
Extending Time Management Support for
Multi-agent Systems

Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande Berbers

AgentWise, DistriNet, Department of Computer Science K.U.Leuven, Belgium
{Alexander.Helleboogh, Tom.Holvoet, Danny.Weyns,

Yolande.Berbers}@cs.kuleuven.ac.be

Abstract. Time management is essential when simulating multi-agent
systems (MASs) as it allows consistent and repeatable simulation runs.
So far, time management lacks support to express the timing require-
ments of a simulation explicitly and at an abstraction level appropriate
for MAS developers. Moreover, integrating time management into a MAS
requires the developer to alter the design of the MAS. In this paper, we
first propose semantic duration models to capture timing requirements
that reflect the semantics of MAS activities in an explicit model. Second,
we present a time management infrastructure that starts from a semantic
duration model description to integrate all time management function-
ality into a MAS transparently, i.e. without requiring the developer to
alter the design of the MAS. We use aspect-oriented programming tech-
nology as it allows separation of concerns, a crucial software engineering
requirement. As a case, we apply our approach to the Packet-World.

1 Introduction and Problem Statement

Simulation platforms enable multi-agent systems (MASs) to be tested before
they are deployed in the real world. An important requirement for such platforms
is that a MAS can easily be integrated with the simulation infrastructure. The
developers have to be relieved from the low-level technical issues associated with
simulations [1]. This allows the developer to concentrate his or her efforts on the
relevant domain application logic.

An essential technical issue which has to be provided by a simulation platform
is time management [2]. Time management ensures that all temporal character-
istics of the problem domain are correctly reproduced in the simulation. Time
management is required in simulation platforms to allow controlled and repeat-
able simulation runs.

Currently, time management is generally supported by means of time man-
agement mechanisms [2, 3, 4] which are built into the simulation platforms. Time
management mechanisms are necessary to enforce all simulation events to be
processed in time-stamp order, irrespective of arbitrary and variable delays in
the execution platform. Examples of time management mechanisms are time-
stepped execution and conservative or optimistic event synchronization mech-
anisms. When time management mechanisms prevent the execution platform

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 37–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 A. Helleboogh et al.

from introducing causality errors, the consistency and repeatability of a simula-
tion can be guaranteed.

Time management is also essential in the context of simulating MASs [5],
because timing delays introduced by the underlying execution platform may
otherwise affect the simulation results. For example, in [6, 7, 8] it is shown that
alterations in the execution platform of the agents can have a severe impact on
the simulation behavior of the MAS as a whole, possibly introducing unexpected
and unwanted behavior.

MASs allow a system to be modeled at a high level of abstraction. Therefore,
it is essential that the support for time management in simulation platforms is
raised to an abstraction level appropriate for MAS developers. Currently, time
management mechanisms are built into the simulation platforms to hide the
technical issues related to maintaining logical time consistency. Nevertheless, a
MAS developer is still confronted with a number of unsupported time manage-
ment issues when simulating a MAS. First, there is a lack of support to express
the relation between the activity within a MAS and logical time in an explicit
way. Outside a simulation context, the concept of logical time is hardly ever em-
ployed: agents are generally not designed as entities maintaining a logical clock
and generating time-stamped events. If such systems are simulated, the mapping
to logical time has to be tackled by the developer without any support, since
time management mechanisms require that the time stamps are already assigned
to the events, and only provide support for time stamp ordering. A second prob-
lem is the lack of support to integrate all time management functionality into
a MAS. Currently, this integration requires the developer (1) to reimplement
each agent’s actions on the environment to transform them into time stamped
events and (2) to direct these events to the simulation platform [9, 10]. Besides
the fact that this requires a fair understanding of the simulation platform and
its interfaces, it also forces developers to alter the design of the MAS.

