
Gradient Field-Based Task Assignment
in an AGV Transportation System

Danny Weyns
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

danny@cs.kuleuven.be

Nelis Boucké
∗

Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

nelis@cs.kuleuven.be

Tom Holvoet
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

tom@cs.kuleuven.be

ABSTRACT
Assigning tasks to agents is complex, especially in highly dynamic
environments. Typical protocol-based approaches for task assign-
ment such as Contract Net have proven their value, however, they
may not be flexible enough to cope with continuously changing cir-
cumstances. In this paper we study and validate the feasibility of
a field-based approach for task assignment in a complex problem
domain.

In particular, we apply the field-based approach for task assign-
ment in an AGV transportation system. In this approach, transports
emit fields into the environment that attract idle AGVs. To avoid
multiple AGVs driving towards the same transport, AGVs emit re-
pulsive fields. AGVs combine received fields and follow the gradi-
ent of the combined fields, that guide them towards pick locations of
transports. The AGVs continuously reconsider the situation of the
environment and task assignment is delayed until the load is picked,
improves the flexibility of the system.

Extensive experiments indicate that the field-based approach out-
performs the standard Contract Net approach on various perfor-
mance measures, such as the average wait time of transports and
throughput. Limitations of the field-based approach are an unequal
distribution of wait times across different transports and a small in-
crease of bandwidth occupation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Design

1. INTRODUCTION
Multiagent systems (MASs) are generally considered as an ap-

proach to build complex software systems. Adopting an agent-
oriented approach means decomposing a system into multiple, au-
tonomous entities that can act and interact in a shared environment
∗Supported by Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

to achieve the system goals. A MAS provides a decentralized archi-
tectural solution to a software problem that aims for qualities such
as robustness and flexibility.

The application that is central in this paper is an Automatic Guided
Vehicle (AGV) transportation system. An AGV system is a fully
automated industrial transport system that makes use of multiple
AGVs that have to transport loads in an industrial environment,
e.g. a warehouse. One way to control an AGV system is through
a central server. This server maintains all relevant information,
needed to decide which AGV has to do what and which route is to
be taken. In a joint research project between AgentWise taskforce
and Egemin, a producer of automated logistic systems, we investi-
gate the feasibility of applying the MAS paradigm to an AGV trans-
portation system [5, 21]. In this approach, the control is distributed
over the different AGVs, who cooperate to achieve the goals of the
system. One major challenge in an AGV transportation system is
task assignment, i.e. the assignment of transports to AGVs. Trans-
ports, which consist of picking up a load on a location (i.e. the pick
location) and transporting it to another location (the drop location),
are generated by an external system. Transports are dynamically
created when needed and the transport profile (i.e. the order and
pace in which transports are created) is irregular and unpredictable.
Due to the highly dynamic nature of transport creation, the assign-
ment of transports to AGVs is complex. Egemin currently applies a
policy that pre-stages the AGVs based on a fixed set of rules. This
approach however, lacks flexibility to cope with the continuously
changing circumstances in the environment.

Typical protocol-based approaches for task assignment such as
Contract Net have proven their value, however, they may not be
flexible enough to cope with continuous dynamics in the environ-
ment. The main goal of the work reported here is to examine the
feasibility of using a field-based approach to achieve task assign-
ment in a complex domain, in casu an AGV transportation system.
We aim to investigate the advantages as well as the limitations of
the approach in this real world setting. In the field-based task as-
signment for AGVs, transports emit fields that attract idle AGVs,
while competing AGVs emit repulsive fields. Each idle AGV fol-
lows the gradient of the combined fields it receives, which guide
the AGV towards the pick location of a transport. To validate the
field-based approach, we implemented it in an AGV simulator [1].
In the simulations, we use data of a realistic AGV system, includ-
ing a real-world map and transport profiles. We have performed
various performance measures, such as the average time a transport
has to wait before it is executed, the throughput of the system, and
the number of messages that are transmitted. The test results are
compared with a reference algorithm for task assignment that uses a
Contract Net protocol [19]. In this paper, we give an overview of the
field-based approach for task assignment, and we discuss the main

results obtained from this study. A detailed description of additional
tests not included in this paper can be consulted in [17].

Overview. The remainder of this paper is structured as follows.
In Section 2 we briefly introduce the AGV application. Section 3
discusses related work on task assignment and field-based tech-
niques applied in MAS. In Section 4 we describe the approach of
field-based task assignment. Section 5 discusses test results and
evaluates the approach. Finally, we draw conclusions in Section 6.

