
Multiagent Systems as Software Architecture
Another Perspective on Software Engineering with Multiagent Systems

Danny Weyns
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

danny@cs.kuleuven.be

Tom Holvoet
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

tom@cs.kuleuven.be

Kurt Schelfthout
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

kurts@cs.kuleuven.be

ABSTRACT
The trend in agent-oriented software engineering is to consider multia-
gent systems (MASs) as a radically new way of engineering software.
This position isolates agent-oriented software engineering from main-
stream software engineering and could be one important reason why
MASs are not widely adopted in industry yet.

In this paper, we present another perspective on software engineer-
ing with MASs. We put forward MASs as software architecture. We
give an overview of a reference architecture for situated MAS. This
reference architecture extracts and generalizes common functions and
structures from various applications we have studied and built. The
reference architecture provides a blueprint for architectural design of
MAS applications that share the come base of the systems it is derived
from. Considering MASs essentially as software architecture paves the
way to integration with mainstream software engineering.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems; D.2.11
[Software Engineering]: Software Architectures

General Terms
Design

1. INTRODUCTION
Researchers and practitioners in agent-oriented software engineer-

ing generally consider MASs as a radically new way of engineering
software. Here is a list of recent quotes from literature:

• There is a fundamental mismatch between the concepts used by
mainstream software engineering and the agent-oriented view. Ex-
isting software development techniques are unsuitable to realize the
potential of agents as a software engineering paradigm. [15]

• Whether agent-oriented approaches catch on as a software engineer-
ing paradigm [will depend on] the degree to which agents represent
a radical departure from current software engineering thinking. [5]

• We are on the edge of a revolutionary shift of paradigm, pioneered
by the multiagent systems community, and likely to change our very
attitudes in software modelling and engineering. [17]

• Agent-based computing can be considered as a new general-pur-
pose paradigm for software development, which tends to radically
influence the way a software system is conceived. [16]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

This vision has led to the development of numerous MAS methodolo-
gies. Some of the proposed methodologies adopt techniques and prac-
tices from mainstream software engineering such as object-oriented
techniques, e.g. Prometheus [6]; the Rational Unified Process, e.g.
Mase [14]; or the Unified Modeling Language, e.g. Adelfe [3]. How-
ever, nearly all of these methodologies start from the idea that MAS
provides a new way to engineer software systems. The position of be-
ing a radically new paradigm for software development isolates agent-
oriented software engineering from mainstream software engineering.
This could well be one important reason why MASs are not widely
adopted in industry yet.

This paper presents another perspective on software engineering with
MASs. We put forward MASs as software architecture. Considering
MASs as software architecture gives MAS a clear position in the soft-
ware development process, and paves the way to integration with main-
stream software engineering.

Overview. Section 2 explains our perspective of MAS as software
architecture. In section 3, we give a brief overview of architectural
design that provides a context to apply MAS as software architecture
in software engineering. Section 4 gives an overview of a reference
architecture for situated MAS that architects can use for the design of
concrete software architectures. Finally, we conclude in section 5.

2. MULTIAGENT SYSTEMS AS SOFTWARE
ARCHITECTURE

Instead of considering MASs as a radically new approach for soft-
ware development, we aim to give MASs a position in a general soft-
ware engineering process. Our perspective on the essential purpose of
MASs is as follows:

Multiagent systems provide an approach to solve a software problem
by decomposing the system into a number of autonomous entities em-
bedded in an environment in order to achieve the functional and quality
requirements of the system.

