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Abstract. Research on situated multi-agent systems investigates how to model
a distributed application as a set of cooperating autonomous entities (agents)
which are situated in an environment. Many fundamental issues remain un-
revealed in this research area. A profound understanding of these issues,
however, is necessary before situated multi-agent systems can be applied to
industry-strength applications. We use the abstract application called the
Packet-World quite extensively as a test bed for investigating, experimenting
and evaluating fundamental concepts and mechanisms. Examples are active
perception, decision making of situated agents, synchronization of simulta-
neous actions and indirect coordination. The Packet-World has direct con-
nections with real-world applications, such as the decentralized control of a
warehouse transportation system through unmanned vehicles. In this article,
we describe the Packet-World and we give an overview of our research for
which we have used the Packet-World as a test bed.

Keywords. test bed, situated multi-agent system, environment, perception, ac-
tion selection, protocol-based communication, synchronization, simultaneous
actions, stigmergy, automated warehouse transportation system, automatic
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1. Introduction

In the last 15 years, multi-agent systems (MASs) have been put forward as a par-
adigm to tackle the increasing complexity of distributed applications. An agent as
an autonomous entity, capable of interacting with other agents in order to satisfy
its design objectives, is a natural concept to manage complexity in a decentralized
manner. Agents encapsulate their own behavior and are able to adapt to changes in
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their environment. Although MASs have already been applied with success in prac-
tice, many issues remain open for further research. One thing that researchers and
application developers have made clear is that MASs are very complex systems.
Test beds are important for investigating, experimenting and evaluating funda-
mental concepts and mechanisms of MASs. In the end, however, the benefits of
obtained research results should/must be demonstrated in real-world applications.

Our research focusses on situated MASs, i.e. MASs in which agents are ex-
plicitly placed in an environment. In this article, we present the Packet-World.
The Packet-World is a test bed for investigating situated MASs, developed in
Java. We show how the Packet-World has inspired our research during the last
three years, and we explain how we have used the test bed for the evaluation of
our work. Examples concepts and mechanisms we discuss are active perception,
decision making of situated agents, synchronization of simultaneous actions and
indirect coordination. In a current research project with an industrial partner, we
investigate how the paradigm of situated MASs can be applied to the control of
automated transportation systems that use automatic guided vehicles (AGVs) to
transport loads through a warehouse. In this project, we can validate many of our
research results obtained in the Packet-World in a complex real-world case. The
AGV case shows that the Packet-World can serve as an abstract application that
represents a family of real-world applications for which situated MASs may be a
suitable solution.

This article is structured as follows. Section 2 briefly introduces situated
MASs. In Section 3 we present the Packet-World. Section 4 discusses the under-
lying reference architecture of the Packet-World. Next, we elaborate on the main
architectural concerns in the Packet-World in Section 5. Section 6 zooms in on
advanced forms of collaboration. In Section 7, we illustrate the analogy between
the Packet-World an an automated warehouse transportation system. Finally, we
draw conclusions.

2. Situated Multi-Agent Systems

A situated MAS is a computing system composed of a (distributed) environment
populated with a set of localized agents that cooperate to solve a complex problem
in a decentralized way. Situated agents are entities that encapsulate their own
behavior and maintain their own state. They have local access to the environment,
i.e. each agent is placed in a local context which it can perceive and in which it
can act and interact with other agents. A situated agent does not use long-term
planning to decide what action sequence should be executed, but instead it selects
actions on the basis of its position, the state of the world it perceives and limited
internal state. In other words, situated agents act in the present, “here” and “now”.
Intelligence in a situated MAS originates from the interactions between the agents,
rather then from their individual capabilities.
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The approach of situated MASs has a long history. R. Brooks [6][7] identified
the key ideas of situatedness, embodiment and emergence of intelligence. L. Steels
[25] and J. L. Deneubourg [11] introduced the basic mechanisms for agents to co-
ordinate through the environment: gradient fields and marks. P. Maes [19] adopted
the early robot-oriented principles of reactivity in a broader context of software
MASs. K. Rosenblatt and D. Payton [23], T. Tyrrell [26], T. Balch and R. Arkin
[3] and many others explored the underlying fundamentals of reactivity and sit-
uatedness and developed new architectures for situated agents that enable better
adaptive behavior and support more flexible design than the early-days hard-wired
stimulus-response structures. A. Drogoul [12], M. Dorigo [9], V. Parunak [20] and
many other researchers drew inspiration from social insects and adopted the prin-
ciples in situated MASs.

Situated MASs have been applied with success in practical applications over
a broad range of domains. Some examples are: manufacturing control [21], supply
chains systems [24], network support [5] and peer-to-peer systems [2]. The benefits
of situated MAS are well known, the most striking being efficiency, robustness and
flexibility. In [35], M. Wooldridge points to a number of limitations of situated
MASs. Wooldridge argues that situated agents take into account only local, current
information and thus inherently must take a “short-time” view for decision making.
However, complex problem domains suitable to apply agent-technology, such as
manufacturing control or ad-hoc networks, are by their very nature distributed
and highly dynamic. In such domains it is questionable whether it is feasible or
even useful for agents to collect global information or to have a “long-term” view on
the situation. Another problem raised by Wooldridge is that there is no principled
methodology to engineer situated agents, in particular with respect to desired
overall behavior of the system. The relationship between the local interactions of
agents and the global behavior of the MAS is indeed a complex open problem in
need of extensive further research.

3. The Packet-World Test Bed

In [17], M. Huhns and L. Stephens propose a research exercise to tackle a number
of open research questions regarding situated MASs. The problem domain of this
exercise is composed of a two-dimensional grid consisting of packages and destina-
tions. In this domain, robots must move the packages to the correct destination.
The goal of the exercise is to investigate under which conditions the robots will
develop social conventions and how the robots can take advantage of information
communicated with each other. This exercise was our inspiration for developing
the Packet-World.