2. THE AGV APPLICATION
An AGV system is a fully automated industrial transport system,

that uses multiple AGVs to transport loads (raw materials, finished
products, etc.) in an industrial environment such as a warehouse.
In this section we give a brief overview of the AGV application.
Subsequently the map of the environment, the transports, and the
AGVs are described.

2.1 Map of the Environment
The AGVs are restricted to follow predefined paths in the envi-

ronment, on which they navigate by using sensors and stationary
beacons. These paths are defined in a map of the environment. A
map is logical representation of the physical layout on the factory
floor, it consists of a network of stations and connecting segments
that are accessible by the AGVs. A station is a predefined point on
the map, stations can hold special locations, such as a pick or drop
location for transports, a parking place for AGVs, or a place where
AGVs can reload their battery. A segment defines in which direc-
tion(s) AGVs can drive. Additional information may be associated
to segments, e.g. speed limits, mutexes that indicate that only one
AGV can enter a particulate zone at a time, etc. In section 5 we give
an example of a realistic map that we have used for testing.

2.2 Transports
The goal of the AGV system is to let AGVs transport loads. A

transport is created by an external system, typically a warehouse
management system. A transport represents an order to move a load
from a pick location to a certain drop location. Each transport has
a priority from 1 to 10, with 10 being the most important. A trans-
port’s life-cycle starts when it enters the system. The transport is
started when an AGV picks up the load and is terminated when that
AGV drops the load at the drop location. The priority of a transport
may increase over time, e.g. as a result of long waiting times.

2.3 AGVs
An AGV is a computer controlled, unmanned vehicle that is ca-

pable of transporting loads in an industrial environment. An AGV
is capable of picking up loads, driving them around and dropping
them. AGVs can communicate by means of a wireless LAN. An
AGV navigates by storing an internal map of the environment and
using internal and external sensors, in combination with stationary
beacons. AGVs are equipped with low-level control software that
handles the physical interaction with the environment such as stay-
ing on track, turning, or determining the current position.

To allow smooth and save movement, an AGV has to make rout-
ing decisions over a certain distance in advance. This distance,
called the look-ahead, is measured according to the logical topology
of the environment map. The look-ahead buffer associated with an
AGV is an ordered set of stations and segments that holds the rout-
ing decisions, representing the path that the AGV will follow with
certainty, unless something catastrophical (such as a crash) happens.

In this paper we focus on achieving task assignment by apply-
ing a field-based approach. During task assignment the AGV will
use a simple A* algorithm [8] to rout towards a transport. Besides

task assignment, other important concerns are collision avoidance
and deadlock prevention, however, these concerns are not further
discussed.

3. RELATED WORK
In this section, we discuss a number of approaches related to our

field-based task assignment approach. First we discuss a number of
general approaches for task assignment. Task assignment is an ex-
tensive domain of research. Here we mainly focus on well-known
Contract Net-based mechanisms. Next, we discuss a number of re-
lated field-based techniques for MAS described in literature.

3.1 Task Assignment
Efficiently assigning tasks to individual entities in a decentral-

ized system is a common, but certainly not a simple problem [7].
A classic way to achieve task assignment is through auction-based
mechanisms, e.g. the widely known and extensively used Contract
Net protocol (CNET [19]). CNET is based on the notion of call for
bids on markets, where managers request for bids and bidders bid to
perform the task. In a first step, the manager sends a description of
the task to perform to all the bidders. In a second step, the bidders
draw up a proposal based on the description of the task and send
it to the manager. In a third step, after the manager has received a
proposal from all bidders or after a deadline has expired, the man-
ager evaluates the received proposals and assigns the best bidder the
task.

In the original CNET protocol, a bidder that has placed a bid for
a task (step 2), cannot place a bid for a new task before the first
task has ended. In [10], an improvement to CNET is proposed that
allows a bidder to place bids for multiple unassigned tasks. This is
achieved by giving the bidder the option to refuse the task in step 3
of the original protocol. The manager will then award the contract
to the second best bidder, who can again accept it or refuse it, etc.

The CNET protocol can also be extended to allow cascading task
assignment, where the receiver of a task proposal starts one or more
new CNET protocols to delegate the task or parts of the task to other
agents [10]. For example, a system of holonic agents can be used
to improve efficiency when dealing with complex tasks that require
the collaboration of several agents [11]. A holonic agent consists of
several agents but interacts with agents outside the holon as a single
agent.

