
Middleware for Protocol-based Coordination in Dynamic
Networks

Kurt Schelfthout, Danny Weyns, Tom Holvoet
K.U.Leuven - Department of Computer Science - Distrinet,

Celestijnenlaan 200A
3001 Leuven, Belgium

{kurt.schelfthout, danny.weyns, tom.holvoet}@cs.kuleuven.be

ABSTRACT
Pervasive and ad hoc computing applications are frequently de-
ployed in dynamic networks. Due to mobility of the computing
nodes, their unreliability, or a limited communication range, at any
time a node may enter or leave an interaction between a group of
application components. Middleware approaches have been pro-
posed to deal with these dynamics, by supporting the dissemination
(or gathering) of information in dynamic networks. In our experi-
ence however, applications frequently need to execute a complete
protocol to coordinate. Existing middleware can then be used as a
discovery mechanism, but offers no support for handling the proto-
col itself. This paper presents a middleware model that enables an
easier implementation of distributed protocols that need to take into
account the continuously changing context in the dynamic network.
It uses roles as a first order abstraction, handles the distributed in-
stantiation of roles in an interaction session, and maintains the ses-
sion as nodes in the mobile network move. We describe our expe-
rience with applying the middleware in a case study on a system of
automatic guided vehicles.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures; C.2.4 [Computer-Communication networks]:
Distributed Systems—Distributed Applications

Keywords
middleware, mobile networks, roles, coordination

1. INTRODUCTION
From the call for papers of MPAC’051: “Pervasive and ad-hoc

computing environments are characterized by the need of applica-
tions to be informed about changes in their operating context in
order to adapt their operation.” The changes in operating context

1http://www.smartlab.cis.strath.ac.uk/MPAC/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MPAC ’05November 28- December 2, 2005 Grenoble, France
Copyright 2005 ACM 1-59593-268-2/05/11 ...$5.00.

we consider in this paper are those that are caused by the dynam-
ics in the network. Since application components are deployed on
computing nodes in a dynamic network, they are exposed to the
context changes caused by the network dynamics, and need to be
able to deal with them effectively.

A network may be dynamic for many reasons. The nodes may
be mobile, and application components are then typically coordi-
nating with a changing subset of connected nodes that catches their
interest. For example, a robot avoiding collisions is only interested
in coordinating with robots that are close to it. Furthermore, due to
the unreliability of the nodes themselves, a node may virtually dis-
appear at any time, e.g. when its battery is down. Another cause of
network dynamics is the unreliability or the constraints imposed by
the communication infrastructure. For example, in an ad hoc net-
work, senders have a limited communication range, and may move
in and out of each other’s range at any time.

Helping the application developer deal with these dynamics is
the task of an appropriatecoordination middleware. Existing co-
ordination middleware for mobile networks can be roughly divided
in two families: publish/subscribe middleware [12] and tuplespace-
based middleware [14] [18].

Both publish/subscribe and tuplespace-based coordination fami-
lies share two important properties:(1) Communication is anony-
mous. Message sending and receiving is based on declarative mech-
anisms, rather than the senders’ or receivers’ address. Typically
receivers of a message are determined based on the content of the
message and interest expressed by the receiver. This relieves ap-
plication components of the bookkeeping involved in maintaining
an “acquaintance list”, which is difficult to maintain especially in
a dynamic network.(2) Communication is 1 to n. A message sent
once, can be received by any number of receivers. Senders can
make abstraction of the number of receivers, and vice versa.

Together, these two properties enable application components
to abstract from many low level details (concerning e.g. mobility
and routing), and generally allow application components to be de-
signed as loosely coupled entities, enhancing their reusability and
maintainability.

Typically, both families of coordination middleware are applied
in scenarios where information gathering is a key problem, e.g.
finding a service such as the closest printer. In such scenarios,
coordination among application components is confined to spread-
ing information (e.g. printers regularly publish their current state),
or gathering information (e.g. searching the network for avail-
able printers).Such application scenarios are a good match for the
aforementioned middleware, and much research discusses efficient,
reliable and flexible algorithms to support these middleware ap-
proaches [5] [17].

Article No. 8

http://www.smartlab.cis.strath.ac.uk/MPAC/

In contrast, this paper considers a broader class of applications
that consist of components that are distributed over the network,
and work together as a team to achieve a coherent overall behavior.
Coordination is then concerned with maintaining necessary behav-
ioral relationships between application components. This relation
needs to be maintained by the exchange of multiple, related mes-
sages, i.e. a protocol.

To support protocol-based communication, information spread-
ing and gathering is a necessary, but not sufficient condition. For
example, consider collision avoidance between between automatic
vehicles. Collision avoidance needs complex coordination mecha-
nisms: it is a mutual exclusion problem, for which a distributed pro-
tocol is needed. More generally, examples include unmanned vehi-
cle control, traffic management and control (e.g. cooperating traffic
lights, or vehicle collision warning), cooperative applications (e.g.
cooperative work applications in an ad hoc community where var-
ious forms of consistency or access control are needed) and active
network management (e.g. the distributed deployment of a com-
pressor and decompressor in an adaptable network stack).

In such problems, current coordination middleware can basically
“only” be used as a discovery mechanism, after which the proto-
col itself is handled outside the middleware using lower level com-
munication primitives. This has as an unfortunate effect that all
support from the middleware for dealing with the dynamics in the
network is lost at the protocol level.