3.1. Basic Setup of the Packet-World

The basic setup of the Packet-World consists of a number of differently colored
packets that are scattered over a rectangular grid. Agents that live in this virtual
world have to collect these packets and bring them to the correspondingly colored



386 Danny Weyns, Alexander Helleboogh and Tom Holvoet

(a) A Packet-World of 10x10. (b) Local view of agent 8.

Figure 1. Example of the Packet-World.

destination. We call a job the task of the agents to deliver all packets in the world.
Fig. 1(a) shows an example of a Packet-World of size 10x10 with 8 agents. Colored
rectangles symbolize packets that can be manipulated by the agents and circles
symbolize destinations.

In the Packet-World, agents can interact with the environment in a number
of ways. Agents are allowed to make one step at a time to a free neighboring cell.
If an agent is not carrying any packet, it can pick up a packet from one of its
neighboring cells. An agent can put down a packet it carries at one of the free
neighboring cells, or of course at the destination point of that particular packet.
Finally, if there is no sensible action for an agent to perform, it may wait for
a while and do nothing. Besides acting in the environment, agents can also send
messages to each other. In particular agents can request each other for information
about packets or destinations, or ask to set up collaborations. Performing actions
requires energy. Therefore agents are equipped with a battery. The energy level of
the battery is of vital importance to the agents. The battery can be charged at
one of the available battery chargers. Each charger emits a gradient. The gradient
values of all battery chargers are combined into a single gradient field. To navigate
towards a battery charger, the agents follow the field in the direction of decreasing
gradient values. In the example of Fig. 1 there is only one charger, indicated by
a battery symbol. The value of the gradient field is indicated by a small number
in the bottom left corner of each cell. The intensity of the field increases further
away from the charger.

It is important to notice that each agent of the Packet-World has only a
limited view on the world. The view-range of the world expresses how far, i.e. how
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many squares, an agent can perceive its neighborhood. Figure 1(b) illustrates the
limited view of agent 8, in this example the view-range is 2.

The goal of the agents is to perform their job efficiently, i.e. with a minimum
number of steps, packet manipulations and message exchanges. We monitor the
Packet-World via two counters that measure the efficiency of the agents in per-
forming their job. A first counter measures the energy consumed by the agents.
Stepping with a packet or without a packet, picking up a packet or putting it down
and communicating messages all have an energy cost. As a default, when an agent
makes a step without carrying a packet it consumes one unit of energy, stepping
with a packet requires two units of energy. The energy required to pick up a packet
or to put it down is also one unit. Finally, waiting and doing nothing is free of
charge. The second counter measures the number of messages sent. By default,
this counter simply increments for each message that is transferred between two
agents. The overall performance can thus be calculated as a weighted sum of all
energy-consuming activities.

3.2. Objectives of the Packet-World

In the past, several other test beds for MASs have been developed. The most
famous is probably the “Tileworld” [22]. The original Tileworld consists of a grid
of cells on which an agent has to pick up and move tiles toward holes. The tiles and
holes appear and disappear at rates determined by parameters of the simulator.
These parameters enable the user to tune the experiments in order to examine
particular aspects of interest. The Tileworld has been used for evaluating several
kinds of agent architectures, see e.g. [18].

In contrast to the Tileworld, in which only one agent operates, in the Packet-
World a collection of agents has to solve the problem. Central to the Packet-World
is global problem solving using local interaction between the situated agents. The
focus of the Packet-World is on “conceptual exploration” of situated MASs, rather
than on “testing”. During the last three years, we have applied the Packet-World
as a test bed for investigating the following issues in situated MASs: (1) perception
of the environment; (2) (simultaneous) actions; (3) direct and indirect communica-
tion; (4) timing issues and execution control; (5) different forms of collaborations;
and (6) adaptability. In the course of this research, we have introduced several ex-
tensions to the Packet-World, such as “heavy packets” that must be manipulated
by two agents simultaneously, or pheromones, flags and gradient fields to enable
agents to coordinate indirectly, etc.

4. Underlying Reference Architecture of the Packet-World

In this section, we discuss the underlying reference architecture of the Packet-
World. First we clarify the main characteristics of the reference architecture. Then
we give a graphical overview of the architecture and briefly explain the essential
building blocks and their interrelationships.
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4.1. Characteristics of the Reference Architecture

The early school of reactive MASs originated from the rejection of classical agency
based on symbolic AI. Nowadays, the original opposition tends to evolve towards
convergence and integration. A pioneer of this synergetic vision on MASs is J. Fer-
ber [13]. In line with this evolution we developed a new perspective on situated
MASs, resulting in a reference architecture with the following main characteristics:

1. The environment is modeled as a first-class entity with its own processes
that manage the state of the environment. The environment is observable to
the agents and serves as a regulating entity, i.e. it defines the rules for, and
enforces the effects of, the agents’ (inter)actions.

2. The situated agents as well as other processes can be active in the environ-
ment, asynchronously as well as simultaneously.

3. The situated agents are approached as social entities capable to commit to
one another in their situated context.

4. The reference architecture is developed according to state-of-the-art software
engineering principles and complies with the rules of separation of concerns
and reuse-ability.

4.2. Overview of the Reference Architecture

Figure 2 depicts a high-level overview of the reference architecture for situated
multi-agent systems [30]. We use a model for action that is based on Ferber’s
theory of influences and reactions [13]. According to this theory, agents produce
influences in the environment and subsequently the environment reacts by com-
bining the influences to deduce a new state of the world from them. The reification
of actions as influences enables the environment to combine simultaneously per-
formed activity in the system.