The CNET protocol suffers from low flexibility when dealing
with tasks that can not immediately be started upon the allocation
(delayed commencement of tasks [3]). Consider for example the
CNET protocol applied to task assignment in an AGV system. When
a new transport enters the system, a suitable AGV is selected through
the CNET protocol and is assigned to the transport. Suppose that
while the assigned AGV is driving towards the pick location of the
transport, a new transport appears that is more suitable to the AGV
(e.g. it is closer or has a higher priority). The AGV will not be able
to execute the second transport, since it is already assigned to the
original transport. Thus, the CNET protocol achieves an immedi-
ate and permanent assignment of tasks, making it impossible for
the system to react flexibly and adaptively when dealing with tasks
with delayed start in a highly dynamic environment. [2] provides
more flexibility by assigning tasks in two phases (first phase tem-
porarily assignment, next phase definitive assignment) but still does
not provide full flexibility in case of delayed commencement.

Another interesting approach for task allocation is described in [6]
that is based on the exchange of tokens among agents. The authors
describe an example of robots that drive around and perceive ob-
jects in the environment. These objects have to transferred from
one location to another. To move an object, two robots have to col-

laborate. Therefore, two roles are associated with the task: a helper
role and a collector role. The coordination among agents is based
on the exchange of tokens, which are associated with the roles of a
task. Tokens can be exchanged between agents and whoever owns
a token can participate in the task in the associated role.

In earlier work [3], we have described an approach for flexible
and decentralized task allocation that deals with the problems men-
tioned above. This approach consists of a continuous negotiation
protocol where the situation and the allocation of tasks is continu-
ously reconsidered until the task is actually started. The approach
presented in this paper builds upon the principles developed in that
research. However, here we provide a simplified and uniform model
that consistently uses fields for task assignment.

3.2 Field-Based Techniques in MASs
Techniques based on fields have proven to be valuable in various

applications that involve movement of agents in a metric space [7,
15, 12, 16, 13, 14]. In this approach, objects in the environment
produce fields, which are propagated in the environment in a certain
range. At each position in the metric space these fields have a certain
value, forming potential fields. These values are typically propor-
tional to the distance from the source of the field. Agents perceive
the fields and combine them in a certain way. The behavior of an
agent then simply consists of following the combined potential field
downhill, that is, agents follow the direction of the gradient of the
field. As an example, suppose an agent has to move to a goal while
avoiding obstacles in the environment. The obstacles emit repulsive
fields, while the goal emits an attractive field. The agent combines
the fields by adding the values of the attractive and repulsive field.
The combined field can be visualized as a landscape, with the goal
representing a valley and the obstacles mountains. This combined
field is then followed downhill, which can be viewed as a ball rolling
down the slopes of the landscape towards the goal. The field-based
approach readily extends to task allocation, where each task emits
an attractive field and agents follow the strongest field. Competition
among agents can be handled by letting the agents emit repulsive
fields.

Field-based techniques have also been applied in systems that are
inspired by biological phenomena and physics. For example, birds
in a flock all fly in the same direction and avoid collision by keeping
a fixed distance between each other. An example application for
this idea are guards who have to patrol a museum, keeping a certain
distance between each other to cover more ground [15]. Shehory
et al. [18] describes a physics oriented model for cooperative goal-
satisfaction with simple agents in a large-scale cooperative MAS.
Different kinds of gradient field approaches have also been used in
the context of RoboCup, a recent example is [4].

[12] discusses a variation on the field-based approach where agents
construct a field in their direct neighborhood to achieve routing and
deadlock avoidance in a simplified AGV systems. Another variation
is described in [16], where the MMASS (Multilayered Multi Agent
Situated System) model for multiagent coordination is used. In this
model, the environment is represented as a multi-layered graph in
which the agents can spread abstract fields. In the standard field-
based approach, agents combine perceived fields and are constantly
guided by the fields, while in MMASS fields are in principle consid-
ered independent from each other and are exploited only to trigger
one shot reactions.

Pros versus Cons. The field-based approach is an elegant and ef-
fective way to tackle problems in a metric environment. The agents
can be kept simple, relying on the environment to achieve the sys-
tem objective. Since no rigorous protocols are used, robustness and
openness (agents can easily be added or removed from the system)
are achieved. The approach also benefits from adaptivity: the land-

scape of fields is readily adjusted to changes in the environment.
Also, the fields can be interpreted and combined in different ways
by different agents (e.g. a location may be a goal for one agent,
while another agent needs to avoid it).

