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In distributed mobile applications, component interaction is complicated by dynamics in the environment. 

ObjectPlaces middleware supports the development of interaction protocols in dynamic, mobile 

environments to facilitate component coordination. 

Distributed mobile applications offer application developers unprecedented flexibility because mobile 

network nodes move around freely while also staying connected to the wireless network. Distributed 
applications gain mobility at a price, however: because application components are deployed on mobile 
nodes, the components must contend with the context changes that a dynamic network entails. This is 
particularly challenging for coordination, which involves aligning distributed components’ behavior to 
achieve an application’s overall requirements. 

This coordination is typically accomplished through a distributed protocol—that is, an exchange of multiple, 
related messages among application components on different nodes. In mobile applications, nodes 
continuously come and go and change interaction partners, complicating this exchange. For protocol-based 
coordination, existing middleware approaches—such as publish/subscribe systems or tuplespaces-based 
systems (see the "Related Work" sidebar)—support the initial interaction partner discovery, but don’t 
support interaction partner maintenance over prolonged interaction sessions or easy protocol 
modularization. 

We propose extending these middleware approaches with suitable abstractions to better support protocol-
based interaction in mobile applications. To test our approach, we created ObjectPlaces, a middleware that 
uses roles as its main abstraction. A role encapsulates an application component’s behavior during an 
interaction protocol. A role’s behavior is a black box to ObjectPlaces; rather than focus on specifying a 
role’s behavior, we emphasize the role abstraction. This lets ObjectPlaces manage 

the setup of interaction sessions among several roles played by application components on different 
nodes and  

active session maintenance in a mobile and dynamic application.  

We applied ObjectPlaces in the domain of automatic guided vehicle control and evaluated our abstractions 
by applying them to the AGV application’s coordination problems. 

Problem illustration 
We undertook a research project with an industry partner, Egemin, to explore a decentralized approach’s 
feasibility for AGV control. AGVs are unmanned, battery-powered vehicles that transport loads through a 
warehouse or factory. They communicate over a wireless network to divide tasks; avoid collisions, 
deadlocks, and traffic jams; and achieve the warehouse’s desired load throughput. Here, we focus on AGV 
collision avoidance. 

AGV collision avoidance 
To avoid collisions, AGVs execute a mutual exclusion protocol,1 designating a critical section on the factory 
floor that only one AGV should cross at a time. Using the protocol, each AGV tries to lock an area before 
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driving over it. The AGV’s hull projection determines this area (see figure 1). An AGV’s hull is the physical 
area the vehicle occupies on the floor. A hull projection is the union of a set of hulls, projected along the 
AGV’s intended path in small increments. To lock a hull projection, each AGV asks nearby AGVs whether it 
can drive over the hull projection safely, then locks the hull projection if all the nearby AGVs consent. 

Every requested hull projection contains a priority, and all such priorities are totally ordered.1

Figure 1. A top-down view of two automatic guided vehicles and their hull 
projections (green) on a factory floor. The paths over which AGVs can drive are 
fixed (blue). AGVs A and B are in a collision range because their hull projection 
circles overlap. 

When a voting AGV receives a request, it sends an allow vote if 

the requested hull projection doesn’t overlap with any of its requested or locked hull projections, or 

the requested hull projection overlaps with its requested hull projections, but the requesting AGV’s 
hull projection has a higher priority.  

The voting AGV defers its allow vote in all other cases; it re-evaluates deferred requests whenever it has 

driven over an area and thus unlocks a part of its locked hull projection. To save bandwidth, we want to 
avoid executing the protocol with all AGVs for every request. However, to guarantee safety, the subset of 
AGVs that a requester interacts with must include all AGVs with which it might collide. 

Figure 1 shows how we determine this safe subset: AGVs in collision range are those with overlapping hull 
projection circles. We define the hull projection circle by a center point (the AGV’s position) and a hull 
length (the distance between the AGV and the furthest point on its hull projection). So, overlapping circles 
indicate, to a first approximation, that two AGVs are within collision range. This approximation narrows the 
possible candidates for interaction significantly. To determine interaction partners, each AGV needs only 
the other AGVs’ positions and hull lengths. 