This paper describes a way to extend time management support for simu-
lating MASs in order to deal with the problems mentioned above. We give a
high-level overview of our approach, based on Fig.1. First, we employ Semantic
Duration Models to provide support for the developer to make the timing require-
ments for the simulation of a MAS explicit. Semantic duration models enable the
developer to express the mapping of the activity within a MAS to logical time at
a high level of abstraction, allowing the semantic meaning of MAS activities to
be taken into account. Second, we describe the Time Management Infrastructure
we developed. Our prototype allows time management to be integrated in a MAS
transparently, i.e. without requiring the developer to make design changes in the
MAS or to have any knowledge from the simulation platform and its interfaces.
Our approach employs aspect-oriented programming to achieve separation of
concerns. Separation of concerns is important from a software engineering point
of view, as this allows all time management functionality needed for simulation
purposes to be decoupled from the MAS’s functional structure. Based on the
description of a semantic duration model, aspect-oriented programming allows
time management functionality to be “woven” into a MAS.

Extending Time Management Support for Multi-agent Systems 39

Time Management
Infrastructure

Time Management
Integration

Semantic
Duration Model

MAS
Time Management

Mechanism

MAS
+

Integrated
Time Management

Input from developer Simulated MAS

Fig. 1. Overview of the Time Management Infrastructure for simulating MASs

This paper is structured as follows. We first elaborate on semantic duration
models in Sect.2 and present a basic formalism based on set theory to describe se-
mantic duration models. Next, the time management infrastructure is described
in Sect.3. Section 4 demonstrates our approach using the Packet-World as a case,
after which we draw conclusions in Sect.5.

2 Semantic Duration Models

To obtain meaningful simulation results, it is essential that the timing require-
ments for a simulation reflect the timing characteristics of the MAS’s problem
domain. We describe how semantic duration models can support a developer to
capture all timing requirements of a MAS simulation in an explicit way and at
the semantic level of a MAS.

Semantic duration models capture the timing characteristics for simulating a
MAS in an explicit way, using the technique of duration modeling at a semantic
level. The idea of duration modeling is to maintain a logical clock for each agent
and advance that clock for each “primitive” that is executed by the agent. The
duration of a “primitive” performed by an agent is the (logical) time period it
takes until the effects of that “primitive” are noticeable. The developer has to
describe all timing characteristics by means of assigning logical durations to each
of the “primitives”. Advancing the logical clock in a way that is independent of
computer loads and processor speeds, enables repeatable simulation results.

Duration modeling was first described by Anderson and Cohen in [11, 12],
where it was applied in the context of the agent’s deliberation activity. Ander-
son distinguishes between low-level and high-level duration models. In low-level
models, durations are assigned to individual programming language instructions.
However, this results in timing characteristics of a MAS simulation that are de-
scribed in terms of low-level implementation issues. Because in a problem domain
it is the semantics of what the agent is actually doing that determines the timing
characteristics, Anderson emphasizes high-level duration models. For example,
“evaluating a board position” for a chess playing agent, or “generating an in-
ternal plan to reach a particular destination” can be considered as primitives
with semantic meaning for duration modeling in a high-level model. However,
Anderson’s approach is limited to modeling the agent’s deliberation activity, and
does not take into account other forms of activity within a MAS.

40 A. Helleboogh et al.

Duration modeling is also addressed in the SPADES system by Riley and
Riley [13]. Their approach is not limited to modeling the duration of agent de-
liberation, but also incorporates the agent’s sensing and acting activities. This
allows the duration of perception and agent actions to be taken into account.
However, in contrast to Anderson’s work, the logical thinking time of the agents
is now based on the measurement of CPU-time. Moreover, the approach can
only be applied to agents whose architecture supports a rigid sense-think-act
cycle.