However, the field-based approach also suffers from some limi-
tations. Firstly, the approach is difficult to apply when the situation
cannot be represented as a metric space. Secondly, local minima can
arise, agents can become stuck at a local minimum, leading to sub-
optimal solutions. Another problem is that the approach is not easily
to combine with cognitive decision making mechanisms. Finally, a
disciplined methodology is lacking to predict the overall evolution
of the system. With the field-based approach, the solution emerges
from the interaction among the agents. Typically, the development
of such systems requires intensive parameter tuning.

Maintaining Fields. An important issue when using the field-
based approach is the distribution and maintenance of fields within
the environment. A possible way to maintain fields is a storage
infrastructure to store the different values of fields in different (dig-
itized) positions in the environment. When dealing with a software
environment, this requirement is automatically achieved. For exam-
ple, the field-based approach has been used successfully in games
such as in “Quake 3 Arena” [13] to guide the behavior of non-human
characters.

When dealing with a physical environment, a distributed stor-
age capability could be physically supported by the environment.
For example in [15], the field-based approach is applied in guid-
ing tourists in a museum. The tourists are provided with a software
agent running on some wireless handheld device, giving suggestions
on how and where to move. A computer network with a topology
that mimics the topology of the museum plan is embedded in the
museum walls. The hosts in the network are associated to each room
and are capable of communicating with each other and the mobile
devices in their proximity. Fields can be injected at a host, after
which they will be diffused hop-by-hop across the network, modu-
lating the values of the fields as necessary. The latter is achieved by
supporting middleware, such a TOTA (Tuples On The Air) [14].

If no environmental storage infrastructure is available, fields can
still be realized by broadcasting information messages, which con-
tain the position of the source of the field and its initial strength.
Agents receive these messages and calculate the value of the field
on their position. In this paper we have applied this approach since
a typical AGV system provides no distributed storage infrastructure
external to the mobile AGV machines.

4. FIELD-BASED TASK ASSIGNMENT
In this section we explain the approach for field-based task as-

signment in AGV transportation systems. Similar to the approach
in [3], task assignment is delayed until the AGV actually reaches the
pick location of the transport, allowing the system to react flexibly
and adaptively to new transports that enter the system. We start with
a high-level explanation of the approach, followed by an overview
of the software architecture.

4.1 High-Level Overview
The basic idea of field-based task assignment is to let each idle

AGVs follow the gradient of a field that guides it toward a load
that has to be transported. There are two types of fields in the sys-
tem: (1) transports emit fields into the environment that attract idle
AGVs; (2) to avoid multiple AGVs driving towards the same trans-
port, AGVs emit repulsive fields. AGVs combine received fields
and follow the gradient of the combined fields, that guide them to-
wards pick locations of transports. The AGVs continuously recon-
sider the situation of the environment and task assignment is delayed

until the load is picked, which benefits the flexibility of the system.
To explain the field-based approach for taks assignment, we use the
scenario depicted in Fig. 1.

Figure 1: Example scenario of the developed approach. The full
circles represent transport fields, the dotted circles AGV fields. For
clarity, we have not drawn the fields in (b) and (c).

• AGV agents and transport agents. Task assignment is achieved
by the interaction between two kinds of agents: AGV agents and
transport agents. The AGV agents correspond to the physical ve-
hicles and the transport agents represent transports. Whenever a
new transport enters the system, a corresponding transport agent
is created. The lifetime of the transport agents ends when the as-
sociated load is delivered. Conceptually a transport agent resides
at the pick location of the associated transport. On which physical
computer system(s) the transport agents reside is not important
for the discussion in this paper, the only important issue is that
the agents operate independently and therefore can be distributed
across several computer systems.

• Agents emit fields. Both AGV and transport agents emit fields,
called AGV fields and transport fields respectively, see Fig. 1-a.
Fields have a certain range and contain information about the
source agent. AGV fields have a fixed range, while the range of
transport fields is variable. Fields are refreshed at regular times,
according to a predefined refresh rate.