This paper argues that coordination middleware can and should
provide more support for tackling the class of problems where a
protocol is needed to coordinate application components. In Sect.
2, we review existing coordination middleware approaches, and
discuss where their support for protocol-based coordination in dy-
namic networks can be extended. In Sect. 3, we discuss a novel
middleware model that supports a first order abstraction of roles,
allowing the middleware to set up and maintain separate interaction
sessions between application components in a mobile network. Af-
ter highlighting implementation issues in Sect. 4, we discuss our
experience with applying the middleware to a real world problem,
automatic guided vehicle control in Sect. 5. Finally, the paper ends
with conclusions.

2. STATE OF THE ART
Existing coordination middleware for mobile networks can be

roughly divided in two families: publish/subscribe middleware [12]
and tuplespace-based middleware [14] [9] [18].

In the publish/subscribe (P/S) family, publishers send notifica-
tions of state changes to a list of subscribers. Subscribers are not
known in advance but let the P/S middleware know of their interest
in certain notifications through subscriptions. Typically, subscrip-
tions are defined by a filter on the notifications’ contents. Research
has discussed extensions of the principle of publish/subscribe for
mobile networks, and for dealing with unreliable connections. In
the Java Messaging Service [21], dealing with disconnections is
done through durable subscriptions , which are stored and can be
activated by re-subscribing. JEDI [4] deals with disconnections
and mobility by defining an explicit moveIn and moveOut opera-
tor. A fixed dispatching server then buffers relevant subscriptions
and forwards them upon reconnection. This is of course problem-
atic in the case where clients do not know whether they are going
to move or not. Mobility extensions of Siena [8] follow a similar
approach. Elvin [22] offers a proxy server that maintains a con-
nection with publishers on behalf of a mobile client. Clients then
need to reconnect to this proxy server in order to receive buffered
events. [2] describes that, due to the appearance and reappearance
of hosts, there is a phase immediately after reconnection in which a

mobile subscriber needs to subscribe to events and wait until some
events get fired until it can reassess the current state of the network.
Buffers and virtual clients are introduced to subscribe to past events
and events in future locations respectively.

In [5] location-dependent subscriptions are introduced to exploit
the event-based paradigm in mobile applications. Location-dependency
refines a subscription to accept only events related to a mobile
user’s current location. STEAM [12] also deals with mobility by
adding the possibility to filter notifications on the publisher’s loca-
tion, in addition to the contents.

Scopes [6] are an extension for publish/subscribe systems that
structures publishers and subscribers by reducing visibility. Only
subscribers in the same scope as a publisher can see events from
that publisher. A scope can also be dynamic by marking all events
in a certain session with a tag - this can be viewed as tagging all the
events in an interaction. This work thus acknowledges the prob-
lem that interaction protocols are poorly supported in standard pub-
lish/subscribe like middleware, and attempts to remedy part of the
problem by automatically adding information to events that occur
in a certain session. The middleware proposed in this paper takes
a significant step forward by allowing the application developer to
describe the interaction explicitly in terms of its constituting roles,
so that interaction session are naturally separated. Scopes have also
been applied to sensor networks, [20], as a generic abstraction for
a group of nodes.

In the tuplespace (TS) family, application components manipu-
late a shared collection of data objects, called tuples, to commu-
nicate. Typical operations on a tuplespace are putting, taking and
reading tuples. The latter two operations also use a filter (in TS,
called a template) on the tuples’ contents to determine which tu-
ples to read or take. In a mobile network, a single shared space
does not exist, so it is distributed over the nodes. Extensions of
TS for mobile networks support additional mechanisms to gather
tuples from tuplespaces on remote nodes. For example, LIME [14]
makes the tuplespaces on any given node accessible to components
on connected nodes. EgoSpaces [9] allows application components
to specify exactly from which nodes tuples must be gathered us-
ing “views”. A view declaratively describes a set of tuplespaces
on remote nodes, by specifying a constraint on the location of the
nodes. An example is “tuplespaces from all nodes that are less than
20 meters away”. An application component can then manipulate
the tuplespaces in the view as if it was one shared tuplespace. For
example, a component can execute a “take” on a view defined as
“tuplespaces from all nodes that are less than 20 meters away”.
The middleware then transparently searches the network for tu-
plespaces on nodes matching the view definition, executes the take
operation on each of those, and finally returns the result to the ap-
plication component. ObjectPlaces [18] supports a similar notion
of views, but maintains it actively as the topology of the network
or as connected tuplespaces change. TOTA [11] takes a different
approach: instead of gathering tuples through views, an applica-
tion component can inject a tuple in its local tuplespace, together
with some propagation rules. The TOTA middleware then transpar-
ently propagates the tuples to neighboring nodes, and maintains the
distributed tuple as the topology of the network changes.

Discussion
These existing middleware approaches, each in their own way, solve
the problem of context-awareness in the presence of network dy-
namics very well. It becomes easy for an application component
to remain up to date with respect to its context in the network. As
mentioned in the introduction, this is because the middleware(1)
offers anonymous communication (messages are delivered based

Article No. 8

Figure 1: Schematic representation of a mutual exclusion pro-
tocol based on voting (in UML).

on their content and the location of the sender or receiver), and
(2) offers 1 to n communication (one sender can reach any num-
ber of receivers, and vice versa). Together, these properties ensure
that application components can remain loosely coupled, and for a
large part rely on the middleware to deal with the low level issues
involved in getting a message delivered to the intended receivers.

