R.: The Agent Network Architecture Extended for Cooperating Robots. Master

Thesis, Katholieke Universiteit Leuven, Belgium (2004)
18. Kaelbling, L.P.: Goals as Parallel Program Specifications. In: Proceedings of the Seventh

National Conference on Artifical Intelligence, Minneapolis, Minnesota. (1988)
19. Steels, L.: Exploiting Analogicl Representations. Designing Autonomous Agents (1990)
20. Arkin, R.: Integrating Behavioral, Perceptual, and World Knowledge in Reactive Navigation.

Designing Autonomous Agents, MIT Press (1990)

From Reactive Robotics to Situated Multiagent Systems 85

21. Agre, P.E., Chapman, D.: What are Plans for? Designing Autonomous Agents, MIT Press
(1990)

22. Nilsson, N.J.: Teleo-Reactive Programs for Agent Control. Journal of Artificial Intelligence
Research 1 (1994)

23. Bryson, J.J.: Intelligence by Design, Principles of Modularity and Coordination for Engi-
neering Complex Adaptive Agents. PhD Dissertation: MIT (2001)

24. Malcolm, C., Smithers, T.: Symbol Grounding via a Hybrid Architecture in an Autonomous
Assembly System. Designing Autonomous Agents, MIT Press (1990)

25. Arkin, R.: Bahavior-Based Robotics. MIT Press (1998)
26. Reynolds, C.: Flocks, Herds and Schools: A Distributed Behavior Model. Computer Graph-

ics 21 (1996)
27. Mataric, M.: Leaning to Behave Socially. In: From Animals to Animats, Proceedings of the

3th International Conference on Simulation of Adaptive Behavior, MIT Press (1994)
28. Zeghal, K., Ferber, J.: CRAASH: A Coordinated Collision Avoidance System. In: Proceed-

ings of European Simulation Conference, Lyon, France. (1993)
29. Arkin, R.: Behavior-Based Robotics. Massachusetts Institute of Technology, MIT Press,

Cambridge, MA, USA (1998)
30. Wavish, P.R., Connah, D.M.: Representing Multiagent Worlds in ABLE. Technical Note,

TN2964, Philips Research Laboratories (1990)
31. Grassé, P.P.: La Reconstruction du nid et les Coordinations Inter-Individuelles chez Belli-

cositermes Natalensis et Cubitermes sp. La theorie de la Stigmergie. Essai d’interpretation
du Comportement des Termites Constructeurs. Insectes Sociaux 6 (1959)

32. Deneubourg, J.L., Goss, S.: Collective Patterns and Decision Making. Ecology, Ethology
and Evolution 1 (1989)

33. Steels, L.: Cooperation between Distributed Agents through Self-Organization. Decentral-
ized Artificial Intelligence (1989)

34. Parunak, V.: Go to the Ant: Engineering Principles from Natural Agent Systems. Annals of
Operations Research 75 (1997)

35. Dorigo, M., Gambardella, L.: Ant Colony System: A Cooperative Learning Approach to the
Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1 (1997)

36. Bonabeau, E., Hnaux, F., Gurin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Routing in Telecom-
munications Networks with Ant-Like Agents. IATA (1998)

37. Sauter, J., Parunak, H.: ANTS in the Supply Chain. Agent based Decision Support for
Managing the Internet-Enabled Supply Chain, Seattle, WA (1999)

38. Brueckner, S.: Return from the Ant, Synthetic Ecosystems for Manufacturing Control. Ph.D
Dissertation, Humboldt University, Berlin, Germany (2000)

39. Babaoglu, O., Meling, H., Montresor, A.: Anthill: A Framework for the Development of
Agent-Based Peer-to-Peer systems. In: Proceedings of the 22nd International Conference on
Distributed Computing Systems, Vienna, Austria, IEEE Computer Society, Digital Library
(2002)

40. Mamei, M., Zambonelli, F.: Co-Fields: A Physically Inspired Approach to Distributed Mo-
tion Coordination. IEEE Pervasive Computing 3 (2004)

41. V. Parunak, home page. (http://www.erim.org/ vparunak/)
42. Mamei, M., Zambonelli, F., Leonardi, L.: Distributed Motion Coordination with Co-Fields:

A Case Study in Urban Traffic Management. In: 6th IEEE Symposium on Autonomous
Decentralized Systems, Pisa, Italy, IEEE Press (2003)

43. Mamei, M., Zambonelli, F.: Motion Coordination in the Quake3 Arena Environment. In:
Environments for Multiagent Systems, E4MAS. Volume 3374 of Lecture Notes in Computer
Science., Springer (2005)

