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Abstract. A reference architecture integrates a set of architectural pat-
terns that have proven their value for a family of applications. Such fam-
ily of applications is characterized by specific functionality and quality
requirements. A reference architecture provides a blueprint for develop-
ing software architectures for applications that share that common base.
As such, a reference architecture provides a means for large-scale reuse
of architectural design.

This paper gives an overview of a reference architecture for situated
multiagent systems we have developed in our research. We discuss various
architectural views of the reference architecture. Per view, we zoom in on
the main view packets, each of them containing a bundle of information
of a part of the reference architecture. For each view packet we explain
the rationale for the design choices that were made and we give built-in
mechanisms that describe how the view packet can be exercised to build
a concrete software architecture. We illustrate the use of the reference
architecture with an excerpt of the software architecture of an industrial
AGYV transportation system.

1 Introduction

A reference architecture embodies a set of architectural best practices gathered
from the design and development of a family of applications with similar char-
acteristics and system requirements [28/6]. A reference architecture provides an
asset base architects can draw from when developing software architectures for
new systems that share the common base of the reference architecture. Apply-
ing the reference architecture to develop new software architectures will yield
valuable input that can be used to update and refine the reference architec-
ture. As such, a reference architecture provides a means for large-scale reuse of
architectural design.

In this paper, we give an overview of the reference architecture for situated mul-
tiagent systems we have developed in our research. We start with an introduc-
tory section that explains the reference architecture rationale and sketches the
background of the architecture. Next, we present the reference architecture. The
architecture documentation consists of three views that describe the reference ar-
chitecture from different perspectives. To illustrate the use of the reference
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architecture, we give an excerpt of the software architecture of an industrial AGV
transportation system in which we have used the reference architecture for
architectural design. The paper concludes with an overview of related work and
conclusions.

2 Rationale and Background

In this section, we explain the reference architecture rationale. We summarize
the main characteristics and requirements of the target application domain of the
reference architecture and give a brief overview of the development process of the
architecture. Finally, we explain how the reference architecture documentation
is organized.

2.1 Reference Architecture Rationale

The general goal of the reference architecture is to support the architectural
design of situated multiagent systems. Concrete motivations are:

e Integration of mechanisms. In our research, we have developed several ad-
vanced mechanisms of adaptivity for situated agents, including selective per-
ception [48], advanced behavior-based action-selection mechanisms with roles
and situated commitments [4644], and protocol-based communication [47].
To build a concrete application these mechanisms have to work together. The
reference architecture integrates the different mechanisms. It defines how the
functionalities of the various mechanisms are allocated to software elements of
agents and the environment and how these elements interact with one another.

e Blueprint for architectural design. The reference architecture generalizes
common functions and structures from various experimental applications
we have studied and built. This generalized architecture provides a reusable
design artifact, it facilitates deriving new software architectures for systems
that share the common base more reliably and cost effectively. On the one
hand, the reference architecture defines constraints that incarnate the com-
mon base. On the other hand, the architecture defines variation mechanisms
that provide the necessary variability to instantiate software architectures
for new systems.

e Reification of knowledge and expertise. The reference architecture embodies
the knowledge and expertise we have acquired during our research. It con-
scientiously documents the know-how obtained from this research. As such,
the reference architecture offers a vehicle to study and learn the advanced
perspective on situated multiagent systems we have developed.

2.2 Characteristics and Requirements of the Target Application
Domain of the Reference Architecture

The reference architecture for situated multiagent systems supports the archi-
tectural design of a family of software systems with the following main charac-
teristics and requirements:
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e Stakeholders of the systems (users, project managers, architects, developers,
maintenance engineers, etc.) have various—often conflicting—demands on
the quality of the software. Important quality requirements are flexibility
(adapt to variable operating conditions) and openness (cope with parts that
come and go during execution).

e The software systems are subject to highly dynamic and changing operat-
ing conditions, such as dynamically changing workloads and variations in
availability of resources and services. An important requirement of the soft-
ware systems is to manage the dynamic and changing operating conditions
autonomously.

e Global control is hard to achieve. Activity in the systems is inherently
localized, i.e. global access to resources is difficult to achieve or even infeasi-
ble. The software systems are required to deal with the inherent locality of
activity.

Example domains are mobile and ad-hoc networks, sensor networks, automated
transportation and traffic control systems, and manufacturing control.

2.3 Development Process of the Reference Architecture

The reference architecture for situated multiagent systems is the result of an iter-
ative research process of exploration and validation. During our research, we have
studied and built various experimental applications that share the above speci-
fied characteristics in different degrees. We extensively used the Packet—World as
a study case for investigation and experimentation. [40J42] investigate agents’ ac-
tions in the Packet—World. [39] studies various forms of stigmergic coordination.
[44] focuses on the adaptation of agent behavior over time. [32] yields valuable
insights on the modelling of state of agents and the environment, selective per-
ception, and protocol-based communication. Another application we have used
in our research is a prototypical peer-to-peer file sharing system [48/20]. This
application applies a pheromone-based approach for the coordination of agents
that move around in a dynamic network searching for files. [B8I8I3T] study a
field-based approach for task assignment to automatic guided vehicles that have
to operate in a dynamic warehouse environment. Finally, [46] studies several
experimental robotic applications. The particular focus of these robotic applica-
tions is on the integration of roles and situated commitments in behavior-based
action selection mechanisms.

Besides these experimental applications, the development of the reference ar-
chitecture is considerably based on experiences with an industrial logistic trans-
portation system for warehouses [45/43/9].

In the course of building the various applications, we derived common func-
tions and structures that provided architectural building blocks for the reference
architecture. The reference architecture integrates the different agent and envi-
ronment functionalities and maps these functionalities onto software elements
and relationships between the elements. The software elements make up a sys-
tem decomposition that cooperatively implement the functionalities. This system
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decomposition—the reference architecture—provides a blueprint for instantiat-
ing target systems that share the common base of the reference architecture.

2.4 Organization of the Reference Architecture Documentation

The architecture documentation describes the various architectural views of the
reference architecture [I3]. The documentation includes a module decomposition
view and two component and connector views: shared data and communicating
processes. Each view is organized as a set of view packets. A view packet is a
small, relatively self-contained bundle of information of the reference architec-
ture, or a part of the architecture. The documentation of a view starts with a
brief explanation of the goal of the view and a general description of the view
elements and relationships between the elements. Then the view packets of the
view are presented. Each view packet consists of a primary presentation and ad-
ditional supporting information. The primary presentation shows the elements
and their relationships in the view packet. For the module decomposition view,
the primary presentations are textual in the form of tables. The primary pre-
sentations of other views are graphical with a legend that explain the meaning
of the symbols.

The supporting information explains the architectural elements in the view
packet. Each view packet gives a description of the architectural elements with
their specific properties. In addition to the explanation of the architectural ele-
ments, the supporting information describes variation mechanisms for the view
packet and explains the architecture rationale of the view packet. Variation mech-
anisms describe how the view packet can be applied to build a software architec-
ture for a concrete system. The architecture rationale explains the motivation
for the design choices that were made for the view packet.

The documentation of the reference architecture presented in this paper is de-
scriptive. Concepts and mechanisms are introduced briefly and illustrated with
examples. The interested reader finds elaborated explanations in the added ref-
erences. For a detailed formal specification of the various architectural elements,
we refer to [37].

3 Module Decomposition View

The module decomposition view shows how the situated multiagent system is
decomposed into manageable software units. The elements of the module decom-
position view are modules. A module is an implementation unit of software that
provides a coherent unit of functionality. The relationship between the modules
is is—part-of that defines a part/whole relationship between a submodule and
the aggregate module. Modules are recursively refined conveying more details in
each decomposition step.

The basic criteria for module decomposition is the achievement of quality
attributes. For example, changeable parts of a system are encapsulated in sep-
arate modules, supporting modifiability. Another example is the separation of
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functionality of a system that has higher performance requirements from other
functionality. Such a decomposition allows to apply different tactics to achieve
the required performance throughout the various parts of the system. However,
other criteria can be drivers for a decomposition of modules as well. For exam-
ple, in the reference architecture, a distinction is made between common modules
that are used in all systems derived from the reference architecture, and variable
modules that differ across systems. This decomposition results in a clear orga-
nization of the architecture, supporting efficient design and implementation of
systems with the reference architecture.