However, it is exactly these same properties that entail that cur-
rent middleware approaches provide little support when dealing
with protocols. For illustration, consider a simplified, well known
mutual exclusion protocol based on voting [15]. Roughly said, in
the protocol a component that wishes to enter the critical section
sends arequestmessage to all members of a given group. A mem-
ber repliesallow or denydepending on whether it determines if is
safe to enter the critical section or not. The requesting component
may enter the critical section if all group members replyallow.
The protocol is illustrated in the form of an interaction diagram in
Fig. 1.

We see three reasons why such a protocol is hard to implement
on top of existing middleware for dynamic networks:

1. Protocols often rely on some kind of identification, or at least
aggregate properties of their interaction partners. Consider
the requesting component: it needs to know which voter al-
ready replied, or at least how many voters replied. Pub-
lish/subscribe systems for example hide this information, sim-
ply raising an event based on the receivers interest without
revealing its publisher.

2. Communication is not always 1 to n. For example, when
voters reply, this reply is only meant for the requester. Sim-
ulating 1-1 communication in middleware that supports 1-n
communication leads to artificial constructions, such as the
inclusion of a sender id in messages.

3. Protocols are structured as multiple, related messages, and
the middleware provides no support for maintaining this struc-
ture. For example, if a requester asks to enter several critical
sections at once, the requester also has to include a session id
with the request message, and voters have to include this ses-
sion id in their vote. Since the middleware ignores that these
messages are related per session, the bookkeeping shifts to
the application components.

Although the reappearance of all sorts of ids at the application
level may not seem like a big problem, it becomes complex when
taking into account mobility. The reason that the middleware is
trying to hide the identity of components is exactly to make deal-
ing with mobility easier. The reappearance of the ids is more than

a technicality: it shows that the burden of dealing with mobility
moves largely back to the application level.

The end result is that, where an application level protocol is de-
sired, existing middleware can serve as an intelligent discovery
layer - for the mutual exclusion protocol described above, a pub-
lish/subscribe system could be used for a requester to discover dy-
namically which other nodes it should add to the mutual exclusion
group. For executing a protocol however, the application developer
cannot use the middleware anymore and must handle the protocol
using low level communication primitives. While this can certainly
be efficient, much tedious management tasks (such as management
of interaction partner ids and session ids) are again shifted to the
application layer. Also, there is no middleware support during exe-
cution of the protocol to deal with the dynamics in the network.

In conclusion, for complex interaction mechanisms, many low
level details the middleware should hide, resurface at the applica-
tion level. There is thus an opportunity for an extension of the cur-
rent middleware models, that provides explicit support for protocol-
based interaction. We discuss an approach for such an extension in
the following section.

3. A ROLE-BASED MIDDLEWARE
Our middleware model is based on the explicit representation

of interaction between application components, by supporting the
rolesan application component plays in the various interactions as
a first order abstraction.

This is inspired by ongoing work in object-oriented software
engineering, where roles are used to model object collaborations.
This has lead to usages of roles in framework design [16], imple-
mentation support [24], patterns [7] and languages [23].

Roles are also used in protocol-based interaction in multi-agent
systems [10] [19], allowing the description of inter-agent interac-
tion separately from agent behavior.

This paper does not focus on the specification or design of roles
per se. Rather, the presented middleware focusses on the setup of
an interaction session between several roles, played by application
components on different nodes, and the active maintenance of the
session in the presence of mobility and general dynamics in the
network.

First the abstractions role and role instance are introduced. How
different role instances interact with each other and with applica-
tion components on the same node is discussed next.

3.1 Roles and role instances
Role. A role specifies the behavior of one class of interaction

partners in a particular interaction. A role describes three aspects
of this behavior:

1. The messages a role sends, in particular when the role sends
these messages, and to which other role in the interaction
each message is sent.

2. The messages a role expects to receive, in particular when the
role expects these messages, and from which role the mes-
sage is expected.

3. The influence of the role on the behavior of the application
component that the role represents in the interaction, and vice
versa, the influence of the application component on the be-
havior of the role.

An interaction can be understood in terms of the behaviors of its
roles. For example, in the mutual exclusion protocol, two roles can
be identified: a requester role and a voter role.

Role instance.While a role describes the behavior of an interac-
tion partner in general terms, a role instance is a runtime entity that

Article No. 8

represents a specific component in a particular interaction session.
For example, to request a critical section, a requester role instance
is interacting with several voter role instances.

Initiator and participant. The middleware supports the appli-
cation by setting up and maintaining an interaction session between
role instances located on various nodes. In order to do this, for ev-
ery interaction there is one role that is responsible for the lifetime
of the interaction session. Such a role we call aninitiator role. An
initiator role is instantiated by the application when a new interac-
tion session is needed. After the interaction session has reached its
goal, the initiator role instance can stop the session.

The dual type of role, theparticipant role, is reactive. The mid-
dleware instantiates a participant role on a node when an initiator
instance indicates that it wants to start a session with a participant
role on the node. The participant role instance stays instantiated
until the initiator breaks up the session (or the participant goes out
of the interaction’s zone, see next paragraph).