86 D. Weyns and T. Holvoet

44. Bandini, S., Manzoni, S., Simone, C.: Dealing with Space in Multiagent Systems: A Model
for Situated Multiagent Systems. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems, ACM Press (2002)

45. Bandini, S., Manzoni, S., Vizzari, G.: MultiAgent Approach to Localization Problems: the
Case of Multilayered Multi Agent Situated System. Web Intelligence and Agent Systems 2
(2004)

46. Bandini, S., Federici, M.L., Manzoni, S., Vizarri, G.: Towards a Methodology for Situated
Cellular Agent Based Crowd Simulations. In: Sixth International Workshop on Engineering
Societies in the Agents World, ESAW. (2005)

47. Ferber, J., Muller, J.: Influences and Reaction: a Model of Situated Multiagent Systems.
Second International Conference on Multi-agent Systems, Japan, AAAI Press (1996)

48. Genesereth, M.R., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan Kauf-
manns (1997)

49. Ferber, J.: An Introduction to Distributed Artificial Intelligence. Addison-Wesley (1999)
50. Helleboogh, A., Holvoet, T., Berbers, Y.: Simulating actions in dynamic environments. In:

Conceptual Modeling and Simulation Conference, CMS2005, Track on Agent Based Mod-
eling and Simulation in Industry and Environment. (2005)

51. Weyns, D., Helleboogh, A., Holvoet, T.: The Packet-World: A Test Bed for Investigating
Situated Multiagent Systems. In: Software Agent-Based Applications, Platforms and Devel-
opment Kits, Whitestein Series in Software Agent Technology (2005)

52. P2P Simulator. (http://trappie.studentenweb.org/andy/www/site mai/main.php)
53. Helsen, E., Deschacht, K.: The DELTA Framework for Situated Multiagent Systems. Master

Thesis, Katholieke Universiteit Leuven, Belgium (2005)
54. AGV Simulator.

(http://www.cs.kuleuven.ac.be/∼distrinet/taskforces/agentwise/agvsimulator/)
55. Weyns, D., Steegmans, E., Holvoet, T.: Towards Active Perception in Situated Multi-Agent

Systems. Journal on Applied Artificial Intelligence 18 (2004)
56. Weyns, D., Steegmans, E., Holvoet, T.: Integrating Free-Flow Architectures with Role Mod-

els Based on Statecharts. In: Environments for Multiagent Systems. Volume 3374 of Lecture
Notes in Computer Science., Springer-Verlag (2005)

57. Steegmans, E., Weyns, D., Holvoet, T., Berbers, Y.: A Design Process for Adaptive Behav-
ior of Situated Agents. Agent-Oriented Software Engineering, Lecture Notes in Computer
Science 3382 (2005)

58. Weyns, D., Steegmans, E., Holvoet, T.: Protocol Based Communication for Situated Multia-
gent Systems. 3th Joint Conference on Autonomous Agents and Multi-Agent Systems, New
York (2004)

59. Weyns, D., Holvoet, T.: Formal Model for Situated Multi-Agent Systems. Fundamenta
Informaticae 63 (2004)

60. Weyns, D., , Holvoet, T.: Regional Synchronization for Situated Multi-agent Systems.
In: Third International Central and Eastern European Conference on Multi-Agent Systems,
Prague, Czech Republic. Volume 2691 of Lecture Notes in Computer Science., Springer-
Verlag (2004)

61. EMC2: Egemin Modular Controls Concept. (http://emc2.egemin.com/)
62. Weyns, D., Schelfthout, K., Holvoet, T.: Exploiting a Virtual Environment in a Real-World

Application. Second International Workshop on Environments for Multiagent Systems,
Utrecht (2005)

63. Tummolini, L., Castelfranchi, C., Omicini, A., Ricci, A., Viroli:, M.: “Exhibitionists” and
“Voyeurs” do it Better: a Shared Environment for Flexible Coordination with Tacit Messages.
In: Environments for Multiagent Systems. Volume 3374 of Lecture Notes in Computer Sci-
ence, Springer-Verlag (2005)

From Reactive Robotics to Situated Multiagent Systems 87

64. Platon, E., Sabouret, N., Honiden, S.: Oversensing with a Softbody in the Environment:
Another Dimension of Observation. In: Proceedings of Modeling Others from Obser-
vation at International Joint Conference on Artificial Intelligence, Edinburgh, Scotland
(2005)

65. Ferber, J., Michel, F., Baez, J.: AGRE: Integrating environments with organizations. In:
Environments for Multiagent Systems. Volume 3374 of Lecture Notes in Computer Science,
Springer-Verlag (2005)

66. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing Multiagent Systems: The Gaia
Methodology. ACM Transactions on Software Engineering and Methodology 12 (2003)

67. Julien, C., Roman, G.C.: Egocentric Context-Aware Programming in Ad-Hoc Mobile Envi-
ronments. In: Proceedings of the 10th Symposium on Foundations of Software Engineering,
Charleston, South Carolina, USA, ACM Press, New York, NY, USA (2002)

68. Schelfthout, K., Holvoet, T.: Views: Customizable Abstractions for Context-Aware Applica-
tions in MANETs. Software Engineering for Large-Scale Multi-Agent Systems, St. Louis,
USA (2005)

69. Chang, P., Chen, K., Chien, Y., Kao, E., Soo, V.: From Reality to Mind: A Cognitive
Middle Layer of Environment Concepts for Believable Agents. In: Environments for Mul-
tiagent Systems. Volume 3374 of Lecture Notes in Computer Science., Springer-Verlag
(2005)

70. Minsky, N., Ungureanu, V.: Law-Governed Interaction: A Coordination and Control Mech-
anism for Heterogeneous Distributed Systems. ACM Transactions on Software Engineering
Methodologies 9 (2000)

71. Noriega, P., Sierra, C.: Electronic Institutions: Future Trends and Challenges. In: Proceed-
ings of the 6th International Workshop on Cooperative Information Agents. Volume 2446 of
Lecture Notes in Computer Science., Springer-Verlag, London, UK (2002) 14–17

72. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV trans-
portation systems. In: 4th Joint Conference on Autonomous Agents and Multiagent Systems,
Industry Track, Utrecht, The Netherlands, ACM Press, New York, NY, USA (2005)

73. Weyns, D., Parunak, V., Michel, F., Holvoet, T., Ferber, J.: Environments for Multiagent Sys-
tems, State-of-the-Art and Research Challenges. In: Environments for Multiagent Systems.
Volume 3374 of Lecture Notes in Computer Science., Springer-Verlag (2005)

74. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley
Publishing Comp. (2003)

75. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline.
Prentice-Hall (1996)

76. Valckenaers, P., Van Brussel, H.: Holonic Manufacturing Execution Systems. CIRP Annals-
Manufacturing Technology 54 (2005) 427–432

77. Viroli, M., A.Omicini, Ricci, A.: Engineering MAS Environment with Artifacts. In Weyns,
D., Parunak, V., Michel, F., eds.: 2nd International Workshop Environments for Multi-Agent
Systems, AAMAS 2005, Utrecht, The Netherlands (2005)

78. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A Roadmap to Artifacts. In: Sixth
International Workshop on Engineering Societies in the Agents World, ESAW. (2005)

79. Kendall, E., Jiang, C.: Multiagent System Design Based on Object Oriented Patterns. Journal
of Object Oriented Programming (1997)

80. Schelfthout, K., Coninx, T., Helleboogh, A., Holvoet, T., Steegmans, E., Weyns, D.: Agent
Implementation Patterns. In: OOPSLA Workshop on Agent-oriented Methodologies, Seattle,
WA USA. (2002)

81. Murphy, A., Picco, G., Roman, G.: LIME: a Middleware for Physical and Logical Mobility.
21th International Conference on Distributed Computing Systems (2001)

88 D. Weyns and T. Holvoet

82. Omicini, A., Ossowski, S., Ricci, A.: Coordination infrastructures in the engineering of
multiagent systems. In Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Volume 11 of Multiagent Systems, Artificial Societies, and Simulated Organizations.
Kluwer Academic Publishers (2004) 273–296

83. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications
with the tota middleware. 2nd IEEE International Conference on Pervasive Computing and
Communication (2004)

84. Schelfthout, K., Weyns, D., Holvoet, T.: Middleware for Protocol-based Coordination in
Dynamic Networks. In: Proceedings of the 3rd International Workshop on Middleware for
Pervasive and Ad-hoc Computing, Grenoble, France, ACM Press (2005)

	Introduction
	Single Agent Systems
	Reactive Robotics
	Behavior-Based Agents
	Explicit World Models and Hybrid Agent Architectures
	Reflection

	From Collective Reactive Behavior to Situated Multiagent Systems
	Collective Reactive Behavior
	Stigmergic Agent Systems
	Situated Multiagent Systems
	Reflection

	Environment, a First-Order Abstraction in Multiagent Systems
	Role of the Environment in Multiagent Systems
	Exploiting the Environment in Practice
	Challenging for Future Research on Environments

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