• AGV agents store received fields. When an AGV agent per-
ceives fields, it stores the data contained in these fields in a field-
cache. The field-case consists of a number of cache-entries. Each
cache entry contains the source of the received field (an ID), the
most recent data contained in that field and a freshness. The fresh-
ness is a measure of how up-to-date the cached data is. Fig. 1
shows the field-cache of AGV A through the scenario.

• AGV agents construct calculated-fields to decide their move-
ment. An AGV agent constructs a calculated-field to decide in
which direction to drive from a station. A calculated-field is a
combination of the received fields, which are stored in the field-
cache. The lower the freshness of a cache-entry, the lower the
influence of the associated field on the calculated-field.

The calculated-field is constructed locally and temporarily from
the last selected target station (this is the last station that is added
to the look ahead buffer, we further clarify this below) and con-
tains values for each outgoing segment. An AGV agent follows
the calculated-field in the direction of the smallest value. This
can be considered as following the calculated-field downhill, in
the direction of the gradient.

Transport fields have an attractive influence on the calculated-
field, which results in AGVs driving towards unassigned trans-
ports. However, it is undesirable that many AGVs drive to the
same transport, since they will obstruct each other and travel su-
perfluous distance. To remedy this, AGV fields have a repulsive
influence.

In Fig. 1-b, AGV A constructs a calculated-field on a station. Al-
though transport 1 is closer, the calculated-field will guide AGV
A towards transport 2. This is the result of the repulsive effect of
AGV B. Notice that it would have been ineffective for AGV A to
drive towards transport 1, since AGV B is closer and likely will
reach the transport first.

• Task assignment occurs at pick up. Task assignment is de-
layed until an AGV actually reaches the pick location and picks
up the load. This results in a greater flexibility with respect to
task assignment, in comparison for example to the CNET proto-
col, which assigns a transport as soon as it enters the system. By
delaying task assignment, the field-based approach can cope with
unforseen situation like transports which suddenly popup, as il-
lustrated in Fig. 1-c. While AGV A is driving towards transport
2, a new transport (transport 4) appears close to AGV A. Since no
transport has been assigned to AGV A yet, it can drive towards
the closer transport 4.

4.2 Software Architecture
The software architecture of the AGV system is shown in Fig. 2.

This architecture is based on a reference model for situated MAS
that is described in [20, 22, 23]. Successively, we explain the differ-
ent agent components. The architecture of the environment is not
further discussed here.

• Field-cache: This module of the AGV agent stores the informa-
tion of fields received from other AGV agents and transport agents
in cache-entries. A freshness is associated with each cache-entry,
which is a measurement of how up-to-date the entry is.

����������	

��

��	��

�����
�������	��

��������
�����

��	
�����	��	
��������	

���	���� 	�

��	

�����	��	
��������	

�����	���������	���

���������	���

����� �����

���

���� �����
�� ��

���

��������
�����

������	! ���

���������	���
�"# �$��	

��������	 �$��	

���
���

� �

��%������

�	�	� �� ����	��� ��&
 ��� � 	� �

��������� ��	������� ��	

'�(

������

Figure 2: The architecture of the AGV transportation system.

• Router: This module contains a global map of the stations and
segments. The router is used by the AGV agent to calculate paths
and distances from one station to another. We used a static router
that uses the A* algorithm [8]. However, the approach discussed
in this paper is fully compatible with a dynamic router that would
take dynamic runtime information into account such as traffic dis-
tribution or blocked segments.

• Look-ahead buffer: As explained in section 2, an AGV has to
make routing decisions over a certain distance in advance to al-
low save and smooth movement. This distance, called the look-
ahead, is not a straight line distance, but is measured discretely,
in terms of stations and segments of the environment map. The
look-ahead buffer of an AGV agent is an ordered array that holds
these routing decisions. It represents a path that the AGV will
follow with certainty, unless something catastrophical (such as a
crash) happens.

• Field calculator: This module constructs a calculated-field lo-
cally and temporarily from the last selected target station (i.e. the
last station added to the look-ahead buffer) by combining the re-
ceived fields, which are stored in the field-cache. The higher
the freshness of a cache-entry, the more influence the field as-
sociated with the cache-entry will have on the construction of
the calculated-field. Thus, although still used, less importance
is given to outdated information. The field calculator makes use
of the router to calculate the values of the calculated-field on dif-
ferent positions. The gradient of the calculated-field is used as
driving direction on the target station.