Zones.An initiator instance (we omit the “role” for brevity from
now on) can specify on which nodes participants must be instanti-
ated by declaring (1) the type of participant role, identified by a
name, that the initiator expects to interact with; and (2) a constraint
on the properties of the nodes on which a participant role should be
instantiated, called azone. In general, these properties can change
in the course of the interaction session, i.e. they are dynamic prop-
erties. For example, the constraint “all nodes whose position is
within 20 meters of the local node’s position” delineates a zone:
position is a dynamic property of a node, and “within 20 meters of
the local node’s position” is the constraint. Another example of a
property is the state of a vehicle (e.g. loaded, charging, . . .). The
middleware instantiates a participant role on a node if and only if
the node deploys the required participant role, and the node lies
within the zone.

Dealing with network dynamics. While the session is in progress,
the middleware monitors the network, and maintains the appropri-
ate instantiation of the participants as the properties of the nodes
change. In particular, if a node enters the zone (i.e. its proper-
ties change such that it complies with the constraint of the zone), a
participant instance is created on the node (if the node deploys the
participant role). Vice versa, if a node leaves the zone, the partici-
pant instance is notified that it is outside the zone, and subsequently
removed. Both of arrival and departure of participant instances in
the zone, the initiator instance is notified as well.

For example, a zone may describe a constraint involving the po-
sition of the nodes, by declaring an area in which a participant
should be. If a new node enters this area, a participant role is in-
stantiated on the new node, and the initiator instance is notified of
the new participant instance. If a node leaves the area, the partic-
ipant instance on that node is notified that it is outside the zone of
the interaction and removed. Subsequently, the initiator instance is
notified that the participant instance was removed. The process of
automatic instantiation of roles is illustrated in Fig. 2.

Once a participant instance is created, the middleware allows
the initiator to send messages to the various participant instances,
and vice versa. This allows them to execute the interaction. The
middleware does not guarantee that communication between role
instances is reliable; either this must be guaranteed by the lower
level communication infrastructure, or the interaction protocol is
assumed to take unreliability into account.

Cleanup. If the middleware detects that a participant instance is
not able to communicate with its initiator instance anymore (i.e. a
communication timeout has passed), the participant instance is no-
tified that it is outside the zone and is removed. If the middleware
detects that an initiator instance cannot reach one of its participants

anymore, the initiator instance is notified that the participant in-
stance is out of the zone.

When the initiator instance signals the end of the interaction ses-
sion, the middleware notifies all participant instances that the in-
teraction has finished, and subsequently removes the initiator in-
stance and all participant instances on the various nodes safely. If
some participants cannot be reached, the middleware on the node at
the participant side eventually detects that the participant instance’s
communication no longer succeeds, and in response cleans up the
participant instance as well, as above.

A node can be involved in many interaction sessions at once,
both as participant as initiator. Many initiator role instances can
exist at the same time, once for each interaction session. For ex-
ample, a requester role can be instantiated for each new request for
a critical section. How these role instances can coordinate among
each other, is discussed in the next section.

Relation to groups.As noted by a reviewer, a zone can be seen
as the declaration of a distributed communication group consist-
ing of initiator and participant instances. Groups have been studied
extensively in “fixed” distributed systems [3], focussing on pro-
viding strong guarantees (total ordering, all-or-nothing semantics
of messages delivery). In dynamic networks such as mobile ad
hoc networks providing such guarantees is difficult, so the empha-
sis shifts to providing scalable multicast primitives; [13] provides
an overview. A zone is a declarative construct on top of a mul-
ticast group communication primitive - it relieves the application
programmer of having to deal with explicitly joining and leaving
groups, and also provides meaningful application level semantics
for declaring the group (e.g. based on position instead of a multi-
cast address). The middleware here presented can make good use
of group communication primitives, as is discussed further in Sect.
4 concerning implementation.

3.2 Tuplespaces
Since many role instances can be instantiated on a node at the

same time, an additional coordination mechanism is needed to co-
ordinate between components and role instances, and between var-
ious role instances on the same node. For example, a voter role
on a node can not vote “allowed” on a request if it has locked and
entered the critical section itself. The voter is dependant on the re-
quester role, and vice versa. Similarly, components involved in the
interaction may need to influence a session while it is in progress,
and role instances need to influence the behavior of application
components. For example, once the mutual exclusion protocol is
finished, the requester role returns the result of the protocol to the
component wishing to enter the critical section.

To this end, application components share state with role in-
stances in one or more shared tuplespaces. The tuplespace is used
by the application components to share state relevant for the in-
teraction with role instances (e.g. a driver puts a requested hull
projection in the tuplespace), and vice versa, the tuplespace is used
by the role instance to give feedback regarding the outcome of the
interaction to the application components (e.g. a requester role in-
stance puts a locked hull projection in the shared tuplespace). Also,
a tuplespace can be used to exchange information between role in-
stances of different interaction sessions, since they may be influ-
encing each other. Typically, related roles and components interact
in one or more tuplespaces separated from other components and
roles that deal with different interactions.

The choice of using a tuplespace is justified by 3 properties:

1. A tuplespace hides the identity of communication partners
from each other. This facilitates the dynamic addition of role
instances, without “bothering” the application components.