The architecture integrates three primary abstractions: agents, ongoing activ-
ities and the environment. First we look at the agent architecture. The Perceptioni

module maps the local state of the environment onto a percept for the agent. We
use a model for active perception that enables an agent to direct its perception at
the most relevant aspects in the environment according to its current task. We dis-
cuss perception in the Packet-World in Section 5.2. The KnowledgeIntegrationi

module uses the most recent percept to update the current knowledge of the agent.
The Decisioni module is responsible for action selection. The decision module is
set up as a free-flow activity tree. To enhance the social behavior of the agents, we
extended free-flow trees with the concepts of a role and a situated commitment. A
role maps on a subtree that covers a logical functionality of the agent. A situated
commitment enables an agent to bias its action selection towards the actions of
the role it plays in the commitment. We elaborate on agent’s decision making in
the Packet-World in Section 5.3. The Communicationi module takes care of the
communicative interactions. The communication module processes incoming mes-
sages and produces outgoing messages according to well-defined communication
protocols. Agents typically modify their state (current knowledge and/or situated
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Figure 2. Overview of the Reference Architecture.

commitments) based on the commutative interactions. We discuss communication
in the Packet-World in Section 5.4.

Next to agents, the architecture integrates the concept of an ongoing activity
to model other processes that may produce activity in the system. Examples of
ongoing activities are moving objects, evaporating pheromones or environmental
variables such as temperature. An ongoing activity is defined by an Operationj .
Ongoing activities produce influences in the environment depending on the current
state of the environment. We discuss several kinds of ongoing activities in the
Packet-World in Section 6.2.

The MessageDelivering module of the environment handles message trans-
port. The Collector module collects the influences of agents and ongoing activities
in the MAS and passes sets of simultaneously performed activity to the Reactor
module. The Reactor calculates, according to a set of domain specific laws, the
reaction, i.e. state changes in the environment. Dealing with actions in the Packet-
World is the subject of Section 6.1. To determine the simultaneity of actions, the
architecture supports three forms of synchronization: (1) global synchronization,
i.e. all agent act in lock step; (2) regional synchronization, i.e. agents form synchro-
nized groups on the basis of their current locality; and (3) fine-grained synchroniza-
tion based on logical time. We elaborate on synchronization in the Packet-World
in Section 5.5.

5. Architectural Concerns in the Packet-World

In this section, we discuss the architecture of the Packet-World. The architecture
of the Packet-World is a concrete instantiation of the reference architecture for
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(a) Environment structure decomposed in layers. (b) Integrated representation in

the Packet-World.

Figure 3. Layered model of the environment.

situated MAS as presented in the previous section. Subsequently, we zoom in on
the following concerns: structure of the environment, perception, agent’s decision
making, communication, execution control and timing.

5.1. The Structure of the Environment

A first concern we have investigated with the Packet-World is the structure of
the environment. The environment of the Packet-World has a grid structure. We
have modeled the environment as a collection of grid layers [27], see Fig. 3(a).
Each layer hosts a particular kind of item1. Examples are an agent-layer, a packet-
layer, a pheromone-layer etc. Relations can be defined between items in different
layers, e.g. an agent in the agent-layer can hold a packet in the packet-layer. The
aggregate of layers populated with items and their interrelationships represent the
state of the world as it can be perceived by the agents. Each layer defines a set of
constraints on the items for that layer, e.g. two packets can not be located on the
same location in the packet-layer. In addition, the combined locations of items in
different layers can be constrained. An example of an inter-layer constraint is: an
agent can not be located on the same position as a destination (since agents are
not allowed to move across a destination).

The layered structure of the environment has several advantages. First of all,
it improves extensibility and re-usability. It is relatively simple to add a new layer
to the environment when needed, and layers can be reused over different versions
of the Packet-World. Second, the layered structure simplifies the generation of
agent’s perception and the calculation of effects of actions. Since we allow an
agent to perceive its environment selectively, only the corresponding layers of the
environment have to be taken into account to generate a perception. The laws
that apply when agents act in the environment are made explicit by means of the

1Item is the generic type for objects and agents in the Packet-World.
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Figure 4. Perceptioni module at the top, with a detail of
Sensingi module at the bottom.

constraints defined for each particular layer, and the constraints defined between
layers. We further elaborate on these issues in the next sections.

5.2. Perception

Perception in software MASs is a relatively unexplored research domain. We inves-
tigated perception in the Packet-World and developed a model for active percep-
tion that enables an agent to direct its perception according to its current tasks.
Figure 4 gives an overview of the perception module of an agent [33]. The module
for perception is decomposed into three functional modules: sensing, interpreting
and filtering.

Sensingi maps the state of the environment to a representation. The mapping
of state to a representation depends on two factors. First the agent can select a set
of foci. Focus selection enables an agent to direct its perception, it allows the agent
to sense the environment for specific types of information. Examples of foci in the
Packet-World are see(ai, range) and smell(ai, range). The focus see(ai, range)
expresses that agent ai intends to perceive all “visible” items within a distance de-
fined by range measured from its current position. Examples of visible items in the
Packet-World are packets, destinations, battery chargers or other agents. With the
smell(ai, range) focus, the agent expresses its intention to smell its neighborhood,
typically to sense pheromones (see Section 6.2). Second, the representation of the
environment state is composed according to a set of perceptual laws. A perceptual
law constrains the composition of a representation according to the requirements
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of the modeled domain. As such, perceptual laws are an instrument for the de-
signer to model domain-specific constraints on perception. Contrary to physical
sensing that incorporates such constraints naturally, in virtual environments we
have to model the constraints explicitly. An example of a perceptual law in the
Packet-World is a law that specifies which items agents are able to “see” in their
neighborhood. If e.g. an agents ai requests a perception with a focus see(ai, 5) and
the general view-range is four, the law will cut off the perceived area to a range of
four cells relative to the agents current location. But if the agent requests a percep-
tion with focus see(ai, 2), the returned representation will contain all visible items
within a range of two cells. The generation of a representation is a responsibility
of the environment and is handled by the PerceptGenerator, see Fig. 4.

The second functionality of perception is Interpreting. Interpreting maps a
representation to a percept. To interpret a representation, agents use descriptions.
Descriptions are blueprints that enable agents to extract percepts from representa-
tions. Percepts describe the sensed environment in the form of expressions that can
be understood by the internal machinery of the agent. An example is a representa-
tion that contains a number of packets in a certain area. The agent that interprets
this representation may choose a description to interpret the distinguished packets
or another description to interpret the group of packets as a cluster.