Modules in the module decomposition view include a description of the inter-
faces of the modules that document how the modules are used in combination
with other modules. The interface descriptions distinguish between provided and
required interfaces. A provided interface specifies what functionality a module
offers to other modules. A required interface specifies what functionality a mod-
ule needs from other modules; it defines constrains of a module in terms of the
services a module requires to provide its functionality.

The reference architecture provides three view packets of the module decom-
position view. We start with the top-level decomposition of the situated multia-
gent system. Next, we show the primary decomposition of an agent. We conclude
with the primary decomposition of the application environment.

3.1 Module Decomposition View Packet 1: Situated Multiagent
System

Primary Presentation

System Subsystem

Situated Multiagent System  Agent

Application Environment

Elements and their Properties. A Situated Multiagent System is decom-
posed in two subsystems: Agent and Application Environment. We explain the
functionalities of both modules in turn.

Agent is an autonomous problem solving entity in the system. An agent en-
capsulates its state and controls its behavior. The responsibility of an agent is
to achieve its design objectives, i.e. to realize the application specific goals it is
assigned. Agents are situated in an environment which they can perceive and
in which they can act and interact with one another. Agents are able to adapt
their behavior according to the changing circumstances in the environment. A
situated agent is a cooperative entity. The overall application goals result from in-
teraction among agents, rather than from sophisticated capabilities of individual
agents.
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A concrete multiagent system application typically consists of agents of
different agent types. Agents of different agent types typically have different
capabilities and are assigned different application goals.

The Application Environment is the part of the environment that has to be
designed for a concrete multiagent system application. The application environ-
ment enables agents to share information and to coordinate their behavior. The
core responsibilities of the application environment are:

e To provide access to external entities and resources.

e To enable agents to perceive and manipulate their neighborhood, and to
interact with one another.

e To mediate the activities of agents. As a mediator, the environment not only
enables perception, action and interaction, it also constrains them.

The application environment provides functionality to agents on top of the de-
ployment context. The deployment context consists of the given hardware and
software and external resources such as sensors and actuators, a printer, a net-
work, a database, a web service, etc.

As an illustration, a peer-to-peer file sharing system is deployed on top of
a deployment context that consists of a network of nodes with files and possi-
bly other resources. The application environment enables agents to access the
external resources, shielding low-level details. Additionally, the application en-
vironment may provide a coordination infrastructure that enables agents to co-
ordinate their behavior. E.g., the application environment of a peer-to-peer file
share system can offer a pheromone infrastructure to agents that they can use
to dynamically form paths to locations of interest.

Thus, we consider the environment as consisting of two parts, the deployment
context and the application environment. The internal structure of the deploy-
ment context is not considered in the reference architecture. For a distributed
application, the deployment context consists of multiple processors deployed on
different nodes that are connected through a network. Each node provides an
application environment to the agents located at that node. Depending on the
specific application requirements, different application environment types may
be provided. For some applications, the same type of application environment
subsystem is instantiated on each node. For other applications, specific types are
instantiated on different nodes, e.g., when different types of agents are deployed
on different nodes.

Interface Descriptions. Figure [I] gives an overview of the interfaces of the
agent subsystem and the application environment subsystem.

The Sense interface enables an agent to sense the environment resulting in
a representation, Send enables an agent to send messages to other agents, and
Influence enables an agent to invoke influences in the environment. Influences
are attempts of agents to modify the state of affairs in the environment. These
interfaces are provided by the application environment.

The application environment requires the interface Receive to deliver mes-
sages to agents. Furthermore, the application environment requires the interface
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Fig. 1. Interfaces of agent, application environment, and deployment context

Observe from the deployment context to observe particular resources, Transmit
to send messages to agents located on other nodes, and Act to modify the state
of external resources (based on influences invoked by agents).

Finally, the deployment context requires the interface Collect to enable the
collection of state from the application environment (requested by application
environment instances in a distributed setting), and the interface Deliver to
deliver the incoming messages to the agents.

Variation Mechanisms. There are four variation mechanisms for this view
packet:

M1 Definition of Agent Types. Depending on the specific application require-
ments different agent types may be required. Agent types are characterized
by the capabilities of the agents reflected in different internal structures.
Variations on agent types are discussed in subsequent view packets and
views, see sections [3.2] [£.1], and [l

M2 Definition of Application Environment Types. In a distributed setting, dif-
ferent application environment types may be required that are deployed on
different nodes. Application environment types differ in the functionality
they provide to the agents reflected in different internal structures. Vari-
ations in application environment types are discussed in subsequent view
packets and views, see sections 3.3l £2] and [l

M3 Definition of the Domain Ontology. The ontology defines the terminology
for the application domain. Defining an ontology includes the specification
of the various domain concepts and the relationships between the concepts.
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The domain ontology serves as a basis for the definition of the knowledge of

the agents and the state of the application environment, see the variation

mechanisms SD1 and SD2 of the component and connector shared data view
in section [

Definition of the Interaction Primitives of the Deployment Contezt. To en-

able the multiagent system software deployed on a node to interact with the

deployment context, the various interaction primitives with the deployment
context have to be concretized according to the application at hand. We
distinguish between three types of interaction primitives.

(1) Observation primitives enable the multiagent system software deployed
on a node to observe external resources and collect data from other
nodes. An observation primitive indicates which resource is observed
and what type of information should be observed.

(2) Action primitives enable to access external resources. An action primi-
tive indicates the target resource and the type of action.

(3) Communication primitives enable to transmit low-level formatted mes-
sages via the deployment context. A low-level formatted message is a
data structure that represents a message exchanged between a sender
and one or more addressees and that is transmitted via the deployment
context.

Design Rationale. The main principles that underly the decomposition of a
situated multiagent system are:

Decentralized control. In a situated multiagent system, control is divided
among the agents situated in the application environment. Decentralized
control is essential to cope with the inherent locality of activity, which is
a characteristic of the target applications of the reference architecture, see
section

Self-management. In a situated multiagent system self-management is essen-
tially based on the ability of agents to adapt their behavior. Self-management
enables a system to manage the dynamic and changing operating conditions
autonomously, which is an important requirement of the target applications
of the reference architecture, see section

However, the decentralized architecture of a situated multiagent system implies
a number of tradeoffs and limitations.

Decentralized control typically requires more communication. The perfor-
mance of the system may be affected by the communication links between
agents.

There is a trade-off between the performance of the system and its flexibility
to handle disturbances. A system that is designed to cope with many distur-
bances generally needs redundancy, usually to the detriment of performance,
and vice versa.

Agents’ decision making is based on local information only, which may lead
to suboptimal system behavior.
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These tradeoffs and limitations should be kept in mind throughout the design
and development of a situated multiagent system. Special attention should be
payed to communication which could impose a major bottleneck.

Concerns not Covered. We touch on a number of other concerns that are not
covered by the reference architecture.

Crosscutting Concerns. Concerns such as security, monitoring, and logging usu-
ally crosscut several architecture modules. Crosscutting concerns in multiagent
systems are hardly explored and are open research problems. An example of early
research in this direction is [I7]. That work applies an aspect-oriented software
engineering approach, aiming to integrate crosscutting concerns in an application
in a non-invasive manner. As most current research on aspect-oriented software
development, the approach of [I7] is mainly directed at the identification and
specification of aspects at the programming level. Recently, the relationship be-
tween aspects and software architecture became subject of active research, see
e.g. [AI35/14].

Human-Software Interaction. The reference architecture does not explicitly han-
dle human-software interaction. Depending on the application domain, the role
of humans in multiagent systems can be very diverse. In some applications hu-
mans can play the role of agents and interact directly—or via an intermediate
wrapper—with the application environment. In other applications, humans can
be part of the deployment context with which the multiagent system application
interacts.

3.2 Module Decomposition View Packet 2: Agent

Primary Presentation

Subsystem Module

Agent Perception
Decision Making

Communication

Elements of the View. The Agent subsystem is decomposed in three modules:
Perception, Decision Making and Communication. We discuss the responsibili-
ties of each module in turn.

Perception is responsible for collecting runtime information from the environ-
ment. The perception module supports selective perception [48]. Selective per-
ception enables an agent to direct its perception according to its current tasks.
To direct its perception agents select a set of foci and filters. Foci allow the
agent to sense the environment only for specific types of information. Sensing
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results in a representation of the sensed environment. A representation is a data
structure that represents elements or resources in the environment. The per-
ception module maps this representation to a percept, i.e. a description of the
sensed environment in a form of data elements that can be used to update the
agent’s current knowledge. The selected set of filters further reduces the percept
according to the criteria specified by the filters. While a focus enables an agent
to observe the environment for a particular type of information, a filter enables
the agent to direct its attention within the sensed information.