• Behaviour module: The behavior module continuously reconsid-
ers the dynamic conditions in the environment and selects appro-
priate actions to achieve the agent’s goals. The behaviour mod-
ule of an AGV agent also maintains the current most important
transport and the distance to the most important transport. These
values are used to achieve the repulsive influence of AGV agents,
as described above. The behaviour module of a transport agent
maintains, among other data, the current priority of the transport
and the field range. To avoid starvation of the transport, the pri-

ority grows over time. The field-range of the transport agent is a
function of time and the number of interested AGV agents. The
following two high-level descriptions summarize the behavior of
the agents during task assignment:

{Behavior procedure of the AGV agent}
while idle
do repeat with constant frequency {
1. Do communication
1.1 Send out field
1.2 Accept received fields and enter

them in the field-cache
2. Fill the look-ahead buffer (if needed)
3. Perform an action

}

{Behavior procedure of the transport agent}
while not assigned
do repeat with constant frequency {
1. Do communication
1.1 Send out field
1.2 Accept received messages
2. Calculate priority and field-range

}

5. TEST RESULTS
This section discusses the main test results obtained from apply-

ing the field-based task assignment approach. For a detailed discus-
sion of the AGV simulator used in the tests we refer to [1, 17]. We
start this section with explaining the test setting and subsequently
we elaborate on the test results.

5.1 Setting
Map. All tests were performed on the map of a real layout that

has been implemented by Egemin at EuroBaltic, see Fig. 3. The size
of the physical layout is 134 m x 134 m. The map has 56 pick and
50 drop locations. The six locations at the lower side of the map are
only pick locations, all other locations are pick and drop locations.

Figure 3: Map used in the tests.

To allow running tests with the current implementation of the AGV
simulator, we made a number of small modifications to the map,
e.g., all curved segments were changed to straight lines.

Transport profile and AGVs. We used a standard transport test
profile that is been used by Egemin for testing purposes. This profile
generates 140 transports with a random pick location and a random
drop location per simulation run, corresponding to the number of
transports that are generated in 1 hour real time.

In the simulation, we used 14 AGVs just as in the real application.
The average speed of driving AGVs is 0.7 m/s, while pick and drop
actions take an average amount of time of 5 s.

Infrastructure. The AGV simulator and the multiagent system
used for testing the field-based approach for task assignment are
written in Java. An explanation of the working of the AGV simula-
tor, the source code, as well as the tests results are available on the
web [1]. The simulator uses a framework for time management [9]
to make sure the simulation results are independent of performance
characteristics of the execution platform, working load of the pro-
cessor, or amount of memory.

To allow running the huge amount of simulations, we used a clus-
ter of 40 machines: P4 2Ghz, 512MB RAM, Debian Stable 3.0.
Testing one set of parameter values took approximately 30 hours of
simulation time.

Metrics. Every simulation was run for 50000 timesteps, corre-
sponding to approximately 1 hour real time, i.e. one time step rep-
resents 20 ms in real time. All test results displayed in the paper are
average values over 20 simulation runs. Performance is measured
in terms of throughput and reaction time. Additionally, the amount
of communication needed is measured.

Reference algorithm: CNET. We used CNET as a reference
algorithm to compare the field-based approach. With CNET each
transport that enters the system is assigned as soon as possible to
the most suitable AGV (i.e., an idle AGV for which the cost to reach
the pick location is minimal). When transports can not be assigned
immediately, they enter a waiting status. All waiting transports are
ordered by priority, and this priority determines the order in which
transports are assigned. The priority of transports grows over time,
the same way as in the field-based approach.

5.2 Results
A number of tests have been performed to measure the perfor-

mance of the field-based approach, both for tuning the parameters
of the field-based approach and for comparison with CNET under
varying circumstances and parameters. Due to space limitation we
limit the discussion to the main test results. For a detailed discussion
of the remaining test results we refer to [17].

Figure 4: Amount of messages being sent.

Figure 5: Percentage of completed transports.

5.2.1 Refreshment of Fields
As stated before, maintenance of fields in our approach is achieved

by periodically broadcasting the status of the fields (both position
and strength). Obviously, the period between subsequent broadcasts
strongly affects the amount of messages being sent. Making the pe-
riod too short will produce a huge number of useless messages, but
each agent in the system will have up-to-date information. On the
other hand, if the broadcast period is too long, AGVs may have
outdated information about the fields and probably miss some op-
portunities.