The third and final functionality of active perception is Filtering. By select-
ing a set of filters, an agent is able to select those items of a percept that match
specific selection criteria. Each filter imposes conditions on the elements of a per-
cept. These conditions determine whether the elements of a percept can pass the
filter or not. For example, an agent that has selected a focus to visually perceive
its environment and that is currently interested in the agents within a range of
two cells can select an appropriate filter select(“Agent”, 2).

5.3. Agent’s Decision Making

Another architectural concern we have investigated with the Packet-World is deci-
sion making. The model for agent’s action selection in the Packet-World is based
on free-flow trees [23]. Since existing free-flow trees are designed from the view-
point of individual agents, they lack support for explicit social behavior. To enable
explicit social behavior for situated agents, we have extended free-flow trees with
the concepts of a role and a situated commitment [31]. Fig. 5(a) depicts a simplified
partial action selection model for an agent in the Packet-World.

The tree is composed of nodes which receive information from internal and
external stimuli in the form of activity. The activity values of internal stimuli are
directly derived from the agent’s current knowledge, the values of external stimuli
are indirectly derived from perception, via the KnowledgeIntegration module. The
nodes feed their activity down through the hierarchy. When the activity flow arrives
at the action nodes, i.e. the leaf nodes of the tree, a winner-takes-it-all process
decides which action is selected. Fig. 5(b) depicts in detail how the DeliverPacket
node collects its activity from a parent node and the “carry packet”” stimulus, and
feeds the combined activity down in the hierarchy.
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(a) Free-flow tree. (b) Detail of the flow.

Figure 5. Action selection for an agent in the Packet-World.

We define a role as a subtree in the hierarchy that covers a logical functionality
of the agent. The root node of such a subtree is denoted as the top node of the
role. A role is named after its top node. A role may consist of a set of sub-roles,
and sub-roles of sub-sub-roles, etc. All roles of the agent are constantly active
and contribute to the final decision making by feeding subsets of actions with
activity. However the contribution of each role depends on the activity it has
accumulated from the affecting stimuli of its nodes. In the example, there are three
roles demarcated by dotted triangles. In the role Individual, the agent searches
for packets and brings them to the destination. The role of Chain is composed of
two sub-roles: Head and Tail denoting the two roles of agents in a collaboration
to pass packets along a chain. Such a collaboration enables these agents to deliver
packets more efficiently at the destination. Finally, in the role of Maintain the
agent recharges its battery.

A situated commitment defines a relationship between one role, i.e. the goal
role, and a non-empty set of other roles of an agent, i.e. the source roles. Each
link between a source role and the commitment has a weight factor that deter-
mines the extent of influence of the associated role on the situated commitment.
Situated commitments have a name. Explicitly naming the commitments enables
agents to set up mutual commitments in a collaboration. However, a single agent
can also commit to itself. The connector Charging in Fig.5(a) denotes the sit-
uated commitment of an agent to itself to recharge its battery. The connectors
HeadOfChain and TailOfChain denote the mutual situated commitments of
two agents to collaborate in a chain. The situated commitment HeadOfChain in
the example, connects the single source role Individual with the goal role Head.
Charging on the other hand connects two source roles with one goal role.

Besides a name, each situated commitment is characterized by a relations
set, a context, an activation condition, a deactivation condition, a status (acti-
vated or deactivated) and an addition function. To illustrate these characteristics,
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consider agent 6 in Fig.1(a) that commits to be HeadOfChain in a collaboration
to pass yellow packets along a chain with agent 5. The relations set contains the
identity of the related agent(s) in the situated commitment. The relations set of
agent’s 6 commitment is the singleton containing agent 5. The context describes
contextual properties of the situated commitment. Applied to the example, the
context of the situated commitment denotes that yellow packets are passed along
the chain. Activation and deactivation conditions are boolean expressions based
on internal state, perceived information and/or received data of a message. When
the activation condition becomes true, the situated commitment is activated. The
situated commitment then injects an additional amount of activity in the goal role
defined by the addition function. The weight factors of the links from the source
roles determine the fraction of the activity level of the top node of each source
role that is taken into account by the addition function. The top node of the goal
role combines the additional activity of the situated commitment with the regular
activity accumulated from its stimuli. The activation condition for the situated
commitment of agent 6 in the example, is the receipt of agent’s 5 confirmation to
collaborate. As soon as the deactivation condition becomes true, the situated com-
mitment is deactivated. Then the situated commitment no longer influences the
activity level of its output node. The deactivation condition of the commitment of
agent 6 is a change in the environment that indicates that the collaboration has
finished, e.g. agent 5 has left its post to recharge its battery.

In general, one agent can be involved in different situated commitments at
the same time. The top node of one role may receive activity from different situ-
ated commitments and may pass activity to different other situated commitments.
Activity received through different situated commitments is combined with the
regular activity received from stimuli into one result.

Summarizing, agents typically agree on mutual situated commitments in a
collaboration via direct communication, which is discussed in the next section.
Once activated, the situated commitment will affect the selection of actions. The
situated commitment induces extra activity in the hierarchy, favoring action selec-
tion described by the goal role of the situated commitment. Traditional approaches
of commitment oblige agents to communicate each other explicitly when the con-
ditions for a committed cooperation no longer hold. For a situated commitment
it is typically the local context in which the involved agents are placed that regu-
lates the duration of the commitment. This approach fits the general principles of
situatedness and robustness of situated multi-agent systems.

5.4. Protocol-Based Communication

Communication in multi-agent systems is traditionally based on speech act theory
[1]. Speech act theory treats communication as actions and these communicative
acts are considered in isolation. In practice, however, speech acts are mostly part
of series of logically related communicative acts. We used the Packet-World to
study communication in terms of protocols. Communication protocols emphasize
the relationship between the exchanged messages in communicative interactions.
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(a) Communication log. (b) Packet-World situation.