Decision Making is responsible for action selection. The action model of the
reference architecture is based on the influence-reaction model introduced in [I5].
This action model distinguishes between influences that are produced by agents
and are attempts to modify the course of events in the environment, and reac-
tions, which result in state changes in the environment. The responsibility of the
decision making module is to select influences to realize the agent’s tasks, and
to invoke the influences in the environment [4T].

To enable situated agents to set up collaborations, behavior-based action se-
lection mechanisms are extended with the notions of role and situated commit-
ment [A03332I47). A role represents a coherent part of an agent’s functionality
in the context of an organization. A situated commitment is an engagement of
an agent to give preference to the actions of a particular role in the commit-
ment. Agents typically commit relative to one another in a collaboration, but an
agent can also commit to itself, e.g. when a vital task must be completed. Roles
and commitments have a well-known name that is part of the domain ontology
and that is shared among the agents in the system. Sharing these names enable
agents to set up collaborations via message exchange. We explain the coordina-
tion among decision making and communication in the design rationale of this
view packet.

Communication is responsible for communicative interactions with other
agents. Message exchange enables agents to share information and to set up col-
laborations. The communication module processes incoming messages, and pro-
duces outgoing messages according to well-defined communication protocols [47].
A communication protocol specifies a set of possible sequences of messages. We
use the notion of a conversation to refer to an ongoing communicative inter-
action. A conversation is initiated by the initial message of a communication
protocol. At each stage in the conversation there is a limited set of possible mes-
sages that can be exchanged. Terminal states determine when the conversation
comes to an end.

The information exchanged via a message is encoded according to a shared
communication language. The communication language defines the format of
the messages, i.e. the subsequent fields the message is composed of. A message
includes a field with a unique identifier of the ongoing conversation to which the
message belong, fields with the identity of the sender and the identities of the
addressees of the message, a field with the performative [5] of the message, and a
field with the content of the message. Communicative interactions among agents
are based on an ontology that defines a shared vocabulary of words that agents
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use in messages. The ontology enables agents to refer unambiguously to concepts
and relationships between concepts in the domain when exchanging messages.
The ontology used for communication is typically a part of the integral ontology
of the application domain, see section [3.1]

Interface Descriptions. The interface descriptions specify how the modules
of an agent are used with one another, see Fig.[2l The interfacing with the data
repositories is discussed in section [£.11

Sense Sense Request Request Influence | Influence
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\TJ Request

Communication
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i I Agent
Send Receive
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Fig. 2. Interfaces of the agent modules

The provided Request interface of the perception module enables decision
making and communication to request a perception of the environment. To sense
the environment according to their current needs, decision making and commu-
nication pass on a focus and filter selector to the perception module. Such a
selector specifies a set of foci and filters that the perception module uses to
sense the environment selectively [48].

The provided interface of agent, Receive, delegates for processing incoming
messages to the provided Receive interface of the communication module. The
ports decouple the internals of the agent subsystem from external elements.

The perception module’s required Sense interface is delegated to the agent’s
required Sense interface. Sensing results in a representation of the environment
according to the selected foci. Similarly, the Send interface of the communication
module and the Influence interface of the decision making module are delegated
to the required interfaces of agent with the same name.
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Variation Mechanisms. This view packet provides the following variation
mechanisms:

M5

M6

Mt

M8

M9

M10

M11

Omission of the Communication module. For agents that do not commu-
nicate via message exchange, the communication module can be omitted.
An example is an ant-like agent system in which the agents communicate
via the manipulation of marks in the environment.

Definition of Foci and Focus Selectors. Foci enable agents to sense the envi-
ronment selectively. The definition of the foci in the agent system includes
the specification of the kind of data each focus targets, together with the
scoping properties of each focus. The definition of focus selectors includes
the specification of the various combinations of foci that can be used to
sense the environment.

Definition of Representations. Sensing the environment results in repre-
sentations. Representations are defined by means of data structures that
represent elements and resources in the environment. The definition of
representations must comply to the ontology defined for the domain, see
variation mechanism M3 in section Bl

Definition of Filters and Filter Selectors. Filters can be used by agents
to filter perceived data. The definition of the filters in the agent system
includes the specification of the kind of data each filter aims to filter and the
specific properties of each filter. The definition of filter selectors includes
the specification of the various combinations of filters that can be used to
filter percepts.

Definition of Influences. Influences enable agents to modify the state of
affairs in the environment. The definition of an influence includes the spec-
ification of an operation that is provided by the application environment
and that can be invoked by the agents.

Definition of Roles and Situated Commitments and Specification of an Ac-
tion Selection Mechanism. Each role in the agent system is defined by a
unique name and a description of the semantics of the role in terms of the
influences that can be selected in that role as well as the relationship of the
role to other roles in the agent system. Each situated commitment in the
agent system is defined by a unique name and a description of the semantics
of the commitment in terms of roles defined in the agent system. Situated
agents use a behavior-based action selection mechanism. Depending on the
system requirements a particular action selection mechanism has to be de-
fined. Roles and situated commitments have to be mapped onto the chosen
action selection mechanism. [32] discusses an example where roles and situ-
ated commitments are mapped onto a free-flow decision making tree.
Definition of the Communication Language and the Ontology. The com-
munication language defines the format of messages. The definition of the
communication language includes the specification of identities for agents
and conversations, the specification of the various performatives of the
language, and the format of the content of messages. The definition of
the ontology for communication includes the specification of the vocabu-
lary of words that represent the domain concepts used in messages and
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the relationships between the concepts. The ontology for communication is
typically a part of the integral domain ontology, see variation mechanism
M3 in section Bl

M12 Definition of Communication Protocols. The definition of a concrete com-
munication protocol includes the specification of various steps of the pro-
tocol, i.e. the conditions and the effects for each step in the protocol [47].
An important aspect of this latter is the activation/deactivation of situ-
ated commitments. Statecharts [I83] are one possible approach to specify
a communication protocol.

Design Rationale. Each module in the decomposition encapsulates a particu-
lar functionality of the agent. By minimizing the overlap of functionality among
modules, the architect can focus on one particular aspect of the agent’s function-
ality. Allocating different functionalities of an agent to separate modules results
in a clear design. It helps to accommodate change and to update one module
without affecting the others, and it supports reusability.

Perception on Command. Selective perception enables an agent to focus its at-
tention to the relevant aspects in the environment according to its current tasks.
When selecting actions and communicating messages with other agents, decision
making and communication typically request perceptions to update the agent’s
knowledge about the environment. By selecting an appropriate set of foci and
filters, the agent directs its attention to the current aspects of its interest, and
adapts it attention when the operating conditions change.

Coordination between Decision Making and Communication. The overall be-
havior of the agent is the result of the coordination of two modules: decision
making and communication. Decision making is responsible for selecting suit-
able influences to act in the environment. Communication is responsible for the
communicative interactions with other agents. Decision making and communi-
cation coordinate to complete the agent’s tasks. For example, agents can send
each other messages with requests for information that enable them to act more
purposefully. Decision making and communication also coordinate during the
progress of a collaboration. Collaborations are typically established via message
exchange. Once a collaboration is achieved, the communication module activates
a situated commitment. This commitment will affect the agent’s decision making
towards actions in the agent’s role in the collaboration. This continues until the
commitment is deactivated and the collaboration ends.

Ensuring that both decision making and communication behave in a coor-
dinated way requires a careful design. On the other hand, the separation of
functionality for coordination (via communication) from the functionality to per-
form actions to complete tasks has several advantages, including clear design,
improved modifiability and reusability. Two particular advantages of separating
communication from performing actions are: (1) it allows both functions to act
in parallel, and (2) it allows both functions to act at a different pace. In many
applications, sending messages and executing actions happen at different tempo.
A typical example is robotics, but it applies to any application in which the time
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required for performing actions in the environment differs significantly from the
time to communicate messages. Separation of communication from performing
actions enables agents to reconsider the coordination of their behavior while they
perform actions, improving adaptability and efficiency.

3.3 Module Decomposition View Packet 3: Application
Environment

Primary Presentation

Subsystem Module

Application Environment Representation Generator
Observation & Data Processing
Interaction
Low-Level Control
Communication Mediation
Communication Service

Synchronization & Data Processing

Elements and their Properties. The Application Environment subsystem
is decomposed in seven modules. We discuss the responsibilities of each of the
modules in turn.