This perspective states that MASs are an approach to solve a software
problem. In particular, a MAS is a specific decomposition of inter-
acting elements of the system intended to achieve the requirements of
the system. This is exactly what software architecture is about. [1]
defines software architecture as: “the structure or structures of the sys-
tem, which comprise software elements, the externally visible proper-
ties of those elements, and the relationships among them.” Software
elements provide the functionality of the system, while the required
quality attributes are primarily achieved through the structures of the
software architecture. As such, MASs are in essence a family—yet
a large family—of software architectures. The elements of a MAS
software architecture are agents, resources, services, environment, etc.
Relationships among the elements are very diverse, ranging from in-
direct interaction through virtual pheromone trails to complex negoti-
ation protocols. In short, MASs are a very rich family of architectural
approaches with specific characteristics, useful for a diversity of chal-

lenging application domains. Based on the problem analysis that yields
the functional and quality attribute requirements of the system, the ar-
chitect may or may not choose for a MAS-based solution. Quality
attribute requirements such as robustness, flexibility or openness may
be arguments to choose for a MAS software architecture. As such, we
consider MASs as one valuable family of approaches to solve software
problems in a large spectrum of possible ways to solve problems.

3. ARCHITECTURAL DESIGN
We now give a brief overview of architectural design that provides a

context to apply MASs as software architecture. In the software devel-
opment life cycle, architectural design iterates with requirements anal-
ysis on the one hand, and with the detailed design and development of
the system on the other hand. Architectural design includes the design,
the documentation, and the evaluation of the software architecture.

Design. Architectural design requires a systematic approach to develop
a software architecture that meets the system requirements. In our re-
search, we use techniques from the Attribute Driven Design (ADD [2])
method to design the architecture for a software system. The ADD
method is a recursive decomposition method that is based on under-
standing how to achieve quality goals through proven architectural ap-
proaches. One common architectural approach are architectural pat-
ters [7]. An architectural pattern is a description of architectural ele-
ments and their relationships that has proven to be useful for achieving
particular qualities. Examples of architectural patterns are pipe–and–
filter or blackboard. We have developed a reference architecture for
situated multiagent systems as a reusable architectural approach. This
reference architecture integrates a set of architectural patterns that have
proven their value in various MAS applications we have studied and
built. The reference architecture provides an asset base the architect
can draw from to select suitable architectural solutions.

Documentation. A software architecture is described by views [1]. A
view describes the architecture of a software system from a partic-
ular perspective. The main views are: the module view that docu-
ments a system’s principal units of implementation; the component-
and-connector view that documents the system’s units of execution;
and the deployment view that documents the relationships between
a system’s software and its development and execution environment.
Documenting a software architecture comes down to documenting the
relevant views of the software architecture for the application at hand.

Evaluation. A software architecture is the foundation of a software sys-
tem, it represents a system’s earliest set of design decisions. Due to its
large impact on the development of the system, it is important to verify
the architecture as soon as possible. Modifications in early stages of
the design are cheap and easy to carry out. In our research, we use the
Architectural Tradeoff Analysis Method (ATAM [8]). The ATAM in-
cites the stakeholders to articulate and prioritize specific quality goals;
it forces the architect to provide a clear explanation and documentation
of the software architecture; and especially it uncovers problems with
the architecture that can be used to improve the quality of the software
architecture in an early stage of the development cycle.

4. REFERENCE ARCHITECTURE FOR SIT-
UATED MULTIAGENT SYSTEMS

The reference architecture we present in this section generalizes and
extracts common functions and structures from various applications we
have studied and built, including the Packet-World, a P2P file sharing
system, a number of basic robot applications, and an simulator for Au-
tomatic Guided Vehicle systems. Besides these basic applications, the
reference architecture considerably draws from experiences with an in-
dustrial logistic transportation system for warehouses [11]. The refer-
ence architecture provides a blueprint for architectural design of MAS
applications that share the come base of the systems it is derived from.

Fig. 1 shows an overview of the reference architecture. The architec-
ture integrates two primary abstractions: agents and the environment.