Our notion of semantic duration models combines the best ideas of both ap-
proaches described above. First, analogous to the high-level models of Anderson,
we consider the “primitives” of duration modeling at the level of activities with
a semantic meaning in the behavior of an agent. As a consequence, the duration
of each of the activities depends upon the semantic meaning within the context
of the simulation only, and is irrespective of the programming language and im-
plementation. Second, analogous to the SPADES system, we extend duration
modeling from agent activities employed for deliberation purposes, to activities
an agent can perform on the environment. In our semantic duration models, we
make a distinction between the agent’s internal and external activities. Inter-
nal activities are typically related to deliberation and do not cross the agent’s
boundaries. External activities on the other hand cross the boundaries of an
agent and typically include perception of the environment, sending or receiving
communication messages and performing actions on the environment. In con-
trast to the sense-think-act cycle employed in the SPADES system, we impose
no order on the agent’s internal and external activities.

In our current model, we assume that an agent is the unit of concurrency.
As such, each agent can only perform one activity at the same time. However,
activities performed by different agents can of course be concurrent.

We describe semantic duration models using a basic form of set theory:

A = {a1, a2, . . . , an}, the set of all agents in the MAS:
∀ai ∈ A :

Di = {di
1, d

i
2, . . . , d

i
ni

}, the set of all internal activities of agent ai

Ei = {ei
1, e

i
2, . . . , e

i
mi

}, the set of external activities that agent ai

Di ∩ Ei = φ

By combining sets Di and Ei we obtain:

∀ai ∈ A :
Ci = Ei ∪Di = {ei

1, e
i
2, . . . , e

i
mi

, di
1, d

i
2, . . . , d

i
ni

}, the set of all activities of ai

or Ci = {ci
1, c

i
2, . . . , c

i
ui

} with |Ci| = ui = mi + ni, the cardinality of Ci

To obtain a semantic duration model for an agent, the duration of all its
activities is expressed in terms of logical time. Formally this is equivalent to a
function assigning a logical duration to each activity:

Extending Time Management Support for Multi-agent Systems 41

Durationi : Ci × Si × W → �
Durationi(ci

j , si, w) = ri
j

where Si is the set of all states of agent ai, W is the set of all states of the
environment, � is the set of real numbers and Durationi is the semantic du-
ration function for agent ai. Durationi defines the logical time period it takes
until the effects of activity ci

j performed by agent ai are noticeable, given that
the state of agent ai is si and the state of the world is w. In general, the duration
of a particular activity for an agent not only depends on the kind of activity,
but also on the state of the agent as well as on the state of the environment.

3 Time Management Transparency

In order to integrate time management into a MAS transparently, the following
requirements have to be fulfilled. First, explicit and developer-friendly support
for describing semantic duration models must be provided to the developer. The
developer should only describe the internal and external activities and their se-
mantic durations (see Sect.2). Based on this, the platform should be able to
enforce the time mapping without further intervention from the developer. Sec-
ond, it must be possible to simulate a MAS without requiring the developer
to perform changes in the design of the MAS. However, because time manage-
ment requires monitoring and controlling the activities of all agents according to
user-defined timing characteristics, it requires introducing code in many places
across the system. We could refactor all the code and perform the appropriate
insertions, but in a large MAS, this would be a time-consuming and error-prone
job, which we would like to avoid.

3.1 Aspect-Oriented Programming

Time management is a crosscutting concern, i.e. the time management func-
tionality cross-cuts the MAS’s basic functionality. The problem of crosscutting
concerns is that they can not be modularized with traditional OO-techniques.
This forces the implementation of time management to be scattered through-
out the code of the MAS, resulting in “tangled code” that is excessively dif-
ficult to develop and maintain. Aspect-oriented programming [14, 15] handles
crosscutting concerns by providing aspects for expressing these concerns in a
modularized way. An aspect is a modular unit of crosscutting implementation.
Aspect-oriented programming does not replace existing programming paradigms
and languages, but instead, it can be seen as a co-existing, complementary tech-
nique that can improve the utility and expressiveness of existing languages. It
enhances the ability to express the separation of concerns which is necessary for
well-designed, maintainable software systems.