The subset of AGVs within a requesting AGV’s collision range can change at any time. If a new AGV enters 
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collision range during a pending request, the requester should detect this and send the new AGV a request. 
If a voting AGV leaves collision range, the requesting AGV can disregard its vote. 

Protocol-based coordination issues 
Generally, collision avoidance illustrates two key issues with protocol-based coordination in mobile 
applications. First, the set of interacting participants is most easily defined by a constraint on node 
properties, as opposed to an enumeration of node identifiers (such as an IP address). In this case, for 
example, AGVs interact based on AGV position and hull length. 

Second, given the dynamics of node properties that mobility entails, the changing number of interaction 
participants affects the ongoing interactions. For example, when executing a collision avoidance protocol, a 
requesting AGV must account for new AGVs entering the collision range. 

ObjectPlaces 
To support protocol-based interaction, ObjectPlaces offers two services. First, it sets up an interaction 
session between a set of roles on nodes defined by a constraint on the nodes’ properties. ObjectPlaces then 
maintains the interaction session as the nodes’ properties change. The roles are responsible for executing 
the protocol on behalf of the application components playing the roles. 

Interaction session setup 
An application component can start an interaction session by specifying the initiator role it wants to play, a 
group definition and a participant role’s name. The initiator role starts and stops the session; there is only 
one initiator role per interaction session. In our collision avoidance interaction, an application component 
on the requesting AGV plays the requester role, which is an initiator role. Participant roles—the voter roles 
in our example—activate in response to initiator role activation. So, an application request activates 
initiator roles, while ObjectPlaces activates participant roles. 

How it works. To determine which nodes participant roles must be activated on, the initiating component 
provides a group definition that defines a constraint on node properties: 

f(initiator-node-properties,participant-node-properties) {true,false}

The group definition function takes as arguments the values of the initiator node’s properties, as well as 
the values of the candidate participant nodes. It returns true only if the candidate participant is to be part 
of the interaction. 

On all nodes that satisfy the group definition, ObjectPlaces activates the participant role with the given 
participant name, but only if there are application components on that node that are capable of playing the 
participant role. To let the middleware know this, an application component should register the names of 
the participant roles that it is capable of playing. Even if a node’s properties satisfy the node constraint, a 
participant role with the given name is only activated if the role was registered by an application 
component on that node. 

Once a node’s participant role is activated, ObjectPlaces notifies the initiator. It then opens an 
asynchronous communication channel between the initiator and participants so they can execute the 
protocol. To let ObjectPlaces establish which nodes in the network satisfy a group definition, each node’s 
application maintains the node’s property values. (The application need maintain only the properties of the 
node itself.) 

AGV example. For collision avoidance, an application component updates the AGV’s position and hull length 
in ObjectPlaces to determine where to activate voters. When trying to lock a new hull projection, the 
application activates a requester role, asking ObjectPlaces to activate voter roles on AGVs within collision 
range using a group definition. ObjectPlaces then finds the nodes that satisfy the group definition and 
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activates their voter roles. Next, it notifies the requester, which executes the mutual exclusion protocol 
with the voters. 

Expressivity. The group definition’s expressivity is a trade-off between usability and feasibility. While an 
application developer wants as expressive a group definition function as possible, ObjectPlaces must be 
able to find the group of nodes efficiently. 

The group definition enables constraints based on each participant node’s individual properties and on 
relations between initiator node and participant node properties. The latter enables typical distance-based 
constraints. Constraints can’t be expressed on aggregate properties of more than two nodes, such as 
average or maximum CPU power. ObjectPlaces thus avoids the overhead associated with building a 
consistent global state of all node properties. Such expressive group definitions are as difficult to resolve as 

global predicate evaluation,2,3 which determines whether a global predicate is true in a distributed system.

In the AGV application, we found the group definition function to be expressive enough. In practice, the 
interaction protocol can handle a more fine-grained selection of interaction partners on the application 
level, to avoid high overhead for protocols that don’t need it. 