���������	�
	�������
��	� �������

������	������	� ���������	�

�������

�	���	����

��������

����	�

�	������
���������	��

�����

����������	

�����

�����

	������

�����������	�

�	���	����

	������� ����

��������	�

	���������	�

���	

�������

�����
��		
�	���������

�����

�

���
� �
������

���
� �
������

������
��	������

����� ����

����

	������
�� ���
��
�����������
��

 ��	���	��
�!" #�	�

$	����

������� %��������	�

��� ���

�����

 �����������	�
&������	�

���������	
��	��	

������	�

Figure 1: High-level overview of the reference architecture for sit-
uated multiagent systems

Agents. The agent architecture models perception, decision making
and communication as separate modules of the agent. The Perception
module maps a local representation of the state of the environment to
a percept for the agent. We developed a model for selective perception
that enables an agent to direct its perception at the most relevant aspects
in the environment according to its current task. To sense its environ-
ment, the agent selects a set of foci. Foci allows the agent to sense the
environment only for specific types of information. Sensing results in
a representation of the agent’s surrounding that can be interpret by the
agent producing a percept. Finally, the percept is filtered by a set of
selected filters, restricting the perceived data according to context rel-
evant selection criteria. [13] zooms in on the perception module and
discusses the different submodules in detail. The Current Knowledge
module integrates percepts to update the knowledge of the agent.

The Decision module is responsible for action selection. We devel-
oped the decision module as a free-flow architecture, for details, we
refer to [9]. Since existing free-flow architectures lack explicit support
for social behavior, we introduced the concepts of a role and a situated
commitment. A role covers a logical functionality of the agent, while
a situated commitment allows an agent to adjust its behavior towards
the role in its commitment. An agent can commit to itself, e.g. when it
has to fulfill a vital task. However, in a collaboration, agents commit to
one another via communication. Roles and situated commitments are
building blocks for explicit collective behavior. The action selected by
the decision module is passed to the environment for execution.

Communication enables agents to exchange information, and set up
collaborations reflected in mutual situated commitments. We devel-
oped a communication module that processes incoming messages and
produces outgoing messages according to well-defined communication
protocols. The communication module (1) interprets messages and re-
acts to them according to the applicable protocol, and (2) initiates and

continues conversations when the conditions imposed by the applicable
protocol are satisfied. Messages are passed to the message delivering
system of the environment. The communication module is discussed
in detail in [12].

Environment. The environment offers functionality to the agents for
perception, communication and action, and it provides an interface to
the deployment context. With deployment context, we refer to the given
hardware and software and external resources with which the MAS in-
teracts such as sensors and actuators, a printer, a network, a database,
or a webservice. We now explain the different modules of the environ-
ment, for a detailed discussion of the environment model see [10].

The State repository represents the actual state of the environment.
The environment state typically includes an abstraction of the deploy-
ment context possibly extended with other state related to the MAS
environment. An example of state related to the deployment context is
an abstract representation of a network topology. An example of ad-
ditional state is the representation of digital pheromones that overlays
the network.

The Synchronization module monitors specific parts of the deploy-
ment context and keeps the corresponding representation in the state
repository up to date. An example is a synchronization module that
monitors the topology of a dynamic network and maintains the repre-
sentation of the network structure in the state repository.

The Dynamics module maintains dynamics in the environment that
happens independent of the agents or the deployment context. A typical
example is the the evaporation of a digital pheromone.

Laws represent application-specific constraints on agents’ percep-
tion, interactions, and communication. We discuss examples of differ-
ent types of laws below.

The Percept Generator generates percepts for the agents. In general,
agents can perceive state of the environment, or observe elements in
the deployment context. In this latter case, the percept generator re-
quests the Observation module to retrieve the required data form the
deployment context. Perception is subject to laws that provide a means
to constrain perception. For example, for reasons of efficiency a de-
signer can introduce default limits for perception in order to restrain
the amount of information that has to be processed, or to limit the oc-
cupied bandwidth. [13] discusses the perception generator in detail.

The Interaction module deals with agents’ actions. Actions can be
divided in two classes: actions that may result in a modification of state
of the environment, and actions that may result in the modification of
elements of the deployment context. An example of the former is an
agent that drops a digital pheromone in the environment. An example
of the latter is an agent that writes data in an external data base. Actions
are subject to interaction laws. For example, when several agents aim
to access an external resource, an interaction law may impose a policy
on the access of that resource. Actions related to the deployment con-
text are passed to the Translation module that converts the high-level
actions of agents into low-level interactions in the deployment context.