A language extension to Java which supports aspect-oriented programming, is
AspectJ. In AspectJ, defining an aspect is based on two main concepts: pointcuts
and advice. A pointcut is a language construct in AspectJ that selects particular

42 A. Helleboogh et al.

join points, based on well-defined criteria. Each join point represents a particular
point in the execution flow of a program where the aspect can interfere, e.g. a
point in the flow when a particular method is called. As such, pointcuts are a
means to express the crosscutting nature of an aspect. Advice on the other hand
is a language construct in AspectJ that defines additional code that runs at join
points specified by an associated pointcut. An aspect encapsulates a particular
crosscutting concern and can contain several pointcut and advice definitions.
The process of inserting all crosscutting code of an aspect at the appropriate
join points within the original program code, is called aspect weaving. Aspect
weaving is performed at compile-time in AspectJ.

3.2 The Prototype

According to the requirements above, we developed a prototype in Java which
uses AspectJ to integrate time management as a separate concern. We illustrate
its working using Fig.2.

To be able to use time management support, the developer composes a partic-
ular Semantic Duration Model Configuration which describes a semantic dura-
tion model for each agent within the MAS (see Fig.2). Currently, in our prototype
abstraction is made from the state dependency in semantic duration models. As
a consequence, Durationi is simplified to:

Durationi : Ci → �
Durationi(ci

j) = ri
j

This allows Durationi to be described in terms of a list of (ci
j , r

i
j)-tuples

for each agent ai, with ci
j mapping to a Java method that the agent executes to

perform a particular activity with semantic meaning, and ri
j a constant denoting

the logical duration of that activity.
After a semantic duration model has been defined for each agent in the MAS,

the prototype generates an Aspect and a Time Monitor for each agent. The
Time Monitor of agent ai contains a logical clock for the agent, together with
the time mapping as described by Durationi of that agent (which maps ci

j to
ri
j). The goal of a Time Monitor is to keep the agent’s logical clock up-to-date

by advancing it according to the activities the agent decides to perform. When
the Time Monitor is notified of the execution of activity ci

j , it advances its clock
by ri

j . The goal of the Aspect on the other hand is to notify the Time Monitor
of all activities the agent executes. Therefore, the Aspect weaves code into all
methods that are defined as activities ci

j of the agent. The goal of the inserted
code is to intercept the execution of the agent as soon as it decides to perform
an activity and to notify the Time Monitor, such that the agent’s logical clock
is advanced appropriately. The notification of the Time Monitor by the inserted
code is represented graphically by the arrowed lines in Fig.2.

The combination of Aspects and Time Monitors allows the logical clock of all
agents to advance according to all executed activities. A MAS Time Synchronizer
prevents the occurrence of causality errors. The developer can specify a subset

Extending Time Management Support for Multi-agent Systems 43

Agent a1

Agent a
2
 Aspect

Semantic Duration Model
Configuration

Environment

//notify Time Monitor

//notify Time Monitor

Agent a2

(plan, 2)
(read, 7)
(…)

Agent a2

Time Monitor
Agent a 1

Time Monitor
Agent a 2

Agent a
1

(...)
…
void plan(){

//agent plan code
}

W
ea

ve

...
void read(Message m){

//message interpreting
code
}
...

Notify

Notify

Not
if y

 &
 B

lo
ck

Unblock
MAS Time

Synchronizer

Simulation Infrastructure

Weave

 W
eave

Notify
 & Block

Fig. 2. Time Management Infrastructure for MASs: the gray shaded parts have to be
provided by the developer. All white parts are hidden from the developer

of activities that can introduce causality errors and hence have to be controlled
by the MAS Time Synchronizer to ensure that these activities are not executed
out of logical clock order. By default, the set of activities for which causality
has to be preserved contains all external activities, because these activities cross
the agent’s boundaries (see Sect.2). In Fig.2, the gray arrows between the agent
and the environment represent external activities the agent can perform on the
environment.