The Representation Generator provides the functionality to agents for per-
ceiving the environment. When an agent senses the environment, the representa-
tion generator uses the current state of the application environment and possibly
state collected from the deployment context to produce a representation for the
agent. Agents’ perception is subject to perception laws that provide a means to
constrain perception. A perception law defines restrictions on what an agent can
sense from the environment with a set of foci.

Observation & Data Processing provides the functionality to observe the
deployment context and collect date from other nodes in a distributed setting.
The observation & data processing module translates observation requests into
observation primitives that can be used to collect the requested data from the de-
ployment context. Data may be collected from external resources in the deploy-
ment context or from the application environment instances on other nodes in a
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distributed application. Rather than delivering raw data retrieved from the
observation, the observation & data processing module can provide additional
functions to pre-process data, examples are sorting and integration of observed
data.

Interaction is responsible to deal with agents’ influences in the environment.
Agents’ influences can be divided in two classes: influences that attempt to mod-
ify state of the application environment and influences that attempt to modify
the state of resources of the deployment context. An example of the former is
an agent that drops a digital pheromone in the environment. An example of the
latter is an agent that writes data in an external data base. Agents’ influences
are subject to action laws. Action laws put restrictions on the influences invoked
by the agents, representing domain specific constraints on agents’ actions. For
influences that relate to the application environment, the interaction module
calculates the reaction of the influences resulting in an update of the state of
the application environment. Influences related to the deployment context are
passed to the Low-Level Control module.

Low-Level Control bridges the gap between influences used by agents and the
corresponding action primitives of the deployment context. Low-level control
converts the influences invoked by the agents into low-level action primitives in
the deployment context. This decouples the interaction module from the details
of the deployment context.

The Communication Mediation mediates the communicative interactions
among agents. It is responsible for collecting messages; it provides the neces-
sary infrastructure to buffer messages, and it delivers messages to the appro-
priate agents. Communication mediation regulates the exchange of messages
between agents according a set of applicable communication laws. Communica-
tion laws impose constraints on the message stream or enforce domain—specific
rules to the exchange of messages. Examples are a law that drops messages di-
rected to agents outside the communication—range of the sender and a law that
gives preferential treatment to high-priority messages. To actually transmit the
messages, communication mediation makes use of the Communication Service
module.

Communication Service provides that actual infrastructure to transmit mes-
sages. Communication service transfers message descriptions used by agents to
communication primitives of the deployment context. For example, a FIPA ACL
message [16] consists of a header with the message performative (inform, request,
propose, etc.), followed by the subject of this performative, i.e. the content of
the message that is described in a content language that is based on a shared
ontology. Such message descriptions enable a designer to express the communica-
tive interactions between agents independently of the applied communication
technology. However, to actually transmit such messages, they have to be trans-
lated into low-level primitives of a communication infrastructure provided by
the deployment context. Depending on the specific application requirements, the
communication service may provide specific communication services to enable
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the exchange of messages in a distributed setting, such as white and yellow page
services. An example infrastructure for distributed communication is Jade [7].
Specific middleware may provide support for communicative interaction in mo-
bile and ad-hoc network environments, an example is discussed in [30].

Synchronization & Data Processing synchronizes state of the application
environment with state of resources in the deployment context as well as state
of the application environment on different nodes. State updates may relate
to dynamics in the deployment context and dynamics of state in the appli-
cation environment that happens independently of agents or the deployment
context. An example of the former is the topology of a dynamic network which
changes are reflected in a network abstraction maintained in the state of the
application environment. An example of the latter is the evaporation of digital
pheromones.

Middleware may provide support to collect data in a distributed setting. An
example of middleware support for data collection in mobile and ad-hoc net-
work environments is discussed in [29]. The synchronization & data processing
module converts the resource data observed from the deployment context into
a format that can be used to update the state of the application environment.
Such conversion typically includes a processing or integration of collected re-
source data.

Interface Descriptions. The interface descriptions specify how the modules
of the application environment are used with one another, see Fig. Bl The in-
terfacing with data repositories of the application environment is discussed in
section

The Sense interface of the application environment delegates perception re-
quests to the Sense interface of the perception generator. To observe resources in
the deployment context, the perception generator’s required interface
CollectData depends on the CollectData interface that is provided by the
observation & data processing module. The required interface Observe of ob-
servation & data processing is delegated to Observe interface of the application
environment. The provided interface Collect of the application environment
delegates requests for state of the application environment to the Collect inter-
face of the observation & data processing module. The data that results from the
observation of resources in the deployment context and possible state collected
from other nodes is processed by the observation & data processing module
and passed to the perception generator that generates a representation for the
requesting agent.

For its functioning, the synchronization & data processing module requires the
interface Observe. The processing of this interface is delegated to the Observe
interface of the application environment. Synchronization & data processing pro-
vides the Collect interface to allow sharing of data among nodes in a distributed
setting. This interface depends on the Collect interface provided by the appli-
cation environment.

The Send interface of the application environment enables agents to send mes-
sages to other agents. The application environment delegates this interface to the
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Send interface of communication mediation that mediates the communicative in-
teraction. Communication mediation depends on the provided interface SendMSg
of the communication service to convert messages into a low-level format and
transmit them via the deployment context. For this latter, the communication
service delegates to the Deliver interface of the application environment that
depends on the message transfer infrastructure of the deployment context. The
Transmit interface of the communication service delegates the transmission of
messages to the Transmit interface of the application environment. The ap-
plication environment provides the Deliver interface to deliver incoming mes-
sages. The Deliver interface of the application environment delegates incoming
messages to the Deliver interface of the communication service. This latter
converts the messages into an appropriate format for agents and depends on
the DeliverMsg interface of communication mediation to deliver the messages.
The Receive interface of communication mediation delegates the delivering of
messages to the Receive interface of the application environment that passes
on the messages to the addressees. The provided interface Influence of the
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application environment enables agents to invoke influences in the environment.
For influences that attempt to modify the state of resources in the deployment
context, the interaction module’s required interface Invoke depends on the in-
terface Invoke provided by the low-level control module. This latter interface
provides the functionality to convert influences into low-level action primitives
of the deployment context. The Act interface of the low-level control module del-
egates the actions to external resources to the Act interface of the application
environment that invokes the actions in the deployment context.

Variation Mechanisms. This view packet provides the following variation
mechanisms:

M13 Omission of Observation, Synchronization, and Low-Level Control. For ap-
plications that do not interact with external resources, the observation,
synchronization, and low-level control modules can be omitted. For such
applications, the environment is entirely virtual.

M14 Omission of Communication Mediation and Communication Service. For
agent systems in which agents do not communicate via message exchange,
the modules related to message exchange can be omitted, see also variation
mechanism M5 in section

M15 Omission of Synchronization & Data Processing. For multiagent system
applications where no synchronization of state between the application
environment and the deployment context and/or between nodes is required,
the synchronization & data processing module can be omitted.

M16 Definition of Observations. Observations enable the multiagent system
to collect data from the deployment context. The definition of an ob-
servation includes the specification of the kind of data to be observed
in the deployment context together with additional properties of the
observation.

The definition of the laws for perception, interaction, and communication is
discussed in the shared data view, see section

Design Rationale. The decomposition of the application environment can be
considered in two dimensions: horizontally, i.e. a decomposition based on the
distinct ways agents can access the environment; and vertically, i.e. a decom-
position based on the distinction between the high-level interactions between
agents and the application environment, and the low-level interactions between
the application environment and the deployment context. The decomposition is
schematically shown in Fig. [l

The horizontal decomposition of the application environment consists of three
columns that basically correspond to the various ways agents can access the
environment: perception, communication, and action. An agent can sense the
environment to obtain a representation of its vicinity, it can exchange messages
with other agents, and an agent can invoke an influence in the environment
attempting to modify the state of affairs in the environment.
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The vertical decomposition of the application environment consists of two
rows. The top row deals with the access of agents to the application environment
and includes representation generator, communication mediation, and interac-
tion. The specification of activities and concepts in the top row is the same as
those used by the agents. The top row defines the various laws that constrain the
activity of agents in the environment. The bottom row deals with the interac-
tion of the application environment with the deployment context and consists of
observation and synchronization with data processing, communication service,
and low-level control. The functionality related to the low-level interactions of
the application environment includes: (1) support for the conversion of high-level
activity related to agents into low-level interactions related to the deployment
context and vice versa, and (2) support for pre-processing of resource data to
transfer the data into a higher-level representation useful to agents, (3) interac-
tion and synchronization among different nodes in a distributed setting.