Fig. 4 shows the expected decrease in number of messages sent
if the period between two broadcasts increases. BR20 corresponds
to a field refresh each 20 time steps, i.e. each agent broadcasts its
field status every second. With a field refresh each 200 time steps
(BP200, i.e. every 10 s) the number of messages sent with the field-
based approach is 1.7 times higher then with CNET. Of course what
is interesting are the implications of reducing the field refresh on the
performance of the system.

5.2.2 Performance and Field Refresh
Fig. 5 depicts the percentage of transports handled as a function

of the field refresh rate. It can be seen that the percentage of com-
pleted tasks fluctuates around 81,5% and slowly decreases, the dif-
ference between BR20 and BR200 is only 1% but still significantly

Figure 6: Average wait time for transports.

Figure 7: Average wait time for transports per pick location.

better then the CNET approach. Fig. 6 illustrates that the average
waiting time slowly increases with lower refresh rates, here the dif-
ference between BR20 and BR200 is 14%, which is still 31% better
then the CNET approach.

These results clearly illustrate that communication overhead can
be reduced by using a longer broadcast period, without significant
performance loss. Overall, the throughput of the field-based ap-
proach is 10% higher than the throughput of CNET. The average
waiting time of a transport is 39% lower, while the average number
of transports waiting at each time step was around 20% lower for
the field-based approach. [17] elaborates on the distance travelled
by the AGVs. On average, the travelled distance of all AGVs with
the field-based approach was 33% lower compared to CNET which
is a result of a more optimal allocation of tasks.

5.2.3 Average Waiting Time per Pick Location
Although the average waiting time for transports is significantly

better for the field-based approach compared to the reference al-
gorithm, it is interesting to compare the average waiting time for
transports per pick location.

Fig. 7 shows the average wait time for transports grouped by pick
location. Clearly, the CNET reference algorithm achieves a more
equal distribution. In particular, the wait times for pick locations 1
to 5 are significantly higher for the field-based approach. This draw-
back can be explained as follows: because the pick locations 1 to 5
are far away from the main traffic in the warehouse, the chance an
AGV will be close to the pick location is significantly lower and this
decreases the chance for immediately attraction an idle AGV when
a new transport pops up. Starvation is prevented since the priority

of the transports on the remote locations gradually increasing when
the load is not picked. It simply takes a longer time for the field to
“grow” and attract AGVs compared to the immediate assignment of
an AGV in the CNET protocol. A possible remedy to this problem
is to increase the strength of fields of transports on isolated locations
right from the moment the transport is created.

Finally, gradient field-based approaches are known to suffer from
local minima. To deal with this problem agents do not use straight
distances to sources of fields to construct calculated fields, but use
a router that takes into account real distances along the paths on the
map. As a result, we experienced little problems with local minima.

6. CONCLUSION
In this paper we presented a field-based approach for task as-

signment in AGV transportation systems. In this approach, each
idle AGV is guided toward a load of an unassigned transport by
following the gradient of a field that combines attracting fields re-
ceived from transports and repulsing fields received from competing
AGVs. By delaying the definitive assignment of a transport until the
load is finally picked the approach achieves the required flexibility
to exploit opportunities that may arise while AGVs search for trans-
ports in the highly dynamic environment.

Extensive tests show that the field-based approach outperforms
standard CNET for throughput as well as for average waiting time
of transports. On the other hand, the approach requires a limited
amount of additional bandwidth, and the waiting time for isolated
pick locations is higher compared to CNET. We experienced little
problems with the traditional difficulties of field-based approaches,
including parameter tuning and problems with local minima. As
an overall conclusion, field-based task assignment is a promising
approach in the domain of AGV transportation systems.

As future work, we aim to compare the field-based approach with
other flexible approaches for task assignment. Currently we study a
dynamic version of CNET in which transport agents and idle AGV
agents continuously reconsider the assignment of transports until
loads are picked, aiming to exploit opportunities that arise in the
environment. Another interesting venue for future work, is to sep-
arate the management of fields from the agent logic by using a
virtual environment as proposed in [21]. In this approach, agents
may simply perceive fields in the virtual environment, while this
latter–supported by middleware–takes the burden of managing the
spreading of fields. This model improves separation of concerns
by making the environment responsible for managing fields, which
responsibility conceptually belongs to the environment.

7. REFERENCES
[1] Automatic Guided Vehicle Simulator, K.U.Leuven, 2005.

http://www.cs.kuleuven.ac.be/∼distrinet/taskforces
/agentwise/agvsimulator/.