Article No. 8

(a) (b) (c)

Figure 2: (a) An initiator instance is activated. The circle denotes the zone in which participant roles for this particular interaction
should be instantiated. (b) The middleware instantiated the necessary participant roles. The protocol can begin executing between
the roles. (c) A new node enters the zone, so a new participant role is instantiated on that node, the initiator is notified of this new
participant, and the new participant starts partaking in the protocol as well.

2. A tuplespace provides 1-n communication. Typically, one
application component is participating in several interactions
at once, so several role instances need to observe the same
state.

3. A tuplespace acts as a shared state repository. Since roles
can be instantiated at any time, they must be able to assess
the current state of the application component immediately
after instantiation.

An alternative to a tuplespace approach would be to allow appli-
cation components to publish events, that roles can subscribe too.
This coordination mechanism would have properties 1 and 2, but
not property 3: a newly instantiated participant role would have
to wait for an event from the application component to be able to
assess its current state.

Alternatively, the designer might use his or her own state con-
tainer to allow roles and components to interact. This is possible,
but the tuplespace implementation offers immediate support for e.g
thread safety, template matching, . . . , which might avoid imple-
mentation effort and unnecessary bugs. In any case, the designer
must ensure that the necessary state is exposed so that application
component and roles can coordinate fruitfully.

4. IMPLEMENTATION
This section discusses how, based on a zone definition, the con-

sistent instantiation of participant roles can be maintained in a mo-
bile network. First a solution is presented that uses an underlying
publish/subscribe middleware. Then a specific solution for mobile
ad hoc networks is described.

The problem is stated as follows. Given a (generally, arbitrary)
constraint, called azone definition, over a set of possible dynamic
properties of a node, calledlocations, find the set of nodes with lo-
cations that satisfy the zone definition. On those nodes participant
roles must be instantiated, and a communication channel between
the participants and the node on which the initiator role was instan-
tiated must be set up. We call these nodes resp.participant nodes
andinitiator node. The type of a location is called adimension. In
general, a constraint is a function over at most 2 locations, viz. the
location of the initiator and the location of the participant (e.g. a
distance measure).

For example, (2000, 7000) is a location of an AGV in the di-
mension “physical position in milimeters”. An example of a zone
definition over this dimension is: the distance between initiator and
participant is smaller than 20 meters. Locations need not be related
to a position of some sort. Another example of location is the status
of an AGV such as loaded, unloaded, charging, etc (unfortunately
this is stretching the term “location”). In general, locations should
be chosen to support the application as flexibly as possible. Appli-
cation requirements determine which node properties are important
for the selection of interaction partners.

4.1 Using publish/subscribe
Consider a generic content based publish/subscribe system. In

such a system, publishers can send notifications, containing an ar-
bitrary content, to a set of subscribers. Subscribers express their in-
terest based on a constraint over the content of notifications, called
a filter. In some systems, publishers may advertise the notifications
they can publish, allowing more efficient routing of notifications.
Properties and implementation strategies for this kind of systems
are well known, both for general networks [1], for mobile networks
[5] as for mobile ad hoc networks [25].

A publish/subscribe system can be used to solve our problem
as follows. Each node regularly publishes its communication ad-
dress and updated locations in the form of notifications. Nodes that
deploy initiator roles with a zone definition that uses a specific di-
mension, subscribe to notifications of locations in that dimension.
Each node maintains a table of (location, communicationAddress)
pairs for every dimension in which initiators on the node are inter-
ested. Zone definitions are resolved by searching the appropriate
table of locations. If a location satisfies the zone constraint, the
corresponding node is contacted to instantiate a participant role for
the new session. Since each node publishes location updates, each
session’s participants can be maintained as the locations of nodes
change.

The solution assumes that point to point routing is possible in the
network. In mobile networks with infrastructure this is generally
not a problem. In ad hoc networks, routing protocols are known
but the extra overhead on top of a content-based routing protocol is
inefficient. We return to this issue in Sect. 4.2.

The approach can essentially be reduced to a multicast approach:

Article No. 8

all nodes interested in a specific dimension form one multicast
group, and updates in locations of that dimension are multicast
in that group. Instead of multicasting the locations, so that each
node maintains its own table, an alternative is that one node or ded-
icated server is appointed for maintaining the (location, address)
lists. Setting up a session is then slower, since first the server has
to be contacted, but the nodes themselves need less storage space.

4.2 Mobile ad hoc networks
For mobile ad hoc networks, the instantiation of participant in-

stances and communication between initiator and participants can
be supported by existing protocols that build a shortest path routing
tree or mesh in a mobile ad hoc network. Examples of these are
the protocols used for building a view over tuplespaces [9] or [18].
These protocols build and maintain a shortest path tree, according
to an application specific distance metric, starting from any node in
a mobile ad hoc network. The constraint expressed in the zone then
consists of such a distance metric, and a bound on the distance.

Building a view over tuplespaces is similar to instantiation of
participant roles based on a zone definition: a view finds tuplespaces
on nodes satisfying a constraint, and sends results of operations ex-
ecuted on those tuplespaces back to the node building the view.
This is similar to finding nodes, instantiate participant roles on
them, and allowing communication between initiator and partici-
pants.

The guarantees that can be given in a mobile ad hoc network
are much less than in a more reliable network, usually the only
guarantee that can reasonably be given is “best-effort”. We refer to
[9] and [18] for more detail.