Interaction session maintenance 
Due to network dynamics, once an interaction session is established, nodes might appear that satisfy an 
executing interaction session’s group definition. For example, a new AGV might enter collision range after a 
requester role has sent out its requests but before all votes have come in. 

ObjectPlaces therefore continuously monitors node properties and activates the participant roles on new 
nodes when necessary. As figure 2 shows, when ObjectPlaces activates a new participant role, it notifies 
the initiator role. The initiator role can then incorporate the new participant in the protocol. Similarly, if a 
participating node no longer satisfies the group definition, ObjectPlaces notifies the initiator role and cleans 
up the participant role. The process terminates when the initiator indicates that the interaction session is 
over.

Figure 2. Initiating an interaction session. (a) An initiator role is activated. The 
circle denotes the group definition. (b) ObjectPlaces instantiates the participant 
roles, and the roles begin executing the protocol. (c) A new node enters the group 
definition zone. ObjectPlaces activates a participant role on the new node and 
notifies the initiator of this new participant, which can then take part in the 
protocol. 

Group membership guarantees. ObjectPlaces offers two group membership guarantees: 

An initiator receives messages only from group participants, guaranteeing that initiators don’t 
receive messages from another interaction session or from removed participants.  
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ObjectPlaces notifies the initiator of node arrival and removal with a best-effort guarantee.  

Two factors determine group update granularity: the frequency of node property updates and the delay 
that the underlying communication medium imposes. The application controls the update frequency, taking 
into account that more updates cause more overhead (as we describe later). For example, if position is 
updated every second, ObjectPlaces updates groups defined by a constraint on position approximately 
every second as well (taking into account jitter on communication delay). 

Groups that ObjectPlaces supports are different from groups that Group Communication Systems supports. 

Researchers have studied GCS in fixed distributed systems4,5 and, more recently, in mobile ad hoc 
networks.6,7 Their main goal is to provide a consistent (that is, identical) view on the group’s members at 
each member and to make sure that all group members can communicate. However, an ObjectPlaces 
group is more fine-grained than a GCS group—the latter is long-lived and doesn’t differentiate between 
different interaction sessions, while ObjectPlaces’ groups are short-lived and specific to one particular 
interaction session. This lets ObjectPlaces encapsulate tedious session-management tasks, such as 
generating session IDs and routing incoming messages to the appropriate role. 

A protocol session is always started by a component that contacts one or more other components. 
ObjectPlaces thus ensures that the initiator sees all participants, but participants only see the initiator. So, 
we can view a GCS group as a combination of multiple ObjectPlaces groups. 

Furthermore, ObjectPlaces allows temporary deviations from consistency over several groups. Suppose 
node X has a participant in an interaction with a node Y initiator. If an application component then starts 
an initiator on X with the same group definition as Y’s initiator, ObjectPlaces doesn’t guarantee that the X 
initiator has node Y as a participant at the same time that node Y has node X as a participant. 

Some protocols, such as the one used for task assignment in the AGV application,8,9 don’t require 
consistency; others, such as the collision avoidance protocol, do. In the latter case, we can enforce 
consistency at the protocol level. 

AGV application. In the AGV application, ObjectPlaces updates the position and hull length on each AGV 
every second. When a new AGV enters collision range during a collision avoidance interaction session, 
ObjectPlaces detects this and activates a new voter role on that AGV. Next, it notifies the requester and 
sends a request to the new voter, and the requester awaits that AGV’s vote. Similarly, when an AGV 
moves out of collision range, ObjectPlaces notifies the requester, which then disregards that voter’s vote. 
The first guarantee—that initiators receive only votes from participants in the group—ensures that no 
initiator receives allow votes from voters no longer in the group. 

The second guarantee addresses safety. Given that the update interval tupdate for position and hull length 
is one second, every initiator takes a minimal safe time, tupdate+ delay , into account before closing a 
session and locking a hull. In practice, we set this safe time to 2 × tupdate to ensure that ObjectPlaces 

has time to exchange the initiator’s new position and hull length with other nodes and thus keep each 
node’s view up to date. To enforce consistency, a voter can reply allow only if the requester’s node is in 

the voter node’s collision avoidance group. 