Figure 6. Communication in the Packet-World.

We define a communication protocol as a set of protocol steps [32]. A protocol
step is a tuple (conditions,effects), with conditions a set of boolean expressions
that determine whether the protocol step is applicable. Conditions are based on
received messages, the agent’s available roles, and the agent’s state (i.e. its current
knowledge and the status of its situated commitments). Effects are the results of
the application of the protocol step, i.e. the composition of a new message and/or
the modification of the agent’s state. A communicative interaction (conversation)
is initiated by the initial step of a communication protocol. At each stage in
the conversation there is a limited set of possible protocol steps. Terminal states
determine the end of a conversation.

As an example, let us look at the communication protocol to set up a chain
for passing packets in the Packet-World, see Fig. 6. In the depicted situation,
the conditions for agent 4 to set up a chain are fulfilled. Therefore it sends a
cooperation request to agent 3, the candidate tail. cooperation request is the initial
step of the communication protocol. In the Packet-World agents use a simple
FIPA-ACL-like communication language. The basic version of this language allows
agents: (1) to request each other for information about packages or destinations,
and (2) to set up chains to pass packets to each other. The third line in Fig. 6(a)
depicts the cooperation request of agent 4. chain refers to the kind of cooperation
that is requested, red is the color of the packets to be passed, 7/2 are the current
x/y-coordinates of agent 4 and 8/3 are the coordinates of the destination for
red packets. Agent 3 then investigates the proposal. Since it is able to pass two
red packets to agent 4, agent 3 sends an accept coopeartion request and activates
the situated commitment TailOfChain, as shown in Fig. 5(a). The fifth line in
Fig. 6(a) shows that agent 3 accepts the request for cooperation. After receiving
the acceptance, agent 4 activates the situated commitment HeadOfChain. In the
mean time, agent 3 itself has requested agent 2 to cooperate in the chain, see line
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4. But, since agent 2 has no packets to pass, it refuses the cooperation and sends
a refuse cooperation request, see the bottom line in the log panel.

After the mutual commitments between agent 4 and agent 3 are activated,
the cooperation is settled and continues until the situated commitments get de-
activated. Deactivation may be communicated explicitly by “end of cooperation”
messages, but may also be induced by changes in the environment. For example,
in case agent 3 has passed all packets and leaves its position to find new work, or
in case one of the agents runs out of energy and leaves its position to recharge its
battery, the other agent will detect this change and will terminate the conversation
and that ends the cooperation.

5.5. Execution Control and Timing

A radically different concern investigated in the Packet-World, is execution con-
trol and timing for situated MASs. The relative timing and order in which var-
ious agents perform activities in the Packet-World, is completely arbitrary due
to thread scheduling, message transport delays and variable processor loads in
the execution platform. Providing execution control mechanisms is necessary to
enforce requirements with respect to relative timing and order, e.g. for enabling
repeatable simulation results and reliable testing. Three different approaches of
execution control are supported in the Packet-World: global synchronization, re-
gional synchronization and synchronization based on logical time.

5.5.1. Global Synchronization. Global synchronization enforces all agents in the
Packet-World to act at one global pace. All agents are synchronized with each other
and perform actions simultaneously. In each cycle, each agent performs one action,
after which the actions of all agents are processed and the cycle restarts. The
main advantage of this approach is its simplicity. However, global synchronization
severely limits the agent’s autonomy, since agents cannot decide themselves when
to perform an action. Moreover, as all agents are forced to act at the pace of
the slowest agent in the entire MAS, the efficiency of acting is low. Finally, in a
distributed setting this approach scales badly since the centralized synchronizer is
a bottleneck and a single point of failure.

5.5.2. Regional Synchronization. Compared to global synchronization, regional
synchronization [28, 8] allows synchronization to be more selective, increasing the
efficiency of acting for the agents. Regional synchronization is based on the char-
acteristic that agents within a situated MAS typically perceive and act locally.
In the Packet-World, a regional synchronization algorithm allows each agent to
synchronize with all agents within its perceptual range, and in turn, these agents
synchronize with all agents within their perceptual range, and so on. Applied to
an example: with a view size of 2 in Fig. 7, we have three regions of synchronized
agents, indicated by different colors: region 1 consisting of agent 1, agent 4 and
agent 5, region 2 consisting of agent 2, agent 3 and agent 6, and finally agent 7
forms region 3 on its own, since it is currently out of range of all other agents. All
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Figure 7. Regional synchronization in the Packet-World.

agents within the same region are synchronized with each other and act simulta-
neously, performing actions at the same pace. Different regions on the other hand
are asynchronous: the agents within region 1 act at their own pace, independent of
the pace of the agents in region 2 or region 3. Note that the regions are dynamic
and have to be kept up-to-date as agents move. For instance, if agent 7 performs a
step in the northern direction, it enters the perceptual range of agent 3, and hence
regions 2 and 3 merge. The cost of regional synchronization is an overhead of com-
munication to maintain regional groups of synchronized agents. The advantage of
regional synchronization is its scalability, as no central synchronizer is employed.
However, since the execution of different regions is asynchronous, the relative tim-
ing and order of actions performed by agents belonging to different regions is not
guaranteed. For a quantitative evaluation of regional synchronization we refer to
[28].

5.5.3. Synchronization Based on Logical Time. Global and regional synchroniza-
tion does not take into account the nature of the actions agents perform, the han-
dling of (simultaneous) actions does not reflect the characteristics of the actions
in the real world. For example, suppose that in the real-world a step represents
travelling a distance of 10 meters at a speed of 1 meter per second, and picking up
a packet takes 5 second. In this case, it takes an agent 2 times longer to perform
a step than to pick up a packet. Synchronization based on logical time [16] allows
the developer to customize the timing for each action and for each agent, such
that the characteristics of the real world are reflected in the model.