The two-dimensional decomposition of the application environment yields a
flexible modularization that can be tailored to a broad family of application
domains. For instance, for applications that do not interact with an external de-
ployment context, the bottom layer of the vertical decomposition can be omitted.
For applications in which agents interact via marks in the environment but do
not communicate via message exchange, the column in the horizontal decompo-
sition that corresponds to message transfer (communication and communication
service) can be omitted.

Each module of the application environment is located in a particular col-
umn and row and is assigned a particular functionality. Minimizing the overlap
of functionality among modules, helps the architect to focus on one particular
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aspect of the functionality of the application environment. It supports reuse,
and it further helps to accommodate change and to update one module without
affecting the others.

4 Component and Connector Shared Data View

The shared data view shows how the situated multiagent system is structured
as a set of data accessors that read and write data in various shared data repos-
itories. The elements of the shared data view are data accessors, repositories,
and the connectors between the two. Data accessors are runtime components
that perform calculations that require data from one or more data repositories.
Data repositories mediate the interactions among data accessors. A shared data
repository can provide a trigger mechanism to signal data consumers of the ar-
rival of interesting data. Besides reading and writing data, a repository may
provide additional support, such as support for concurrency and persistency.
The relationship of the shared data view is attachment that determines which
data accessors are connected to which data repositories [13]. Data accessors are
attached to connectors that are attached to a data store.

The reference architecture provides two view packets of the shared data view.
First, we zoom in on the shared data view packet of agent, then we discuss the
view packet of the application environment. The data accessors in this view are
runtime instances of modules we have introduced in the module decomposition
view. We use the same names for the runtime components and the modules
(components’ names are proceeded by a colon).

4.1 C & C Shared Data View Packet 1: Agent
Primary Presentation. The primary presentation is shown in Fig.

Elements and their Properties. The data accessors of the Agent view packet
are Perception, Decision Making and Communication. These data accessors are
runtime instances of the corresponding modules described in section The
data accessors share the Current Knowledge repository.

The Current Knowledge repository contains data that is shared among the
data accessors. Data stored in the current knowledge repository refers to state
perceived in the environment, to state related to the agent’s roles and situated
commitments, and possibly other internal state that is shared among the data
accessors. The communication and decision making components can read and
write data from the repository. The perception component maintains the agent’s
knowledge of the surrounding environment. To update the agent’s knowledge of
the environment, both the communication and decision making components can
trigger the perception component to sense the environment, see the module view
of agent in section
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Interface Descriptions. Fig.[Blshows the interconnections between the current
knowledge repository and the internal components of the agent. These intercon-
nections are called assembly connectors [3]. An assembly connector ties one com-
ponent’s provided interface with one or more components’ required interfaces,
and is drawn as a lollipop and socket symbols next to each other. Unless stated
otherwise, we assume that the provided and required interfaces per assembly
connector share the same name.

The current knowledge repository exposes two interfaces. The provided in-
terface Update enables the perception component to update the agents knowl-
edge according to the information derived from sensing the environment. The
Read-Write interface enables the communication and decision making compo-
nent to access and modify the agent’s current knowledge.

Variation Mechanisms. This view packet provides four variation mechanisms:

SD1 Definition of Current Knowledge. Definition of current knowledge includes
the definition of the state of the agent and the specification of the knowl-
edge repository. The definition of the state of the agent has to comply
to the ontology that is defined for the multiagent system application, see
variation mechanism M3 in section 3.1l The specification of the knowledge
repository includes various aspects such as the specification of a policy for
concurrency, specification of possible event mechanisms to signal data con-
sumers, support for persistency of data, and support for transactions. The
concrete interpretation of these aspects depends on the specific require-
ments of the application at hand.
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Design Rationale. The shared data style decouples the various components of
an agent. Low coupling improves modifiability (changes in one element do not
affect other elements or the changes have only a local effect) and reuse (elements
are not dependent on too many other elements). Low coupled elements usually
have clear and separate responsibilities, which makes the elements better to
understand in isolation. Decoupled elements do not require detailed knowledge
about the internal structures and operations of the other elements. Due to the
concurrent access of the repository, the shared data style requires special efforts
to synchronize data access.

Both communication and decision making delegate perception requests to
the perception component. The perception component updates the agent knowl-
edge with the information derived from perceiving the environment. The current
knowledge repository makes the up-to-date information available for the com-
munication and decision making component. By sharing the knowledge, both
components can use the most actual data to make decisions.

The current knowledge repository enables the communication and decision
making components to share data and to communicate indirectly. This approach
allows both components to act in parallel and at a different pace, improving
efficiency and adaptability (see also the design rationale of the module decom-
position view of agent in section [3.2]).

An alternative for the shared data style is a design where each component en-
capsulates its own state and provides interfaces through which other elements get
access to particular information. However, since a lot of state is shared between
the components of an agent (examples are the state that is derived from per-
ceiving the environment and the state of situated commitments), such a design
would increase dependencies among the components or imply the duplication of
state in different components. Furthermore, such duplicated state must be kept
synchronized among the components.

4.2 C & C Shared Data View Packet 2: Application Environment
Primary Presentation. The primary presentation is depicted in Fig. [G

Elements and their Properties. The Application Environment consists of
various data accessors that are attached to two repositories: State and Laws. The
data accessors are runtime instances of the corresponding modules introduced
in section 3.3

The State repository contains data that is shared between the components of the
application environment. Data stored in the state repository typically includes
an abstraction of the deployment context together with additional state related
to the application environment. Examples of state related to the deployment
context are a representation of the local topology of a network, and data derived
from a set of sensors. Examples of additional state are the representation of
digital pheromones that are deployed on top of a network, and virtual marks
situated on the map of the physical environment. The state repository may also
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include agent-specific data, such as the agents’ identities, the positions of the
agents, and tags used for coordination purposes.

To perform their functionalities, interaction, synchronization & data process-
ing, and observation & data processing can read and write state of the appli-
cation environment. Representation generator, communication mediation and
communication service, and low-level control only need to read state of the state
repository to perform their functionalities.

The Laws repository contains the various laws that are defined for the applica-
tion at hand. The laws repository is divided in three sub-repositories, one with
the perception laws, one with the action laws, and one with communication laws.
Each of these sub-repositories is attached to the component responsible for the
corresponding functionality.
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Interface Descriptions. Fig. [0l shows the interconnections between the state
repositories and the internal components of the application environment.

The state repository exposes two interfaces. The provided interface Read en-
ables attached components to read state of the repository. The Read-Write
interface enables the attached components to access and modify the application
environment’s state.

The laws repository exposes three interfaces to read the various types of laws:
Read-AL, Read-PL, and Read-CL. These provided interfaces enable the attached
components to consult the respective types of laws.

Variation Mechanisms. This view packet provides one variation mechanism:

SD2 Definition of State. The definition of state includes the definition of the
actual state of the application environment and the specification of the
state repository. The state definition has to comply to the ontology that
is defined for the application domain, see variation mechanism M3 in sec-
tion Bl The specification of the state repository includes various aspects
such as the specification of a policy for concurrency, specification of pos-
sible event mechanisms to signal data consumers, support for persistency
of data, and support for transactions. As for the definition of the current
knowledge repository of an agent, the concrete interpretation of these as-
pects depends on the specific requirements of the application domain at
hand.

SD3 Definition of Action Laws. Action laws impose application specific con-
straints on agents’ influences in the environment. An action law defines
restrictions on what kinds of manipulations agents can perform in the en-
vironment for a particular influence. The constraints imposed by an action
law can be defined relative to the actual state of the environment. For ex-
ample, when an agent injects a tuple in network, the distribution of the
tuple can be restricted based on the actual cost for the tuple to propagate
along the various links of the network.

SD4 Definition of Perception Laws. Perception laws impose application specific
constraints on agents’ perception of the environment. Every perception law
defines restrictions on what can be sensed from the current state of the en-
vironment for a particular focus. The constraints imposed by a perception
law can be defined relative to the actual state of the environment. For ex-
ample, restrictions on the observation of local nodes in a mobile network
can be defined as a function of the actual distance to the nodes in the
network.

SD5 Definition of Communication Laws. Communication laws impose applica-
tion specific constraints on agents’ communicative interactions in the en-
vironment. A communication law defines restrictions on the delivering of
messages. The constraints imposed by a communication law can be defined
relative to the actual state of the environment. For example, the delivering
of a broadcast message in a network can be restricted to addressees that
are located within a particular physical area around the sender.
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Design Rationale. The motivations for applying the shared data style in the
design of the application environment are similar as for the design of an agent.
The shared data style results in low coupling between the various elements,
improving modifiability and reuse.