We explain the approach employed for synchronization by using an example.
Suppose that a particular agent decides to perceive its neighboring environment
and triggers an external perception activity. The code inserted by the Aspect
intercepts the execution of the agent right before the chosen activity is actually
executed, notifies that agent’s Time Monitor, which advances that agent’s logical
clock with the appropriate duration and then blocks that agent’s execution. Un-
blocking can only be done by the MAS Time Synchronizer, which monitors the
logical clocks of all agents and employs a conservative time management mech-
anism [3] to prevent causality errors. The specific way of interception ensures
that the logical clocks of the agents are already updated before the correspond-
ing activities are actually executed. This enables the MAS Time Synchronizer
to have prior knowledge of the time stamp of the next activity a particular agent
will perform. As a consequence, the synchronization approach applied here does
not rely on a lookahead to prevent starvation. In our example, the perception
activity of the agent will be unblocked as soon as the MAS Time Synchronizer
can guarantee that all external activities the other agents will perform, have
a higher logical time stamp than the perception activity of the former agent.

44 A. Helleboogh et al.

As such, the former agent perceives the environment in correspondence to the
causal order that arises from the semantic duration models.

4 Time Management Applied in the Packet-World

In this section, we illustrate our approach by means of the Packet-World ap-
plication we have developed [16]. We describe a semantic duration model and
demonstrate how time management functionality is integrated transparently.

4.1 The Packet-World

The Packet-World consists of a number of differently colored packets that are
scattered over a rectangular grid. Agents that live in this virtual world have to
collect those packets and bring them to the correspondingly colored destination.
The grid contains one destination for each color. Figure 3 shows an example of
a Packet-World with size 10 wherein 5 agents are situated. Squares symbolize
packets and circles are delivery points.

In the Packet-World, agents can interact with the environment in a number
of ways. We allow agents to perform a number of basic actions. First, an agent
can make a step to one of the free neighboring fields around it. Second, if an
agent is not carrying any packet, it can pick one up from one of its neighboring
fields. Third, an agent can put down the packet it carries on one of the free
neighboring fields around it, which could of course be the destination field of
that particular packet. It is important to notice that each agent of the Packet-
World has only a limited view on the world. This view only covers a small part of
the environment around the agent (see Fig.3). Furthermore, agents can interact
with other agents too. We allow agents to communicate with other agents by
sending messages. In this way, agents can inform each other about the position
of packets and destinations. All action and message handling is performed by
the environment.

Fig. 3. The Packet-World: global screenshot (left) and view range of agent nr.4 (right)

Extending Time Management Support for Multi-agent Systems 45

4.2 Timing Requirements for the Simulation

In the Packet-World, each agent is an autonomous and pro-active entity which
continuously deliberates and invokes actions in the environment. Neither time-
stamps, nor events are employed in the agents’ design. However, for our simu-
lation, we would like the agents to behave according to specific timing charac-
teristics. Suppose we impose the following timing requirements on the agents:
first, picking up or putting down a packet only takes half the time for an agent
than performing a step. On the other hand, obtaining perception of the environ-
ment or retrieving messages which have arrived, can be done instantaneously.
The time it takes for an agent to analyze its perception cannot be neglected.
Searching for a destination field based on the input obtained from perception
takes as long for an agent as performing a pick up packet action, while finding
the nearest packet based on its perception only takes half as long. The time it
takes for an agent to select its next action is equal to that of performing a move.
Finally, sending a message is twice as costly as performing a step.