[2] S. Aknine, S. Pinson, and M. F. Shakun. An extended
multi-agent negotiation protocol. Autonomous Agents and
Multi-Agent Systems, 8:5–45, 2004.

[3] N. Boucke, D. Weyns, T. Holvoet, and K. Mertens.
Decentralized allocation of tasks with delayed
commencement. In Proceedings of European Workshop on
Multiagent Systems, Barcelone, Spain, 2004.

[4] G. Buchman, D. Cohen, P. Vernaza, and D. Lee. The
University of Pennsylvania Robocup 2005 Legged Soccer
Team. http://www.cis.upenn.edu/robocup/UPenn05.pdf, 2005.

[5] Egemin Modular Controls Concept. EMC 2 project, IWT,
Belgium. http://emc2.egemin.com/, 2005.

[6] A. Farinelli, L. Iocchi, D. Nardi, and V. Ziparo. Task
Assignment with Dynamic Perception and Constrained Tasks

in a Multi-Robot System. Proceedings of the IEEE
International Conference on Robotics and Automation, 2004.

[7] J. Ferber. Multiagent systems: An introduction to distributed
artificial intelligence. Addison-Wesley, London, UK, 1999.

[8] P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2), 1968.

[9] A. Helleboogh, T. Holvoet, D. Weyns, and Y. Berbers.
Extending time management support for multi-agent systems.
In Multiagent and Multiagent-based Simulation, New York,
USA, 2005.

[10] T. Knabe, M. Schillo, and K. Fischer. Improvements to the
FIPA Contract Net Protocol for Performance Increase and
Cascading Applications. Proceedings of the Workshop on
Multiagent Interoperability, 2002.

[11] T. Knabe, M. Schillo, and K. Fischer. Interorganizational
Networks as Patterns for Selforganizing Multiagent Systems.
Autonomous Agents and Multiagent Systems, 2003.

[12] L.Breton, S. Maza, and P. Castagna. Simulation multi-agent
de systèmes d’AGVs: comparaison avec une approche
prédictive. 5e Conférence Francophone de Modélisation et
Simulation, 2004.

[13] M. Mamei and F. Zambonelli. Motion coordination in the
quake 3 arena environment: a field-based approach. First
International Workshop on Environments for Multiagent
Systems, 2003.

[14] M. Mamei and F. Zambonelli. Programming pervasive and
mobile computing applications with the TOTA middleware.
In Proceedings of the 2nd International Conference on
Pervasive Computing and Communications. IEEE Computer
Society, Washington, DC, USA, 2004.

[15] M. Mamei, F. Zambonelli, and L. Leonardi. Co-Fields: A
Physicall Inspired Approach to Distributed Motion
Coordination. IEEE Pervasive Computing, 2004.

[16] F. D. Paoli and G. Vizzari. Context dependent management of
field diffusion: an experimental framework. Workshop Dagli
Oggetti agli Agenti, Villasimius, Italy, 2002.

[17] W. Schols, T. Holvoet, N. Boucke, and D. Weyns. Gradient
Field Based Transport Assignment in AGV Systems. In
CW-425, Technical Report, Departement of Computer
Science, Katholieke Universiteit Leuven, Belgium.
http://www.cs.kuleuven.ac.be/publicaties/rapporten/CW/2005/.

[18] O. Shehory, S. Kraus, and O. Yadgar. Emergent cooperative
goal-satisfaction in large scale automated-agent systems.
Artificial Intelligence, 110(1):1–55, 1999.

[19] R. G. Smith. The contract net protocol: High level
communication and control in a distributed problem solver. In
IEEE Transactions on Computers, C-29(12), 1980.

[20] D. Weyns and T. Holvoet. Formal Model for Situated
Multiagent Systems. Fundamenta Informaticae, 63(2-3),
2004.

[21] D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever.
Decentralized control of E’GV transportation systems. In 4th
Joint Conference on Autonomous Agents and Multiagent
Systems, Industry Track, 2005.

[22] D. Weyns, E. Steegmans, and T. Holvoet. Protocol based
communication for situated multiagent systems. In 3th
Conference on Autonomous Agents and Multi-Agent Systems,
2004.

[23] D. Weyns, E. Steegmans, and T. Holvoet. Towards active
perception for situated multi-agent systems. Applied Artificial
Intelligence, 18(8-9), 2004.