The Communication Service module collects messages and delivers
messages to the appropriate agents. Message delivering can be sub-
ject to communication laws. Communication laws can just regulate the
message stream, or they can impose application-specific regulations on
exchanged messages. An example of this latter are a set of laws that
impose agents to follow the prescribed steps of a particular protocol.
The translation module converts the high-level message descriptions
into low-level communication primitives of the deployment context.

Industrial Application. We have used the reference architecture for
situated MASs for the architectural design of an industrial system for
logistics services in a tobacco warehouse. This real-world application
uses automatic guided vehicles to transport loads in the warehouse [11].
For the documentation of the software architecture of this application
and a detailed report of the ATAM evaluation we refer to [4].

5. CONCLUSION
In this paper, we presented another perspective on software engi-

neering with MASs. We put forward MASs as software architecture.
Looking upon MASs as software architecture does not dilute MAS as
a software engineering paradigm, on the contrary, it gives MAS a clear
and prominent role in the software development process, paving the
way to integration with mainstream software engineering.

We gave an overview of a reference architecture for situated MASs.
The reference architecture integrates a set of patterns that architects can
use during architectural design of concrete MAS applications.

Intensive experience with applying the reference architecture in a
complex industrial application has convinced us that the MAS commu-
nity would benefit a great deal from allocating a correct place for MAS
in mainstream software engineering.

6. REFERENCES
[1] L. Bass, P. Clements, and R. Kazman. Software Architecture in

Practice. Addison Wesley, April 2003.
[2] L. Bass, M. Klein, and F. Bachmann. Quality Attribute Design

Primitives and the Attribute Driven Design Method. 4th
International Workshop on Product Family Engineering, 2001.

[3] C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard. Adelfe:
A Methodology for Adaptive Multiagent Systems Engineering.
Volume 2577 of Lecture Notes in Computer Science, 2002.

[4] N. Boucke, T. Holvoet, T. Lefever, R. Sempels, K. Schelfthout,
D. Weyns, and J. Wielemans. Applying the ATAM to an
industrial multi-agent system application. In CW-431, Technical
Report, K.U.Leuven, Belgium.

[5] N. R. Jennings. An agent-based approach for building complex
software systems. Communications of the ACM, 44(4), 2001.

[6] L. Padgham and M. Winikoff. Prometheus: A Methodology for
Developing Intelligent Agents. Volume 2585 of Lecture Notes in
Computer Science, 2003.

[7] M. Shaw and D. Garlan. Software architecture: perspectives on
an emerging discipline. Prentice-Hall, 1996.

[8] Software Engineering Institute. Carnegie Mellon University.
http://www.sei.cmu.edu/.

[9] E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. A Design
Process for Adaptive Behavior of Situated Agents. In Volume
3382 of Lecture Notes in Computer Science, 2005.

[10] D. Weyns, A. Omicini, and J. Odell. Environment, First-Order
Abstraction in Multiagent Systems. Journal of Autonomous
Agents and Multiagent Systems, 2006 (to appear).

[11] D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever.
Decentralized control of E’GV transportation systems. In 4th
AAMAS Conference, Industry Track, Utrecht, 2005.

[12] D. Weyns, E. Steegmans, and T. Holvoet. Protocol-Based
Communication for Situated Multiagent Systems. 3th AAMAS
Conference, New York, 2004.

[13] D. Weyns, E. Steegmans, and T. Holvoet. Towards Active
Perception in Situated Multi-Agent Systems. Journal of Applied
Artificial Intelligence, 18(8-9), 2004.

[14] M. Wood, S. A. DeLoach, and C. Sparkman. Multiagent Systems
Engineering. Software Engineering and Knowledge Engineering,
11(3), 2001.

[15] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design.
Autonomous Agents and Multi-Agent Systems, 3(3), 2000.

[16] F. Zambonelli and A. Omicini. Challenges and Research
Directions in Agent-Oriented Software Engineering. Journal of
Autonomous Agents and Multiagent Systems, 9(3), 2003.

[17] F. Zambonelli and V. Parunak. From Design to Intention: Signs
of a Revolution. 1st AAMAS Conference, Bologna, 2002.