4.3 Defining a Semantic Duration Model

We identify all agents’ activities in the Packet-World simulation. Using the de-
scription above, we can distinguish the following external activities on the envi-
ronment: an agent can (1) look to perceive its surroundings, (2) move, (3) pick
up a packet, (4) put down a packet, (5) send a message, and (6) receive messages
that have arrived. Formally (see Sect.2):

∀ai ∈ A :
Ei = {look, move, pick, put, send, receive}

With respect to the internal activities of the agents, in our simulation a dis-
tinction is made between (1) detecting a destination, (2) finding the nearest
packet and (3) selecting the next action. Formally:

∀ai ∈ A :
Di = {detectdest, findpacket, selectaction}
and Ci = {look, move, pick, put, send, receive, detectdest, findpacket,

selectaction}

To define a semantic duration model, we have to assign a duration to each
of the activities of an agent, according to the timing requirements of the simu-
lation. We get:

∀ai ∈ A :
Durationi(move) = Durationi(selectaction) = 1
Durationi(pick) = Durationi(put) = Durationi(detectdest) = 0.5
Durationi(look) = Durationi(receive) = 0
Durationi(findpacket) = 0.25
Durationi(send) = 2

46 A. Helleboogh et al.

Note that the absolute values of the durations are of no importance, only the
relative values are significant.

4.4 Integrating Timing Management Code

For each activity described in the semantic duration model of the Packet-World
agents, time management code has to be inserted. As an example, we consider
the findpacket internal activity of an agent (see Fig.4). Based on the semantic
duration model described above, an aspect is generated for the findpacket activ-
ity. The pointcut of the aspect refers to the location of the findpacket activity
in the agent’s code. At this location, the aspect’s advice is woven which notifies
the agent’s time monitor each time the activity is performed.

public aspect FindPacketAspect {
pointcut findpacket(Agent a) : call (* Agent.findpacket()) && target(a);

before(Agent a): findpacket(a) {

TimeManagement.instance().getTimeMonitor(a).advanceClock(“findpacket”);
 }
}

public class Agent {
 ...
 public Coordinate findpacket() {

 Vector packetlocations = getAllPacketLocations(percept);
 return getNearestPacket(packetlocations);
 }
}

2: W
eave C

ode

1: Locate Join Point

Fig. 4. Aspect weaving for the internal activity findpacket

5 Conclusions and Future Work

In this paper, we described a way to extend time management support for sim-
ulating MASs. Our contribution consists of two parts.

First, semantic duration models allow the timing requirements of a simulation
to be described in an explicit way by means of a user-friendly formalism based on
set theory. Semantic duration models employ the technique of duration modeling
at a semantic rather than syntactic level and allow timing requirements to be
expressed for the internal as well as the external activities of an agent.

Second, we described a time management infrastructure that allows all time
management functionality to be integrated transparently in a MAS. The devel-
oper describes all timing requirements by means of semantic duration models. To
achieve separation of concerns, which is important for well-designed and main-
tainable software systems, aspect-oriented programming is used. Our prototype

Extending Time Management Support for Multi-agent Systems 47

allows all time management code necessary for the simulation to be incorporated
in the MAS without requiring the developer to change the design of the MAS.

In the paper, we demonstrated our approach in the Packet-World. It was
shown that it is possible to control the execution of the simulation according to
specific timing requirements and to integrate time management functionality in
a transparent way.

Although the approach presented here is promising, a number of issues re-
quires further research and will be addressed in detail in future work.

– With respect to the semantic duration models, we exclusively elaborated
upon agent activities, both internal and external. However, activities can also
originate from the environment of the MAS, independent of the agents. An
example are digital pheromones [17] that propagate and evaporate over time.
Pheromones are used for indirect communication in MASs. Our approach
requires further investigation with respect to such environmental activities
in general.

– In the current model, there is no support to allow overlap of activities, as
described in [13]. All activities of an individual agent happen sequentially.
An important issue we are currently working on is extending the seman-
tic duration model of an agent such that activities can be specified to be
potentially overlapping.

– In our prototype, the current support for semantic duration models is useful
but still rather limited, since only constant logical durations can be assigned
to activities. Extensions to more complex dependencies are planned in the
future.