In the Packet-World, synchronization based on logical time is supported by
means of (1) semantic duration models which allow the developer to describe the
desired timing characteristics for the Packet-World, and (2) a mechanism that inte-
grates all synchronization functionality transparently into the MAS. Consequently,
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Figure 8. Synchronization based on logical time. The white
parts of the infrastructure are hidden from the developer.

the timing of the Packet-World can be changed without requiring changes in the
agents. Moreover, the complexity of all underlying synchronization infrastructure
can be hidden from the developer.

We explain the working of a prototype [15] that was developed and that uses
AspectJ to integrate this approach of synchronization in the Packet-World, see
Fig. 8. First, the developer specifies a particular Semantic Duration Model for
each agent within the MAS. Semantic duration models enable the developer to
express a duration for each of the activities2 the agent can perform. The duration
of an activity of an agent is the period of logical time it takes until the effects
of that activity are noticeable. For each agent ai, the semantic duration model is
described in terms of a list of (ci

j , r
i
j)-tuples, with ci

j mapping to a Java method
that the agent executes to perform a particular activity with semantic meaning,
and ri

j a constant denoting the logical duration of that activity. For example, in
Fig. 8, the model specifies that performing a move action in the Packet-World
takes a logical time of 5 units for agent a1, compared to 6 units for agent a2.

Based on a semantic duration model of all agents within the MAS, an Aspect
and a Time Monitor are generated for each agent (see Fig. 8). The Time Monitor
of agent ai contains a logical clock for that agent. At the start of the simulation,
the logical clocks of all agents are zero. The goal of the Aspect on the other hand
is to notify the Time Monitor of all activities the corresponding agent executes.

2With the term activities, we refer to all internal deliberation an agent can perform, as well as

all actions on the environment and all perception of the environment, insofar they are considered
semantically relevant for the simulation.
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Therefore, the Aspect weaves code into all methods that are defined as activities
ci
j of the agent. The goal of the inserted code is to block the execution of the agent

as soon as it decides to perform an activity cj
i and to notify the Time Monitor,

which then advances the agent’s logical clock with a value of rj
i . For example, a

simulation starts and agent a1 performs a move action while agent a2 picks up
a packet. Both actions are intercepted and blocked, causing the logical clock of
agent a1 to be advanced to 5 and that of agent a2 to 2.25. The notification of the
Time Monitor and the blocking of an agent’s execution by the inserted code is
represented graphically for agent a1 by the arrowed lines in Fig. 8. The MAS Time
Synchronizer ensures that all activities are not executed out of logical clock order.
The MAS Time Synchronizer continuously inspects the logical clocks of all agents,
and unblocks agents for which it is safe to proceed. In our example, agent a2 has
the smallest logical clock and hence is allowed to proceed. Consequently, agent a2

is allowed to perform the pick-up packet action that was previously blocked, and
a2 continues by performing a move afterwards. This causes the execution of agent
a2 to be intercepted again, and its logical clock to be advanced to 8.25. The MAS
Time Synchronizer compares this value with the logical clock of agent a1, which
still has a value of 5. This causes the execution of agent a1 to be unblocked while
agent a2 remains blocked. Consequently, agent a1 performs the move, followed
by picking up a packet. At this moment, the logical clocks of both agents are
8.25. Both agents are unblocked and hence the pick-up packet action of agent
a1 and the move of agent a2 are simultaneous actions as they occur at the same
moment in logical time. Note that, to allow agents to perform simultaneous actions
deliberately, agents must have an activity at their disposal to wait for a particular
logical duration without action. This fine-grained level of synchronization comes
at the cost of a scalability comparable to that of global synchronization.

6. Advanced Collaborations in The Packet-World

In the previous section, we discussed several forms of simple collaborations between
agents in the Packet-World. Examples are the exchange of information about pack-
ets and destinations, or the formation of chains to deliver packets more efficiently.
In this section, we zoom in on more advanced forms of collaboration in the Packet-
World. First we illustrate collaborations based on simultaneous actions, after that
we elaborate on different forms of collaborations based on stigmergy.

6.1. Simultaneous Actions in the Packet-World

Introducing the possibility for agents to act simultaneously opens up new perspec-
tives on collaboration. We extended the Packet-World in several ways to enable
agents to act simultaneously. One extension is the possibility for two neighboring
agents to transfer a packet directly to one another. An example in Fig. 9 is agent
1 that passes the packet it carries to agent 8. Such a transfer only succeeds when
the involved agents act together, i.e. agent 1 has to pass the packet while agent
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Figure 9. Simultaneous Actions in the Packet-World.

8 accepts the packet. Another extension is the introduction of “heavy” packets,
denoted in Fig. 9 by the larger rectangles. Contrary to regular packets, to pick
up a heavy packet, two agents have to lift up the packet together, each of them
at a short side of the packet. Agents that carry a heavy packet can only move
together in the same direction. As for regular packets, heavy packets can be put
down at any free cell or at the delivering point of the packet. However, to put
down a heavy packet, both agents have to release the packet simultaneously. An
example in Fig. 9 are agents 2 and 7 that make a step with the large packet they
carry. Such a step only succeeds when both agents step in the same direction. In
the depicted situation, this could correspond to a direction southwest towards the
destination of the packet they carry.

6.1.1. Support for Simultaneous Actions. To avoid race conditions, all access to
shared state must be controlled. Current mechanisms for access control (locks,
semaphores, monitors, etc.) provide support for interleaving concurrent access to
shared state. As such, additional support is needed for simultaneous actions whose
combined effect differs from performing these actions sequentially. To enable si-
multaneous actions: (1) agents must be able to act together and (2) the outcome
of simultaneous actions must be in accordance with the laws of interaction that
apply for the MAS.

Enabling agents to act together requires (1) a model that prescribes the condi-
tions to determine which actions happen simultaneously, i.e. the synchronization
model; (2) support to reify actions; and (3) a runtime mechanism that resolves
which actions satisfy these conditions. In Section 5.5, we discussed three different
models for synchronization we have applied in the Packet-World: global synchro-
nization, regional synchronization and synchronization based on logical time.
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Figure 10. Dealing with Simultaneous Actions in the Packet-World.