5. CASE STUDY: AGV APPLICATION
In a research project in cooperation with an industrial partner,

Egemin, the feasibility of a decentralized approach for automatic
guided vehicle (AGV) control is explored. AGVs are unmanned
vehicles that are custom made to transport various kinds of loads
through a warehouse. An AGV can move by following a physical
path on the factory floor, typically marked by magnets or reflectors
(for laser navigation). An AGV can pick up a load at a certain
location and drop it at another location. An AGV can also park
at particular locations when it is idle and charge its battery at a
charging station. The main functionality the AGV system should
perform is handlingtransports, i.e. moving loads from one place to
another. Transports are typically generated by logistic management
programs, other logistic machines or operators. More information
and demonstration movies of the prototype implementation can be
found athttp://emc2.egemin.com .

Addressing the general problem of AGV control is not the pur-
pose of this paper. Rather a subset of the problem (collision avoid-
ance) is used to evaluate the usefulness of our middleware. So as
not to overload the discussion, our exposition of a possible solution
is reduced to the essentials. We highlight the connection of col-
lision avoidance with other concerns briefly at the end of the first
subsection. The second subsection describes how the middleware
is put to good use in this application.

5.1 Collision avoidance
To avoid collision, AGVs exchange information about where

they are going to drive to, detect conflicts using this information,
and solve the conflict among themselves using a protocol similar to
the mutual exclusion protocol described earlier.

In order to detect possible collisions beforehand, AGVs exchange
hull projections. A hull represents the physical area an AGV occu-
pies, and a hull projection projects a hull over a part of the path the

Figure 3: Two AGVs projecting hulls.

AGV intends to drive on. To be able to calculate the hull projec-
tion, the AGV has access to a representation of the physical paths
available in the warehouse, called thelayout. Since the layout is
divided into segments (ca. 2-3 meters in length), the length of a
hull projection is one segment. When an AGV is near the end of a
segment, it projects its hull over the following segment. The set of
hull projections of an AGV then marks the physical area the AGV
is going to drive on, see Fig. 3 (the circles in the figure are ex-
plained shortly). Hull projections are a flexible and precise way to
represent the path an AGV is going to follow. A description of that
path as a physical area is necessary since collisions can not only
occur at intersections but also at parallel paths close to each other.
In such situations, it is possible that two “small” AGVs can pass
each other, while two “big” AGVs can not.

The collision avoidance protocol we use is a voting based pro-
tocol. Each AGV first requests nearby AGVs whether it may drive
over a hull projection, and locks the hull projection if all the nearby
AGVs have given their consent (we will define what “nearby” means
shortly). An AGV may only drive over a path represented by a hull
projection after the hull projection is locked.

At any point in time, an AGV has a set ofrequestedhull pro-
jections, that it intends to drive over but cannot yet, and a set of
lockedhull projections, that are safe to drive over. The protocol
must ensure that the AGVs’ locked hull projections do not overlap.

When an AGV wants to lock a new hull projection, it sends are-
quest messagecontaining the requested hull projection to all AGVs
nearby. These AGVs then decide whether they give permission to
the requesting AGV to drive over the path defined by the requested
hull projection. If they give permission, they vote “allowed”, if
not, they vote “denied”. An AGV locks the requested hull projec-
tion once it has received “allowed” votes from all AGVs nearby. If
the request is denied, the AGV waits a random amount of time, and
then requests again.

Every requested hull projection contains a priority, and priori-
ties of all hull projections are totally ordered. Now, an AGV that
receives a request message (called thevoting AGV) sends an “al-
lowed” vote to therequesting AGVin the following cases:

• The requested hull projection does not overlap with any of
the voting AGV’s requested or locked hull projections.

• The requested hull projection overlaps with one or more re-
quested hull projections of the voting AGV and the request-
ing AGV’s requested hull projection has the highest priority.

Article No. 8

http://emc2.egemin.com

The voting AGV votes “denied” in all other cases.
Now, what does “all nearby AGVs” mean? It is desirable to make

the set of nearby AGVs as small as possible, since it is not scalable
to interact with every AGV in the system. On the other hand, the
set must include all AGVs with which the requesting AGV might
collide: safety must be guaranteed.

A solution to this problem is shown in Fig. 3. Requesting AGVs
interact with other AGVs whosehull projection circleoverlaps with
the hull projection circle of the requesting AGV. The hull projection
circle is defined by a center point, which is the position of the AGV
itself, and a radius, which is equal to the distance from the AGV to
the furthest point on its hull projection. If two such circles overlap,
this indicates (to a first approximation) that the two AGVs might
collide. This approximation has the benefit that it narrows down the
possible candidates for interaction significantly, while each AGV
only needs limited knowledge about all other AGVs to determine
interaction partners (i.e. position and hull projection circle radius).

We say that all AGVs that satisfy the above constraint are within
collision rangeof the requesting AGV. Requested hull projections
are sent to all AGVs within collision range. If, during the time in
which a request is pending (i.e. request has been sent out, but not all
votes have arrived yet), a new AGV comes within collision range,
the requester detects this and sends a request to the new AGV. Vice
versa, if an AGV that was already requested, leaves the collision
range, its vote can be disregarded.