The state repository enables the various components of the application envi-
ronment to share state and to communicate indirectly. This avoids duplication
of data and allows different components to act in parallel.

The laws repository encapsulates the various laws as first—class elements in
the agent system. This approach avoids that laws are scattered over different
components of the system. On the other hand, explicitly modelling laws may
induce a important computational overhead. If performance is a high-ranked
quality, laws may be hard coded in the various applicable modules.

5 Component and Connector Communicating Processes
View

The communicating processes view shows the multiagent system as a set of
concurrently executing units and their interactions. The elements of the com-
municating processes view are concurrent units, repositories, and connectors.
Concurrent units are an abstraction for more concrete software elements such as
task, process, and thread. Connectors enable data exchange between concurrent
units and control of concurrent units such as start, stop, synchronization, etc.
The relationship in this view is attachment that indicates which connectors are
connected to which concurrent units and repositories [13].

The communicating processes view explains which portions of the system
operate in parallel and is therefore an important artefact to understand how
the system works and to analyze the performance of the system. Furthermore,
the view is important to decide which components should be assigned to which
processes. Actually, we present the communicating processes view as a number
of core components and overlay them with a set of concurrently executing units
and their interactions.

The reference architecture provides one view packet of the component and
connector communicating view. This view packet shows the main processes in-
volved in perception, interaction, and communication in the situated multiagent
system.

5.1 C & C Communicating Processes View Packet 1: Perception,
Interaction, and Communication

Primary Presentation. The primary presentation is shown in Fig.[7

Elements and their Properties. This view packet shows the main processes
and repositories of agent and the application environment. We make a distinction
between active processes that run autonomously, and reactive processes that are
triggered by other processes to perform a particular task.
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The discussion of the elements in this view packet is divided in four parts.
Successively, we zoom in on the communicating processes of perception, interac-
tion, and communication, and the synchronization processes of the application
environment.

Perception. The Perception Process of agent is a reactive process that can be
activated by the Decision Making Process and the Communication Process.
Once activated, the perception process requests the Representation Generator
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Process to generate a representation. The representation generator process
collects the required state from the State repository of the application environ-
ment, and optionally it requests the Observation Process to collect additional
data from the deployment context and possibly state of other nodes. State col-
lection is subject to the perception laws. The observation process returns the
observed data to the representation generator process, and subsequently the
representation generator integrates the perceived state and generates a repre-
sentation that is returned to the perception process of the agent. The perception
process converts the representation to a percept that it uses to update the agent’s
Current Knowledge. Finally, the requesting process can read the updated state
of the agent. The current knowledge repository can provide a notification mech-
anism to inform the decision making and communication process when a state
update is completed.

Interaction. The Decision Making Process is an active process of agent that
selects and invokes influences in the environment. The InteractionProcess col-
lects the concurrently invoked influences and converts them into operations. The
execution of operations is subject to the action laws of the system. Operations
that attempt to modify state of the application environment are executed by the
interaction process, operations that attempt to modify state of the deployment
context are forwarded to the Low-Level Control Process. This latter process
converts the operations into low—level interactions in the deployment context.

Communication. The Communication Process is an active process that han-
dles the communicative interactions of the agent. Newly composed messages
are passed to the Communication Mediation Process that applies the com-
munication laws and subsequently passes the messages to the Communication
Service Process. This latter process converts the messages into low—level in-
teractions that are transmitted via the deployment context. Furthermore, the
Communication Service Process collects low—level messages from the deploy-
ment context, converts the messages into a format understandable for the agents,
and forward the messages to the communication mediation process that delivers
the messages to the communication process of the appropriate agent. Messages
directed to agents that are located at the same host are directly transferred to
the appropriate agents.

Synchronization Processes in the Application Environment. The Syn-
chronization Processes are active processes that (1) monitor application spe-
cific parts of the deployment context and keep the corresponding state of the
application environment up-to-date, (2) maintain application specific dynamics
in the application environment, and (3) synchronize state among nodes according
to the requirements of the application at hand.

Variation Mechanisms. There is one variation mechanism in this view packet.

CP1 State Synchronization. The parts of the deployment context for which a
representation has to be maintained in the application environment have to
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be defined. The deployment context may provide a notification mechanism
to inform synchronization processes about changes, or the processes may
poll the deployment context according to specific time schemes. Besides, for
each activity in the application environment that happens independently of
agents, an active process has to be defined. Finally, processes to synchronize
state among nodes must be defined. Appropriate middleware may be used
to support the synchronization of state among nodes.

Design Rationale. Agents are provided with two active processes, one for de-
cision making and one for communication. This approach allows these processes
to run in parallel, improving efficiency. Communication among the processes
happens indirectly via the current knowledge repository. The perception process
is reactive, the agent only senses the environment when required for decision
making and communicative interaction. As such, the perception process is only
activated when necessary.

The application environment is provided with separate processes to collect
and process perception requests, handle influences, and provide message trans-
fer. The observation process is reactive, it collects data from the deployment
context when requested by the representation generator. The low-level control
process is also reactive, it provides its services on command of the interaction
mediation process. The communication service is reactive process that handles
the transmission of messages when new messages arrives. Finally, synchroniza-
tion processes are active processes that act largely independent of other processes
in the system. Synchronization processes monitor particular dynamics in the de-
ployment context and keep the corresponding representations up-to-date in the
state of the application environment; they maintain dynamics in the application
environment that happen independent of agents, and synchronize state among
nodes.

Active processes represent loci of continuous activity in the system. By letting
active processes run in parallel, different activities in the system can be handled
concurrently, improving efficiency. Reactive processes, on the other hand, are
only activated and occupy resources when necessary.

6 Excerpt of a Software Architecture for an AGV
Transportation System

We now illustrate how we have used the reference architecture for the archi-
tectural design of an automated transportation system for warehouse logistics
that has been developed in a joint R&D project between the DistriNet research
group and Egemin, a manufacturer of automating logistics services in warehouses
and manufactories [452]. The transportation system uses automatic guided ve-
hicles (AGVs) to transport loads through a warehouse. Typical applications
include distributing incoming goods to various branches, and distributing man-
ufactured products to storage locations. AGVs are battery-powered vehicles that
can navigate through a warehouse following predefined paths on the factory floor.
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The low-level control of the AGVs in terms of sensors and actuators such as stay-
ing on track on a path, turning, and determining the current position is handled
by the AGV control software.

6.1 Multiagent System for the AGV Transportation System

In the project, we have applied a multiagent system approach for the develop-
ment of the transportation system. The transportation system consists of two
kinds of agents: transport agents and AGV agents. Transport agents represent
tasks that need to be handled by an AGV and are located at a transport base,
i.e. a stationary computer system. AGV agents are responsible for executing
transports and are located in mobile vehicles. The communication infrastructure
provides a wireless network that enables AGV agents at vehicles to communicate
with each other and with transport agents on the transport base.

AGVs are situated in a physical environment, however this environment is very
constrained: AGVs cannot manipulate the environment, except by picking and
dropping loads. This restricts how AGV agents can exploit their environment.
Therefore, a virtual environment was introduced for agents to inhabit. This vir-
tual environment provides an interaction mediation level that agents can use as
a medium to exchange information and coordinate their behavior. The virtual
environment is necessarily distributed over the AGVs and the transport base,
i.e. a local virtual environment is deployed on each AGV and the transport base.
The local virtual environment corresponds to the application environment in the
reference architecture. State on local virtual environments is merged opportunis-
tically, as the need arises. The synchronization of the state of neighboring local
virtual environments is supported by the ObjectPlaces middleware [29J30].

6.2 Collision Avoidance

As an illustration of the software architecture of the AGV transportation sys-
tem, we take a closer look at collision avoidance. AGV agents avoid collisions by
coordinating with other agents through the virtual environment. AGV agents
mark the path they are going to drive in their environment using hulls. The
hull of an AGV demarcates the physical area the AGV occupies in the virtual
environment. A series of hulls then describes the physical area an AGV occupies
along a certain path. If the area is not marked by other hulls (the AGVs own
hulls do not intersect with others), the AGV can move along and actually drive
over the reserved path. In case of a conflict, the virtual environment resolves the
conflict taking into account the priorities of the transported loads to determine
which AGV can move on. Afterwards, the AGV agent removes the markings in
the virtual environment. Fig. [§ shows the primary presentation of the communi-
cating processes view for collision avoidance. The communicating processes view
presents the basic layers of the AGV control system and overlay them with the
main processes and repositories involved in collision avoidance.