Ensuring the correct outcome of simultaneous actions requires additional
support of the environment. Fig. 10 depicts the model we have used to deal with
simultaneous actions in the Packet-World [29]. When an agent invokes an action
in the environment, that action is reified as an influence and collected by the
influence collector. When the collector has received a complete set of influences
from a set of simultaneously acting agents3, it passes the set to the reactor. The
reactor combines the influences with the valid action laws. The resulting effects
are passed to the effector that updates the state of the environment. For a detailed
discussion on the infrastructure for simultaneous actions we refer to [29][30].

6.2. Stigmergy: Flags, Gradient Fields and Pheromones

The concept of stigmergy was first introduced by P. Grassé [14] to describe the
indirect communication among individuals in social insect colonies. In the con-
text of MAS, stigmergy is applied as various forms of indirect communication by
means of markers in the environment. Stigmergy enables agents to influence each
others behavior indirectly through manipulation of the state of (marks in) the
environment, while in learning approaches such as [4] agents modify their own
internal state based on feedback received from the environment. To evaluate the
applicability of stigmergy as a means for communication between situated agents,
we studied the use of three kinds of environmental markers in the Packet-World:
flags, gradient fields and synthetic pheromones [10].

3For global synchronization, a set contains an influence of each agent in the MAS; for regional

synchronization a set contains the influences of all agents of a region; for synchronization based
on logical time all the influences with the same logical time belong to a set.
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(a) Flag-based stigmergy. (b) Pheromone trails.

Figure 11. Stigmergic communication in the Packet-World.

6.2.1. Flags. A first and most simple form of indirect communication are flags
which the agent can place in the environment. In the Packet-World, the use of
flags was studied as a means to solve the “sparse world” problem. The sparse
world problem arises when only a couple of packets are left. The behavior of the
agents then becomes inefficient. Most agents keep searching aimlessly for packets,
wasting their energy. When several agents detect one of the few packets remaining,
all of them run towards it, while in the end only one of them is able to pick it up.
To cope with the sparse world problem, agents can use flags to mark a part of the
world in which no more packets are present. By placing flags, the agents divide
the world in two zones: a marked and an unmarked zone. Agents avoid the marked
zone, and only consider the unmarked zone for further exploration. The agents’
behavior for placing flags had to satisfy two requirements. First, the destinations
must at all times be part of the unmarked zone. Otherwise, the agents would
forever try to search for the unmarked zone, even if all packets were collected.
Second, and for the same reason, there can only be one unmarked zone: all cells
belonging to the unmarked zone are connected. We tested various behaviors for
the agents with different strategies for placing flags. The best results were obtained
with a behavior maintaining an unmarked zone which always has a convex shape,
see Fig. 11(a). To obtain this solution, agents start placing flags in empty corners.
Extra flags are placed between other flags or between (flags and) the borders of
the world. The shortest path between the remaining packets on the one hand and
the destinations on the other hand always lies entirely within the unmarked zone
(because of its convex shape) and hence is never excluded.
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Figure 12. Gradient field emitted by battery chargers.

6.2.2. Synthetic Pheromones. A second important form of indirect communication
is the use of synthetic pheromones, see Fig. 11(b). Analogous to flags, pheromones
are markers that agents can place in the environment. However, pheromones ex-
hibit a number of additional characteristics: evaporation, aggregation and diffu-
sion. Evaporation means that the strength of pheromones diminishes over time.
Aggregation on the other hand means that different pheromones at the same cell
are combined into a single pheromone with increased strength. Finally, diffusion
means that pheromones deposited at a particular cell are spread to neighboring
cells over time, making it more likely that agents further away can perceive them.
Evaporation and diffusion are examples of ongoing activities, see Section 4. In the
Packet-World, the use of pheromones is studied to construct trails between clus-
ters of packets on the one hand and destinations on the other hand. The agents
first search for the destination, and then start forming a pheromone trail while
searching for packets. In this way, the pheromone trail will lead from the desti-
nation towards the packet cluster. Once a packet has been found, the agent can
easily deliver the packet by following the pheromone trail back to the destination.
In this way, pheromones provide a means for stigmergic coordination between the
agents which goes beyond the limitations of the agents’ locality in the environment.
On the way back from a packet cluster towards the destination, the pheromone
trail is reinforced. Shorter trails are reinforced more regularly than longer trails,
and hence tend to be more attractive. In the Packet-World, three different types
of pheromones are supported: undirected pheromones, unidirectional pheromones
and omnidirectional pheromones. Undirected pheromones are only characterized
by a strength. Unidirectional pheromones contain a strength as well as a static
direction pointing to one of the neighboring cells. Omnidirectional pheromones on
the other hand are not limited to a single direction, but contain a probability
distribution for all (eight) possible directions.
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6.2.3. Gradient Fields. A third form of indirect communication are gradient fields.
In the Packet-World, gradient fields are used by agents to retrieve battery chargers.
All agents in the Packet-World are equipped with a battery. The battery provides
each agent with the energy necessary to perform actions. At regular times, agents
have to recharge their battery to prevent it from running out of energy. In order to
do so, particular cells on the grid are equipped with a battery charger. Each battery
charger emits a gradient that propagates throughout the environment. The effects
of all battery chargers are combined into a single gradient field. Gradients fields
are constructed only relying on local propagation between neighboring cells, while
taking the effect of obstacles into account. In Fig. 12, the value of the gradient field
is depicted in the bottom left corner of each cell. The value of the gradient field on
each cell represents the minimal distance of that cell to a battery charger. Agents
compare the minimal distance to a battery charger with their remaining battery
level to estimate the urgency for charging the battery. To navigate towards a
battery charger, the agents follow the field in the direction of decreasing gradients.