To ensure that AGVs drive smoothly in the face of locking delays, AGVs request hull projections in advance, 
before they run out of locked hull projections. 

Application programming interface 
Figure 3 shows the main classes of ObjectPlaces’ API. RoleActivator is the main access point, and 
startInteraction and stopInteraction set up and stop interaction sessions. To update node properties, 
the application can use updateNodeProperty and registerNodePropertyObserver. The application can 
ask to resolve a group definition without setting up an interaction session using viewGroup, which is 
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instrumental for enforcing consistency (as in the earlier AGV example). Requester and Voter are examples 

of application-specific roles. 

Figure 3. UML diagram of ObjectPlaces’ API. RoleActivator is the main access point 

to ObjectPlaces’ services, offering methods to start and stop interaction sessions. 
Roles, such as Requester and Voter, should be implemented as subclasses of either 
Initiator or Participant.

For each participant role that an application components is capable of playing, the application component 
should register a ParticipantFactory with a participant name using 
RoleActivator.setParticipantFactory. ObjectPlaces can then use the factory to instantiate a new 
Participant of the appropriate type. 

As figure 3 also shows, roles can communicate using send and receive methods. Initiators get to know 
participants through inGroup, and participants get to know their initiator through inGroupOf.

Application components and roles 
In addition to interaction between roles on different nodes, ObjectPlaces must support interaction between 
roles on the same node. For example, an AGV’s voter role can’t vote allow on a request if the same AGV 

has an initiator role that has locked an overlapping hull. Similarly, components involved in the interaction 
might need to influence a session while it’s in progress, and role instances might need to influence the 
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application components’ behavior. For example, once the collision avoidance protocol is finished, the 
requester role locks the hull so the component driving the AGV sees that it can continue on. 

To this end, application components share state with the roles they play in one or more shared 

tuplespaces.10 The application components use the tuplespace to share state relevant for their roles' 
interactions, and roles use the tuplespace to give the application components feedback regarding the 
interaction’s outcome. Typically, related roles and components interact in one or more tuplespaces 
separated from other components and roles that deal with different interactions. 

Two properties of a tuplespace justify its use: 

It hides communicating partners’ identities from each other, facilitating the dynamic addition and 
removal of roles without “bothering” the decoupled application components.  

It provides 1 n communication. Typically, one application component simultaneously participates in 
several interactions, so several role instances must observe the same state.  

Architecture and implementation 
Figure 4 shows an overview of the ObjectPlaces architecture. The figure shows two mirror images: the top 
image reflects the entities relevant for a node with an initiator, while the bottom image reflects the entities 
relevant for a node with a participant. Because each node can be initiator and participant simultaneously, 
we must “fold” the two images together to get a complete overview of a node’s processes. 

Figure 4. The ObjectPlaces middleware architecture. 
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The numbered events are successive messages exchanged between Role Activator and Group
Formation, the main processes involved in setting up an interaction session. Role Activator activates 
Group Formation to find and monitor the group of nodes satisfying the group definition. It then activates 
the participant roles on this group of nodes; if activated, Role Activator notifies the initiator role, which 

can then execute the protocol with the participants. 

Implementing group formation poses the greatest challenge. To accomplish it, ObjectPlaces must resolve 
the group definition into a specific group of nodes, maintain the group as properties change, and guarantee 
the two group membership properties we discussed earlier. 

We implemented an ObjectPlaces prototype for the AGV application using .NET (demonstration movies and 
more information are available at http://emc2.egemin.com). In the AGV application, the network is fully 
connected, and all messages arrive within a known time bound. These assumptions are justified because 
AGV systems exist in a controlled environment. For the prototype, we didn’t take node failure into account. 
We discuss options that scale more favorably to larger networks, particularly using content-based routing, 

elsewhere.11

The prototype disseminates node properties by multicasting updates to nodes that can start interactions on 
the basis of those properties. On each node, ObjectPlaces can then maintain, per node ID, the current 
value of each node’s properties. Given this information, an initiator node resolves group definitions and 
contacts the participant nodes to activate participant roles. The initiator node’s ObjectPlaces middleware is 
responsible for the group: if node properties indicate that a participant node should leave the group, the 
middleware on the initiator notifies the participant node that it is no longer part of the group. 