The top layer consists of the AGV agent that is responsible for controlling
an AGV vehicle. The main functionalities of an AGV agent are: (1) obtaining
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transport tasks; (2) efficiently and safely handling jobs; (3) maintaining the AGV
machine (charging battery, calibrating etc.).

The middle layer consists of the local virtual environment that is responsible
for (1) representing and maintaining relevant state of the physical environment
and the AGV vehicle; (2) representing additional state for coordination purposes;
(3) synchronization of state with neighboring local virtual environments.

The bottom layer consists of the ObjectPlaces middleware and the E’nsor
software. The ObjectPlaces middleware enables communication with software
systems on other nodes, providing a means to synchronize the state of the local
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virtual environment with the state of local virtual environments on neighboring
nodes. E’'nsor is the low-level control software of the AGV vehicle. The E’nsor
software provides an interface to command the AGV vehicle and to read out
its status. The E’nsor interface defines instructions to move the vehicle over a
particular distance and possibly execute an action at the end of the trajectory
such as picking up a load. The physical execution of the commands is managed
by E’nsor. As such, the AGV agent can control the movement and actions of the
AGYV at a fairly high-level of abstraction.

We now discuss the main architectural elements involved in collision avoid-
ance in turn.

The Perception Process is part of the agent’s perception component, and
corresponds to the perception process in the reference architecture. If the per-
ception process receives a request for perception, it requests the up-to-date data
from the local virtual environment and updates the agent’s current knowledge.

The Perception Generator Process is part of the representation generator
and corresponds to the representation generator process in the reference archi-
tecture. This process is responsible for handling perception requests, it derives
the requested data from the state repository of the local virtual environment
according to the given foci. An observation & data processing process (as in the
the reference architecture) is absent in the local virtual environment. State from
the deployment context and other nodes that is needed by the AGV agent is
maintained by dedicated synchronization processes.

Collision Avoidance Process is part of the AGV agent’s decision making
component and is a helper process of the decision making process. The collision
avoidance process calculates the required hull projection for collision avoidance,
based on the most up-to-date data, and projects the hull in local virtual envi-
ronment. Once the hull is locked, the collision avoidance process invokes a move
command in the local virtual environment.

The Action Manager Process is part of the interaction component and cor-
responds to the interaction process in the reference architecture. The action
manager process collects the influences invoked in the local virtual environment
and dispatches them to the applicable processes. For a hull projection, the action
manager process passes the influence to the collision avoider process of the local
virtual environment. A move influence is passed to the E’nsor process.

Objectplaces repository is a repository of data objects in the ObjectPlaces
middleware that contains the hulls the AGV agent has requested.

NodeProperties is a data repository in the middleware in which relevant prop-
erties of the node are maintained, an example is the AGV’s current position.
Maintenance of node properties in the repository is handled by the Property
Maintainer Process. This process is a an instance of a synchronization pro-
cess of the local virtual environment. The data objects of the NodeProperties
repository are used by the middleware to synchronize the state among local vir-
tual environment on neighboring nodes. For example, the current position in the
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node properties repository is used by the ObjectPlaces middleware to determine
whether the AGV is within collision range of other AGVs.

The Collision Avoider is a helper process of the action manager process that
projects the requested hull in the objectplaces repository and initiates the colli-
sion avoidance protocol in the middleware.

The Protocol Interaction Process is a process of the ObjectPlaces middle-
ware that is responsible for executing the mutual exclusion protocol for collision
avoidance with the AGVs in collision range. This process maintains the state of
the agent’s hull in the objectplaces repository.

The Hull Maintainer Process and Position Maintainer Process are part
of the synchronization component. These processes are application-specific in-
stances of synchronization processes in the reference architecture. The hull main-
tainer process monitors the hull object in the objectplaces repository and keeps
the state of the hull in the state repository of the local virtual environment con-
sistent. The position maintainer process maintains in a similar way the actual
position of the AGV vehicle.

Finally, the E’nsor Process is part of E’'nsor and corresponds to a low-level
control process in the reference architecture. The E’nsor process (1) periodically
provides updates of the vehicles physical state (such as position and battery sta-
tus), and (2) translates the high-level actions from the action manager process
into low-level commands for the vehicle actuators.

7 Related Work

In this section, we discuss a number of representative reference architectures and
reference models for multiagent systems.

7.1 PROSA: Reference Architecture for Manufacturing Systems

[49] defines a reference architecture as a set of coherent engineering and design
principles used in a specific domain. PROSA—i.e. an acronym for Product—
Resource—Order—Staff Architecture—defines a reference architecture for a family
of coordination and control application, with manufacturing systems as the main
domain. These systems are characterized by frequent changes and disturbances.
PROSA aims to provide the required flexibility to cope with these dynamics.
The PROSA reference architecture [I1I36] is built around three types of basic
agents: resource agent, product agent, and order agent. A resource agent con-
tains a production resource of the manufacturing system, and an information
processing part that controls the resource. A product agent holds the know-how
to make a product with sufficient quality, it contains up-to-date information on
the product life cycle. Finally, an order agent represents a task in the manufac-
turing system, it is responsible for performing the assigned work correctly and
on time. The agents exchange knowledge about the system, including process
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knowledge (i.e. how to perform a certain process on a certain resource), produc-
tion knowledge (i.e. how to produce a certain product using certain resources),
and process execution knowledge (i.e. information and methods regarding the
progress of executing processes on resources). Staff agents are supplementary
agents that can assist the basic agents in performing their work. Staff agents al-
low to incorporate centralized services (e.g, a planner or a scheduler). However,
staff agents only give advice to basic agents, they do not introduce rigidity in
the system.

The PROSA reference architecture uses object-oriented concepts to model
the agents and their relationships. Aggregation is used to represent a cluster
of agents that in turn can represent an agent at a higher level of abstraction.
Specialization is used to differentiate between the different kinds of resource
agents, order agents, and product agents specific for the manufacturing system
at hand.

The target domain of PROSA is a sub-domain of the target domain of the
reference architecture for situated multiagent systems. As such, the PROSA
reference architecture is more specific and tuned to its target domain. The spec-
ification of the PROSA reference architecture is descriptive. PROSA specifies the
responsibilities of the various agent types in the system and their relationships,
but abstracts from the internals of the agents. As a result, the reference archi-
tecture is easy to understand. Yet, the informal specification allows for different
interpretations. An example is the use of object-oriented concepts to specify re-
lationships between agents. Although intuitive, in essence it is unclear what the
precise semantics is of notions such as “aggregation” and “specialization” for
agents. What are the constraints imposed by such a hierarchy with respect to
the behavior of agents as autonomous and adaptive entities? Without a rigorous
definition, such concepts inevitable leads to confusion and misunderstanding.

[21] presents an interesting extension of PROSA in which the environment
is exploited to obtain BDI (Believe, Desire, Intention [27]) functionality for the
various PROSA agents. To avoid the complexity of BDI-based models and the
accompanying computational load, the agents delegate the creation and main-
tenance of complex models of the environment and other agents to the environ-
ment. The approach introduces the concept of “delegate multiagent system”. A
delegate multiagent system consists of light-weight agents which can be issued
by the different PROSA agents. These ant-like agents can explore the environ-
ment, bring relevant information back to their responsible agent, and put the
intentions of the responsible agent as information in the environment. This al-
lows delegate multiagent systems of different agents to coordinate by aligning
or adapting the information in the environment according to their own tasks.
A similar idea was proposed by Bruecker in [I0], and has recently further been
elaborated by Parunak and Brueckner, see [20]. The use of the environment
in the work of [2T] is closely connected to our perspective on the role of the
environment as an exploitable design abstraction. The main challenge is now
to develop an architecture that integrates the BDI functionality provided by a
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delegate multiagent system with the architecture of the cognitive agent that
issues the delegate multiagent system in the environment.

7.2 Aspect-Oriented Agent Architecture

In [I7], Garcia et al. observe that several agent concerns such as autonomy,
learning, and mobility crosscut each other and the basic functionality of the
agent. The authors state that existing approaches that apply well-known pat-
terns to structure agent architectures—an example is the layered architecture
of Kendall [22]—fail to cleanly separate the various concerns. This results in
architectures that are difficult to understand, reuse, and maintain. To cope with
the problem of crosscutting concerns, the authors propose an aspect-oriented
approach to structure agent architectures.