Collision avoidance, as a concern in the AGV control applica-
tion, depends on and is interwoven with several other concerns,
such as routing of the AGVs, deadlock detection and avoidance,
and starvation. These are not discussed further.

Note also that several optimizations or extensions are possible
for this protocol. For example, as one reviewer pointed out, an
AGV may send an explicit “release” message, indicating that it no
longer requires a lock on an area - this would relieve another inter-
ested AGV from having to do periodic retries.

5.2 Using the middleware
We evaluate the usefulness of the proposed middleware by ap-

plying it to the collision avoidance example.
A natural design for our conceptual solution described above

uses three components: (1) a driver component that controls the
physical movement of the AGV, (2) a requester role that locks hull
projections for the driver component by negotiating with nearby
AGVs, (3) a voter role that votes on incoming requests. Because
roles are a the first-order abstraction in the middleware, this design
can be directly supported.

The driver application components’ behavior should be coordi-
nated with other driver components so that AGVs do not collide.
This coordination is done by the interaction between requester and
voter, the two roles in the collision avoidance protocol. Drivers,
requesters and voters on the same AGV communicate through a
shared tuplespace.

Requester is an initiator role. The driver component instantiates
a requester instance for each requested hull projection that needs
to be locked, also passing the requester instance the tuplespace in
which all locked and requested hull projections for the AGV are
kept. The requester instance can now set up an interaction session
for the requested hull projection. To this end, it asks the middle-
ware to activate voters on nodes within collision range. As a result,
the requester gets a notification from the middleware containing a
unique identifier of every activated voter in the session, and sends
the requested hull projection to these voters. Each voter, upon re-
ceiving the requested hull projection, determines its vote, by com-
paring the requested hull projection with the locked and requested

hulls of its local tuplespace. It sends the vote back to the requester.
If, during the course of this interaction, a new AGV enters colli-

sion range, the middleware detects this, instantiates a voter instance
on the node, and notifies the requester of the arrival of the new
voter. The requester then sends the requested hull projection to the
new voter as well. If all votes from the voters currently in the zone
have come in, the requester decides whether or not to put a locked
hull projection in the tuplespace. If not, it stops the session, waits a
random amount of time, then starts the whole process again.

Once all votes are “allowed”, the requester stops the session, puts
a locked hull projection in the tuplespace, and stops. The driver
component sees the locked hull projection, and starts to drive on
the path indicated by the locked hull projection.

5.3 Discussion
As can be seen from application to the collision avoidance ex-

ample, no management of ids at the application level is necessary.
The middleware takes care of this by instantiating participant and
initiator instances on a per session basis. The initiator can distin-
guish the different participants by their unique id.

In the example, we did not even need that id. Newly arrived vot-
ers are sent a new requested hull message, and an internal counter,
that contains the total number of votes is increased by one. If the
requester is notified that a voter leaves, is decreased by one. When
the number of received votes equals the number of votes sent, the
requester can determine whether it has permission to continue.

For this to work, we rely on the fact that the middleware notifies
the initiator of every new participant after the participant is instanti-
ated, and that the initiator is notified right after the voter is removed.
This makes dealing with mobility easier: nodes can be divided in
two classes, those that are of interest and those that are not, and
this division is actively maintained by the middleware. This allows
the application to abstract from specific dynamic properties of the
nodes, such as position.

The presented middleware provides the following application-
level support:

1. The designer can define statically what roles should be avail-
able on each node: if a node does not deploy a needed partic-
ipant role for a certain interaction, it never participates in the
interaction. Furthermore, interaction partners can be selected
on the basis of dynamic properties by the definition of zones.

2. Dealing with mobility is simplified: zones are actively mon-
itored to detect new participants in an interaction session. A
protocol can thus be aware of its context and an appropriate
protocol step can be made.

3. Bookkeeping of ids by the application is avoided as much as
possible, but unique identifiers per session and per interac-
tion partners are generated if needed.

4. Both 1-n communication, as 1-1 communication is possible.
Initiators communicate with participants (1-n), while partic-
ipants can communicate with the initiator (n-1).

5. Interaction sessions are carefully separated. This maintains
the structure of the interaction at the implementation level,
simplifying interaction implementation.

On the other hand, although the middleware can detect changes
in the network, it offers little support to actually deal with this
change on the protocol level. For example, in the above proto-
col safety is guaranteed in the presence of mobility by letting each
AGV act as a requester and by taking a safety distance into account
for declaring the zone. Thus race conditions, such as an AGV en-
tering a zone just after the protocol is closed, are taken care of at the
application level. An opportunity for future work is the addition of

Article No. 8

stronger guarantees (e.g. transactional semantics) to make it easier
for the application developer to build a correct protocol.

6. CONCLUSION
We believe that, as pervasive and ad hoc computing becomes

more mature, there is a growing need for applications that need to
use advanced coordination mechanisms. In such cases, of which
the AGV case is an example, the only feasible solution is to use
distributed protocols to coordinate the nodes. Due to the dynamics
inherent in pervasive computing, these protocols need to be aware
of their context and able to cope with contextual changes. A mid-
dleware that supports the application developer with these tasks is
then sorely needed, otherwise he or she is forced to use lower level
communication primitives, complicating application design.