Evaluation
We tested ObjectPlaces’ proposed abstractions by applying them to the AGV application’s coordination 
problems. 

Interaction management 
ObjectPlaces’ role abstractions let the middleware encapsulate management of both interaction partners 
and interaction sessions. This simplifies protocol implementation: the application doesn’t have to deal with 
tedious work, such as session IDs to determine which role should handle an incoming message, or 
managing constantly changing interaction partners. 

Separation of concerns 
ObjectPlaces lets developers separate two concerns: interaction partner selection and interaction protocol 
execution. In our AGV case, this separation proved useful during system evolution. In the first 
implementation of collision avoidance, we didn’t account for deadlocks (as when two AGVs stand head-on 
on a bidirectional path). Because AGV hull length was constant, our hull projection was fixed. We could 
thus write the collision avoidance group definition function solely in terms of AGV positions. 

We later added deadlock avoidance by extending the length of requested hull projections (for example, the 
collision avoidance protocol would request and lock an entire bidirectional path). This didn’t require 
changing the collision avoidance protocol’s code; we simply added the hull length to the node properties 
and changed the group definition function. 

Applicability 
ObjectPlaces’ concepts are useful in a wide range of mobile applications. Using ObjectPlaces, we 

implemented protocols ranging from mutual exclusion1 to deadlock detection12 to task assignment9 in the 
AGV application. Our success indicates that developers can use the ObjectPlaces model to support a wide 
range of protocols. 

We have also implemented ObjectPlaces’ group formation in other types of mobile environments13,14—
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such as mobile ad hoc networks—albeit with weaker guarantees than those we described earlier. 

General overhead 
ObjectPlaces’ overhead depends on several application-specific factors. ObjectPlaces needs at least one 
multicast message for each node property update. Depending on network reliability, ObjectPlaces might 
need slightly more messages to achieve reliable multicast. The primary influence on bandwidth overhead is 
the frequency of the node property updates. Furthermore, the node property value’s size determines the 
update message’s size. 

For example, an AGV system with 20 vehicles—a large system for Egemin AGV applications—updates 
positions and hull lengths every second. These updates have a message size of 16 bytes and include 
receiver ID, x and y position, and hull length. This uses slightly more than 320 bits per second, depending 
on transmission errors, presenting no problems when compared to the bandwidth available in an IEEE 
802.11 network (maximally 5.9 Mbits per second over Transmission Control Protocol (TCP) and 7.1 Mbps 
over User Diagram Protocol (UDP). In addition, the AGV application most frequently updates position, while 
other node properties are updated only as they change. AGV status, for example, changes only two to 
three times per minute. 

Decreasing bandwidth 
ObjectPlaces supports a system’s division into subgroups of interacting components. In addition to 
supporting interaction session setup, such a division can decrease the bandwidth usage, earning back the 
overhead needed for group formation. Because it has extra information about node properties, a particular 
interaction typically requires fewer interaction partners. For example, extra information about AGV position 
lets the collision avoidance protocol narrow down the number of voters. 

Whether or not dividing a system into subgroups of interacting components decreases bandwidth depends 
on

the average number of nodes in interacting groups relative to the overall number of nodes in the 
system,  

the relative sizes of node property messages and protocol messages,  

how frequently interaction sessions start, and  

how frequently the application updates the node properties required for the interaction.  

The collision avoidance protocol uses lower bandwidth with ObjectPlaces—when it executes each collision 
avoidance interaction session with a subset of all AGVs—than without it. Using ObjectPlaces narrows the 
number of AGVs in subgroups to two or three per session. Also, the protocol messages are large compared 
to the node property messages. Request messages contain a hull projection—a convex polygon (possibly 
containing curves), whose representation is two to 15 times larger than the position message (containing 
only a coordinate and a hull length). Finally, other protocols can also use the exchanged node properties to 
reduce the number of interaction partners in their interaction sessions. In the AGV application, for 
example, we also use position to determine which AGVs to negotiate with for task assignment. 