The authors make a distinction between basic concerns of agent architectures,
and additional concerns that are optional. Basic concerns are features that are
incorporated by all agent architectures and include knowledge, interaction, adap-
tation, and autonomy. Examples of additional concerns are mobility, learning,
and collaboration. An aspect-oriented agent architecture consists of a “kernel”
that encapsulates the core functionality of the agent (essentially the agent’s in-
ternal state), and a set of aspects [24]. Each aspect modularizes a particular
concern of the agent (basic and additional concerns). The architectural elements
of the aspect-oriented agent architecture provide two types of interfaces: regular
and crosscutting interfaces. A crosscutting interface specifies when and how an
architectural aspect affects other architectural elements. The authors claim that
the proposed approach provides a clean separation between the agent’s basic
functionality and the crosscutting agent properties. The resulting architecture
is easier to understand and maintain, and improves reuse.

State-of-the-art research in aspect-oriented software development is mainly
directed at the specification of aspects at the programming level, and this is
the same for the work of Garcia and his colleagues. The approach has been
developed bottom up, resulting in specifications of aspects at the architectural
level that mirror aspect-oriented implementation techniques. The notion of cross-
cutting interface is a typical example. Unfortunately, a precise semantics of
“when and how an architectural aspect affects other architectural elements” is
lacking.

The aspect-oriented agent architecture applies a different kind of modular-
ization as we did in the reference architecture for situated multiagent systems.
Whereas a situated agent in the reference architecture is decomposed in func-
tional building blocks, Garcia and his colleagues take another perspective on
the decomposition of agents. The main motivation for the aspect-oriented agent
architecture is to separate different concerns of agents aiming to improve under-
standability and maintenance. Yet, it is unclear whether the interaction of the
different concerns in the kernel (feature interaction [12]) will not lead to similar
problems the approach initially aimed to resolve. Anyway, crosscutting concerns
in multiagent systems are hardly explored and provide an interesting venue for
future research.
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7.3 Architectural Blueprint for Autonomic Computing

Autonomic Computing is an initiative started by IBM in 2001. Its ultimate aim
is to create self-managing computer systems to overcome their growing complex-
ity [23]. IBM has developed an architectural blueprint for autonomic comput-
ing [I]. This architectural blueprint specifies the fundamental concepts and the
architectural building blocks used to construct autonomic systems.

The blueprint architecture organizes an autonomic computing system into
five layers. The lowest layer contains the system components that are managed
by the autonomic system. System components can be any type of resource, a
server, a database, a network, etc. The next layer incorporates touchpoints,
i.e. standard manageability interfaces for accessing and controlling the man-
aged resources. Layer three constitutes of autonomic managers that provide the
core functionality for self-management. An autonomic manager is an agent-like
component that manages other software or hardware components using a con-
trol loop. The control loop of the autonomic manager includes functions to
monitor, analyze, plan and execute. Layer four contains autonomic managers
that compose other autonomic managers. These composition enables system-
wide autonomic capabilities. The top layer provides a common system manage-
ment interface that enables a system administrator to enter high-level policies
to specify the autonomic behavior of the system. The layers can obtain and
share knowledge via knowledge sources, such as a registry, a dictionary, and a
database.

We now briefly discuss the architecture of an autonomic manager, the most
elaborated part in the specification of the architectural blueprint. An autonomic
manager automates some management function according to the behavior de-
fined by a management interface. Self-managing capabilities are accomplished
by taking an appropriate action based on one or more situations that the auto-
nomic manager senses in the environment. Four architectural elements provide
this control loop: (1) the monitor function provides the mechanisms that collect,
aggregate, and filter data collected from a managed resource; (2) the analyze
function provides the mechanisms that correlate and model observed situations;
(3) the plan function provides the mechanisms that construct the actions needed
to achieve the objectives of the manager; and (4) the execute function provides
the mechanisms that control the execution of a plan with considerations for
dynamic updates. These four parts work together to provide the management
functions of the autonomic manager.

Although presented as architecture, to our opinion, the blueprint describes a
reference model. The discussion mainly focusses on functionality and relation-
ships between functional entities. The specification of the horizontal interaction
among autonomic managers is lacking in the model. Moreover, the functional-
ity for self-management must be completely provided by the autonomic man-
agers. Obviously, this results in complex internal structures and causes high
computational loads.
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The concept of application environment in the reference architecture for
situated multiagent systems provides an interesting opportunity to manage com-
plexity, yet, it is not part of the IBM blueprint. The application environment
could enable the coordination among autonomic managers and provide support-
ing services. Laws embedded in the application environment could provide a
means to impose rules on the autonomic system that go beyond individual au-
tonomic managers.

7.4 A Reference Model for Multiagent Systems

In [25], Modi et al. present a reference model for agent-based systems. The
aim of the model is fourfold: (1) to establish a taxonomy of concepts and defini-
tions needed to compare agent-based systems; (2) to identify functional elements
that are common in agent-based systems; (3) to capture data flow dependencies
among the functional elements; and (4) to specify assumptions and requirements
regarding the dependencies among the elements.

The model is derived from the results of a thorough study of existing agent-
based systems, including Cougaar [19], Jade [7], and Retsina [34]. The authors
used reverse engineering techniques to perform an analysis of the software sys-
tems. Static analysis was used to study the source code of the software, and
dynamic analysis to inspect the system during execution. Key functions identi-
fied are directory services, messaging, mobility, inter-operability services, etc.

Starting from this data a preliminary reference model was derived for agent-
based systems. The authors describe the reference model by means of a layered
view and a functional view. The layered view is comprised of agents and their
supporting framework and infrastructure which provide services and operating
context to the agents. The model defines framework, platform, and host layers,
which mediate between agents and the external environment. The functional
view presents a set of functional concepts of agent-based systems. Example func-
tionalities are administration (instantiate agents, allocate resources to agents,
terminate agents), security (prevent execution of undesirable actions by enti-
ties from within or outside the agent system), conflict management (facilitate
and enable the management of interdependencies between agents activities), and
messaging (enable information exchange between agents).

The reference model in an interesting effort towards maturing the domain.
In particular, the reference model aims to be generic but does not make any
recommendation about how to best engineer an agent-based system. Putting
the focus on abstractions helps to resolve confusion in the domain and facilitates
acquisition of agent technology in practice.

Yet, since the authors have investigated only systems in which agents commu-
nicate through message exchange, the resulting reference model is biased towards
this kind of agent systems. The concept of environment as a means for informa-
tion sharing and indirect coordination of agents is absent. On the other hand, it
is questionable whether developing one common reference model for the broad
family of agent-based system is desirable.
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8 Conclusions

In this paper, we presented a reference architecture for situated multiagent
systems. The general goal of the reference architecture is to support the ar-
chitectural design of self-managing applications. Concrete contributions are: (1)
the reference architecture defines how various mechanisms of adaptivity for sit-
uated multiagent systems are integrated in one architecture; (2) the reference
architecture provides a blueprint for architectural design, it facilitates deriving
new software architectures for systems that share its common base; and (3) the
reference architecture reifies the knowledge and expertise we have acquired in
our research, it offers a vehicle to study and learn the advanced perspective on
situated multiagent systems we have developed in our research.

We presented the reference architecture by means of three views that describe
the architecture from different perspectives. Views are presented as a number of
view packets. A view packet focusses on a particular part of the reference archi-
tecture. We gave a primary presentation of each view packet and we explained
the properties of the architectural elements. Besides, each view packet is provided
with a number of variation mechanisms and a design rationale. Variation mech-
anisms describe how the view packet can be applied to build concrete software
architectures. The design rationale explains the underlying design choices of the
view packet and the quality attributes associated with the various view packets.
[37] provides a detailed formal specification of the various architectural elements.

We illustrated how we have used the reference for the architectural design of
an AGV transportation system. In particular, we showed how a set of abstractly
defined processes in the reference architecture are instantiated to provide the
functionality for collision avoidance.

The reference architecture serves as a blueprint for developing concrete soft-
ware architectures. It integrates a set of architectural patterns architects can
draw from during architectural design. However, the reference architecture is
not a ready-made cookbook for architectural design. It offers a set of reusable
architectural solutions to build software architectures for concrete applications.
Yet, applying the reference architecture does not relieve the architect from diffi-
cult architectural issues, including the selection of supplementary architectural
approaches to deal with specific system requirements. We consider the reference
architecture as a guidance for architectural design that offers a reusable set of
architectural assets for building software architectures for concrete applications.
Yet, this set is not complete and needs to be complemented with additional
architectural approaches.
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