This paper presented a novel coordination middleware model,
that supports the distributed instantiation of application specific
roles to handle a clearly separated interaction session. We showed
that it is able to support the design of protocol-based interaction
significantly better than existing middleware for mobile computing.
Furthermore, we showed the usefulness of the model by applying
it in a real world case.

Acknowledgements.This research is supported by the Flemish
Institute for Advancement of Research in Industry. Many thanks
to Egemin, in particular to Tom Lefever and Jan Wielemans, Jan
Vercammen, Jan Peirsman, Wim Van Betsbrugge, Rudi Vanhoutte
and Walter De Feyter. We also thank the anonymous reviewers for
their comments.

7. REFERENCES
[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and

evaluation of a wide-area event notification service.ACM
Trans. on Computer Systems, 19(3):332–383, 2001.

[2] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann.
Looking into the past: enhancing mobile publish/subscribe
middleware. InProceedings of the 2nd international
workshop on Distributed event-based systems, 2003.

[3] G. Coulouris, J. Dollimore, and T. Kindberg.Distributed
Systems Concepts and Design. Addison-Wesley Publication
Corporation, third edition, 2001.

[4] G. Cugola and H.-A. Jacobsen. Using publish/subscribe
middleware for mobile systems.ACM SIGMOBILE Mobile
Computing and Communications Rev., 6(4):25 – 33, 2002.

[5] L. Fiege, F. C. G̈artner, O. Kasten, and A. Zeidler.
Supporting mobility in content-based publish/subscribe
middleware. InProceedings of the ACM/IFIP/USENIX
International Middleware Conference, 2003.

[6] L. Fiege, M. Mezini, G. M̈uhl, and A. P. Buchmann.
Engineering event-based systems with scopes. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), 2002.

[7] M. Fowler. Dealing with roles. supplemental information to
Analysis Patterns, Addison- Wesley, 1997.

[8] P. Inverardi, M. Caporuscio, and P. Pelliccione. Formal
analysis of clients mobility in the siena publish/subscribe
middleware. Technical report, Department of Computer
Science, University of L’Aquila, 2002.

[9] C. Julien and G.-C. Roman. Supporting context-aware
interaction in dynamic multi-agent systems. InEnvironments
for Multi-Agent Systems, First International Workshop,
Revised Selected Papers, LNAI 3374, 2004.

[10] E. Kendall. Role modeling for agent system analysis, design,
and implementation.IEEE Concurrency, Agents and

Multi-Agent Systems, 8(2):34–41, 2000.
[11] M. Mamei and F. Zambonelli. Self-maintained distributed

tuples for field-based coordination in dynamic networks. In
The 19th Symposium on Applied Computing (SAC 04), 2004.

[12] R. Meier and V. Cahill. Exploiting proximity in event-based
middleware for collaborative mobile applications. In
Proceedings of the 4th IFIP International Conference on
Distributed Applications and Interoperable Systems
(DAIS’03). Springer-Verlag Heidelberg, Germany, 2003.

[13] P. Mohapatra, C. Gui, and J. Li. Group communications in
mobile ad hoc networks.Computer, 37(2):52–59, 2004.

[14] A. Murphy, G. P. Picco, and G.-C. Roman. Lime: a
middleware for physical and logical mobility. InProc. of the
21th International Conference on Distributed Computing
Systems (ICDCS-21), May 2001.

[15] G. Ricart and A. K. Agrawala. An optimal algorithm for
mutual exclusion in computer networks.Commun. ACM,
24(1):9–17, 1981.

[16] D. Riehle and T. Gross. Role model based framework design
and integration. InProceedings of the 1998 Conference on
Object-Oriented Programming Systems, Languages, and
Applications, 1998.

[17] G.-C. Roman, C. Julien, and Q. Huang. Network abstractions
for context-aware mobile computing. InProceedings of 24th
International Conference on Software Engineering, pages
363–373, 2002.

[18] K. Schelfthout and T. Holvoet. Views: Customizable
abstractions for context-aware applications in MANETs. In
Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, 2005.

[19] E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. A
design process for adaptive behavior of situated agents. In
Agent-Oriented Software Engineering V. Springer-Verlag,
2005.

[20] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Scoping in
wireless sensor networks: A position paper. InProceedings
of Workshop on Middleware for Pervasive and Ad Hoc
Computing, 2004.

[21] Sun Microsystems, Inc. Java message service spec. 1.1,
2002.

[22] P. Sutton, R. Arkins, and B. Segall. Supporting
disconnectedness - transparent information delivery for
mobile and invisible computing. InProc. of CCGrid, 2001.

[23] T. Tamai, N. Ubayashi, and R. Ichiyama. An adaptive object
model with dynamic role binding. InProceedings of
International Conference on Software Engineering, 2005.

[24] M. VanHilst and D. Notkin. Using role components to
implement collaboration-based designs. InProceedings of
the 11th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
359–369, 1996.

[25] H. Zhou and S. Singh. Content based multicast (cbm) in ad
hoc networks. InProceedings of the 1st ACM international
symposium on Mobile ad hoc networking & computing,
pages 51–60. IEEE Press, 2000.

Article No. 8

	Introduction
	State of the Art
	A Role-based Middleware
	Roles and role instances
	Tuplespaces

	Implementation
	Using publish/subscribe
	Mobile ad hoc networks

	Case Study: AGV Application
	Collision avoidance
	Using the middleware
	Discussion

	Conclusion
	References