– Finally, there is no clean duration semantics for hierarchical activities. Sup-
pose agent ai has two activities: activity ci

j with a duration of ri
j and activity

ci
k with a duration of ri

k, and suppose ci
j calls ci

k. If agent ai then executes
activity ci

j , it is unclear whether agent ai has to be assigned a logical delay of
ri
j as defined earlier, or ri

j +ri
k (which is currently the case in our prototype).

Acknowledgements

This research is partially funded by the KULeuven research project AgCo2
(Agents for Coordination and Control).

References

1. Maria Bruno Marietto, Nuno David, J.S.S.H.C.: Requirements analysis of agent-
based simulation platforms: State of the art and new prospects. In: Multi-Agent-
Based Simulation, Third International Workshop, MABS 2002. Lecture Notes in
Computer Science, Springer-Verlag (2002)

2. Fujimoto, R.: Time management in the high level architecture. Simulation, Special
Issue on High Level Architecture 71 (1998) 388–400

3. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of
parallel computations. Communications of the ACM 24 (1981) 198–205

48 A. Helleboogh et al.

4. Jefferson, D., Sowizral, H.: Fast concurrent simulation using the time warp mech-
anism. In: Proceedings of the SCS Multiconference on Distributed simulation.
(1985) 63–69

5. Helleboogh, A., Holvoet, T., Weyns, D.: Towards time management adaptability in
multi-agent systems. In Kudenko, D., Alonso, E., Kazakov, D., eds.: Proceedings of
the AISB 2004 Fourth Symposium on Adaptive Agents and Multi-Agent Systems.
(2004) 20–30

6. Axtell, R.: Effects of interaction topology and activation regime in several multi-
agent systems. In: MABS. (2000) 33–48

7. Page, S.: On incentives and updating in agent based models. Journal of Compu-
tational Economics 10 (1997) 67–87

8. Cornforth, D., Green, D.G., Newth, D., Kirley, M.: Do artificial ants march in
step? Ordered asynchronous processes and modularity in biological systems. In:
Proceedings of the eighth international conference on Artificial life, MIT Press
(2003) 28–32

9. Uhrmacher, A., Kullick, B.: Plug and test software agents in virtual environments.
In: Winter Simulation Conference - WSC’2000. (2000)

10. Himmelspach, J., Rhl, M., Uhrmacher, A.: Simulation for testing software agents
- an exploration based on JAMES. In: Proc. of the 2003 Winter Simulation Con-
ference, New Orleans, USA. (2003)

11. Anderson, S.D., Cohen, P.R.: Timed Common Lisp: the duration of deliberation.
SIGART Bull. 7 (1996) 11–15

12. Anderson, S.D.: Simulation of multiple time-pressured agents. In: Winter Simula-
tion Conference. (1997) 397–404

13. Riley, P., Riley, G.: SPADES — a distributed agent simulation environment with
software-in-the-loop execution. In Chick, S., Sánchez, P.J., Ferrin, D., Morrice,
D.J., eds.: Winter Simulation Conference Proceedings. Volume 1. (2003) 817–825

14. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S., eds.: Pro-
ceedings European Conference on Object-Oriented Programming. Volume 1241.
Springer-Verlag, Berlin, Heidelberg, and New York (1997) 220–242

15. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: Get-
ting started with AspectJ. Commun. ACM 44 (2001) 59–65

16. Weyns, D., Holvoet, T.: The Packet-World as a case to study sociality in multi-
agent systems. In: Autonomous Agents and Multi-Agent Systems, AAMAS 2002,
Bologna, Italy. (2002)

17. Sauter, J.A., Matthews, R., Parunak, H.V.D.: Evolving adaptive pheromone path
planning mechanisms. The First International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2002 (2002)

	Introduction and Problem Statement
	Semantic Duration Models
	Time Management Transparency
	Aspect-Oriented Programming
	The Prototype

	Time Management Applied in the Packet-World
	The Packet-World
	Timing Requirements for the Simulation
	Defining a Semantic Duration Model
	Integrating Timing Management Code

	Conclusions and Future Work