Although ObjectPlaces can detect changes in interaction partners, it offers little support to deal with 

such changes on the protocol level. We plan to add stronger guarantees—such as transactional semantics—
to make it easier for application developers to build correct protocols with a changing number of 

participants.15 We also plan to add fault-handling mechanisms.
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Sidebar: Related Work 
Our use of roles in ObjectPlaces is inspired by ongoing work in object-oriented software engineering, where 
developers use roles to model object collaborations in framework design, implementation support, 
patterns, and languages. Multiagent systems developers also use roles in protocol-based interaction, 
letting them describe interagent interaction separately from agent behavior. ObjectPlaces focuses more on 
runtime support for activation and deactivation of roles in mobile networks. It therefore relates to work in 
three primary areas: mobile network middleware, location services, and role assignment in wireless sensor 
networks. 

Mobile network middleware 
Most middleware systems for mobile networks use a publish/subscribe paradigm, in which publishers send 
notifications of state changes to a list of subscribers. Subscribers aren’t known in advance; they use 
subscriptions to inform the middleware of their interest in certain notifications. Typically, these 
subscriptions are defined as a predicate on the notifications’ contents. 

Publish/subscribe model extensions typically deal with frequent disconnections by providing a dispatching 
server that buffers events and republishes lost events on reconnection. Examples include JEDI (Java Event-

Based Distributed Infrastructure),1 Elvin,2 and work by Mariano Cilia and his colleagues.3 Other 
approaches4,5 introduce location-dependent subscriptions, refining a subscription to accept events related 
to the mobile publisher or the subscriber’s current location. 

REDS (reconfigurable dispatching system) is a publish/subscribe middleware that offers possible one-to-
one subscriber–publisher communication, which is instrumental for supporting protocols. 

Other types of middleware for mobile applications are based on a tuplespaces approach. In EgoSpaces,6

which builds on the work of LIME (Linda In a Mobile Environment),7 application components specify views
to manipulate a set of tuplespaces on connected nodes. A view declaratively describes a set of tuplespaces 
on remote nodes by specifying a constraint on the node properties. An application component can then 
manipulate the view’s tuplespaces as if they were one shared tuplespace. 

In TOTA (Tuples on the Air),8 application components inject a tuple in a local tuplespace, together with 
propagation rules. The TOTA middleware transparently propagates the tuples to neighboring nodes and 
maintains the distributed tuple as the network topology changes. 

In contrast to these approaches, ObjectPlaces explicitly supports protocol-based interaction for mobile 
networks. Although applications can use the above methods to discover interaction partners, the 
middleware methods don’t offer first-class abstractions to represent an ensuing interaction protocol. So, at 
the protocol level, the application developer loses the middleware’s support for dealing with dynamics. 

Location service 
A location service aims to maintain tangible objects’ geographical locations to support location awareness. 

Developers typically use a location service in ubiquitous computing applications.9-11 Usually, the location 
service gathers object locations at a fixed server that supports location-based lookup queries. This lets the 
application determine whether objects are in symbolic locations (such as “in the room”), as well as in 
locations based on a coordinate system. 

ObjectPlaces is more flexible in that it doesn’t require a fixed server. It can also select interaction partners 
on the basis of any node property, not just location. 
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Role assignment in wireless sensor networks 
Christian Frank and Kay Römer describe a middleware that automatically assigns roles to nodes in a 

wireless sensor network.12 Their approach is based on evaluating a constraint on node properties to 
determine whether a node should assumer a particular role. TinyCubus13 uses this approach to perform 
efficient code deployment. The approach assumes that node properties change infrequently, whereas 
ObjectPlaces is specifically targeted toward applications with frequently changing node properties. 

Furthermore, Frank and Römer represent roles simply as names that trigger the node’s application to 
assume some functionality. In ObjectPlaces, roles encapsulate component behavior in a protocol so the 
middleware can manage activation and deactivation directly. 
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