7. From the Packet-World to an Automated Warehouse
Transportation System

The results of our study of the Packet-World as a test bed for situated MAS
are currently being validated in a research project in cooperation with Egemin4,
an industrial expert in automating warehouse transportation systems using auto-
matic guided vehicles (AGVs) [34]. An AGV is an unmanned, computer-controlled
transportation vehicle that uses a battery as energy source. AGVs have to perform
transportation tasks. Such a transportation task consists of picking up a load at
a particular location in the warehouse and bringing it to a particular destination.
To move from one location to another, AGVs use a complex network of predefined
road segments and crossroads. The problem context is highly dynamic. First, the
environment continuously changes, as road segments can get congested or blocked
because of fallen products or broken down AGVs. Second, the task stream con-
tinuously changes as transportation tasks are created on demand. Third, AGVs
can become temporarily unavailable for reasons of maintenance or battery charg-
ing. The responsibilities of the AGV-system thus are: (1) allocating transportation
tasks to AGVs; (2) completing those tasks; (3) avoiding collisions and deadlock;
and (4) charging the batteries of AGVs on time.

Today, the design of automated warehouse transportation systems is based
on a centralized control system for the AGVs, using one planner which controls
all AGVs. The central system gathers all relevant information and controls the
actions of each AGV. The goal of the project is to investigate the feasibility of
decentralize system control using a situated MAS, aiming to improve flexibility.

There is a clear connection between the Packet-World and an industrial au-
tomated warehouse transportation system. First, AGVs as well as agents in the

4http://www.egemin.com
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Packet-World are situated in an explicit environment. Second, the AGVs as well
as the Packet-World agents have to perform transportation tasks in that envi-
ronment. Third, the automated warehouse transportation system as well as the
Packet-World are decentralized systems; both AGVs and Packet-World agents only
have a limited, local view on the environment. Fourth, both AGVs and Packet-
World agents use a battery as an energy source that has to be recharged at reg-
ular times. Fifth, both applications have a constrained topology. Whereas a grid
is employed in the Packet-World, the automated warehouse transportation sys-
tem has a graph-like topology consisting of nodes (crossroads) and edges (road
segments). The main difference between both systems is that AGVs have to deal
with the ongoing problem associated with a continuous stream of transportation
tasks, whereas in the Packet-World, the stream of transportation tasks is finite
and arises as agents detect packets and destinations.

8. Conclusions

In this article, we presented the Packet-World. We illustrated the use of the Packet-
World as a test bed in our research to explore and evaluate a broad range of
fundamental concepts and mechanisms for situated MASs. We elaborated on the
structure of the environment, agents’ perception, flexible action selection, protocol-
based communication, execution control and timing, simultaneous actions and
several forms of stigmergy.

The Packet-World can be considered as an abstract application for a fam-
ily of complex distributed applications. We illustrated the direct connections of
the Packet-World with an industrial automated warehouse transportation system.
Currently, our research results obtained from the Packet-World are applied in this
real-world application.

A Java implementation of the Packet-World is available5 under GNU General
Public License (GPL).

Acknowledgment

We would like to thank the members of the AgentWise task force at DistriNet
labs, K.U.Leuven for their contribution to the work presented in this article. Many
thanks also to Eva Weyns for the graphical design of the Packet-World.

References

[1] J. L. Austin, How To Do Things With Words. Oxford University Press, UK (1962).

[2] O. Babaoglu, H. Meling and H. Montresoret, Anthill: A Framework for the De-
velopment of Agent-Based Peer-to-Peer Systems. 22th International Conference on
Distributed Computing Systems, Vienna, Austria (2002).

5https://sourceforge.net/projects/packet-world



406 Danny Weyns, Alexander Helleboogh and Tom Holvoet

[3] T. Balch and R.C Arkin, Communication in Reactive Multiagent Robotic Systems.
Autonomous Robots 1(1) (1994), 27–52.

[4] H.R. Berenji and D. Vengerov, Cooperation and Coordination Between Fuzzy Rein-
forcement Learning Agents. 8th IEEE Conference on Fuzzy Systems, Korea (1999).

[5] E. Bonabeau, F. Hnaux, S. Gurin, D. Snyers, P. Kuntz and G. Theraulaz, Routing
in Telecommunications Networks with Ant-Like Agents. IATA (1998), 60–71.

[6] R.A. Brooks, Intelligence Without Representation. Workshop in Foundations of Ar-
tificial Intelligence, Dedham, MA (1987).

[7] R.A. Brooks, Intelligence Without Reason. MIT AI Lab Memo No. 1293 (1991).

[8] L. Claesen, Regional Synchronization in the Packet-World. Master thesis Katholieke
Universiteit Leuven (2004), available in English.

[9] M. Dorigo and L.M. Gambardella, Ant Colony System: A Cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Com-
putation 1(1) (1997), 53-66.

[10] J. De Meulenaere, Stigmergy Applied in the Packet-World. Master thesis Katholieke
Universiteit Leuven (2003), only available in Dutch.

[11] J.L. Deneubourg, A. Aron, S. Goss, J.M. Pasteels and G. Duerinck, Random Be-
havior, Amplification Processes and Number of Participants: How they Contribute
to the Foraging Properties of Ants. Physics 22(D) (1986), 176–186.

[12] A. Drogoul and J. Ferber, Multi-Agent Simulation as a Tool for Modeling Societies
Decentralized A.I. 4, Elsevier (1992).

[13] J. Ferber, Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence.
Addison-Wesley, Great Britain (1999).
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Information about the Software

The software of the Packet-World is available on the Internet as full fledged soft-
ware (under GNU General Public License), version no.: 1.0. The Internet address
is: https://sourceforge.net/projects/packet-world/
The Packet-World is a 100% Java test bed for investigating situated multiagent
systems. The tool allows users to experiment with various aspects of multiagent
systems, incl. agent architectures, stigmergy, communication, etc. For questions
about the software, please email : danny.weyns@cs.kuleuven.ac.be
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