
Architecture-Centric Software Development of

Situated Multiagent Systems

Danny Weyns and Tom Holvoet

DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200 A, B-3001 Leuven, Belgium
{danny.weyns,tom.holvoet}@cs.kuleuven.be

Abstract. A multiagent system (MAS) structures a software system
as a set of autonomous agents that interact through a shared environ-
ment. Software architecture is generally considered as the structures of
a system which comprise software elements and the relationships among
the elements. So there is a clear connection between MAS and software
architecture. In our research, we study situated MAS, i.e. systems in
which agents have an explicit position in the environment. We apply
situated MAS to domains that are characterized by highly dynamic op-
erating conditions and an inherent distribution of resources. We use an
architecture-centric approach for developing such MAS. From our expe-
riences with building various applications, we have developed a reference
architecture for situated MAS. The reference architecture provides an
asset base architects can draw from when developing new systems that
share the common base of the reference architecture. In this paper, we
explain our perspective on architecture-centric software development of
MAS. We give an overview of the reference architecture and we show
an excerpt of the software architecture of an industrial application in
which we have used the reference architecture. The reference architec-
ture shows how knowledge and experience with MAS can be documented
and matured in a form that has proven its value in mainstream software
engineering. We believe that this integration is a key to industrial adop-
tion of MAS.

1 Introduction

Five years of application-driven research taught us that there is a close connec-
tion between multiagent systems (MAS) and software architecture. Our perspec-
tive on the essential purpose of MAS is as follows:

A multiagent system provides the software to solve a problem by structur-
ing the system as a number of interacting autonomous entities (agents)
embedded in an environment in order to achieve the functional and qual-
ity requirements of the system.

This perspective states that a MAS provides the software to solve a problem.
In particular, a MAS structures the system as a number of interacting agents

G. O’Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 62–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Architecture-Centric Software Development of Situated Multiagent Systems 63

embedded in an environment. The purpose of the system is to achieve the re-
quirements of the system. This is exactly what software architecture is about.
[6] defines software architecture as: “the structure or structures of the system,
which comprise software elements, the externally visible properties of those el-
ements, and the relationships among them.” Software elements (or in general
architectural elements) provide the functionality of the system, while the re-
quired quality attributes are primarily achieved through the structures of the
software architecture.

As such, MAS are in essence a family—yet a large family—of software archi-
tectures. Based on the problem analysis that yields the functional and quality
attribute requirements of the system, the architect may or may not choose for a
MAS-based solution. Quality attribute requirements such as flexibility, openness,
and robustness may be arguments for the designer to choose for a MAS software
architecture. As such, we consider MAS as one valuable family of approaches
to solve software problems in a large spectrum of possible ways to solve prob-
lems. Typical architectural elements of MAS software architectures are agents,
coordination infrastructure, resources, services, etc. The relationships between
the elements are very diverse, ranging from environment mediated interaction
between cooperative agents via digital pheromone trails to complex negotiation
protocols in a society of self-interested agents. In short, MAS are a rich family
of architectural approaches with specific characteristics, useful for a diversity
of challenging application domains. By considering MAS essentially as software
architecture, MAS gets a clear and prominent role in the software development
process paving a way to integrate MAS with mainstream software engineering.

Architecture-Centric Software Development of Situated MAS. In our
research, we study situated MAS, i.e. systems in which agents have an explicit
position in the environment. We apply situated MAS to domains that are char-
acterized by highly dynamic operating conditions and an inherent distribution
of resources. We use an architecture-centric approach for developing such MAS.
From our experiences with building various applications, we have developed a
reference architecture for situated MAS. The reference architecture provides an
asset base architects can draw from when developing new systems that share
the common base of the reference architecture. In this paper, we explain our
perspective on architecture-centric software development of MAS. We give an
overview of the reference architecture for situated MAS and we show an excerpt
of the software architecture of an industrial application in which we have used
the reference architecture.

Overview. The paper is structured as follows. We start with a brief introduction
of architecture-centric software development in general. Next, in Sect. 3 we give
a high-level overview of the reference architecture for situated MAS. Section 4
shows an excerpt of the software architecture of an industrial AGV transporta-
tion system in which we have used the reference architecture for architectural
design. Section 5 discusses related work, and in Sect. 6 we draw conclusions.

64 D. Weyns and T. Holvoet

2 Architecture-Centric Software Development

To understand our perspective on software engineering of MAS, we give a brief
overview of architecture-centric software development in general. We use the
evolutionary delivering life cycle [26,6], see Fig. 1. This life cycle model situates
architectural design in the centre of the development activities. The main idea
of the model is to support incremental software development and to incorporate
early feedback from the stakeholders. The life-cycle consists of two main phases:
developing the core system and delivering the final software product.

Fig. 1. Architectural design in the software development life cycle

In the first phase the core system is developed. This phase includes four ac-
tivities: defining a domain model, performing a system requirements analysis,
designing the software architecture, and developing the core system. Require-
ments analysis includes the formulation of functional requirements of the system
as well as eliciting and prioritizing of the quality attributes requirements. De-
signing the software architecture includes the design and documentation of the
software architecture, and an evaluation of the architecture. The development
of the core system includes detailed design, implementation and testing. The
software engineering process is an iterative process, the core system is developed
incrementally, passing multiple times through the different stages of the develop-
ment process. Fig. 1 shows how architectural design iterates with requirements

Architecture-Centric Software Development of Situated Multiagent Systems 65

analysis on the one hand, and with the development of the core system on the
other hand. The output of the first phase is a domain model, a list of system
requirements, a software architecture, and an implementation of the core of the
software system.

In the second phase, subsequent versions of the system are developed until the
final software product can be delivered. In principle there is no feedback loop
from the second to the first phase although in practice specific architectural
refinements may be necessary.

We now briefly look at architectural design and the activities it directly iter-
ates with: requirements analysis and developing the core system.

Requirements Analysis. Gathering system requirements includes the elicita-
tion of functional requirements as well as eliciting and prioritizing of the quality
attributes requirements. Functional requirements of a system are typically ex-
pressed as use cases [25]. A use case lists the steps, necessary to accomplish a
functional goal for an actor that uses the system. In our research, we also use
scenarios that describe interactions among parts in the system—rather than in-
teractions that are initiated by an external actor. An example is a scenario that
describes the requirement of collision avoidance of automatic guided vehicles
on crossroads. For the expression of quality requirements we use system-specific
quality attribute scenarios [5]. A quality attribute scenario consists of three parts:
(1) a stimulus: an internally or externally generated condition that affects (a part
of) the system and that needs to be considered when it arrives at the system; (2)
a context: the conditions under which the stimulus occurs; (3) a response: the
activity that is undertaken—through the architecture—when the stimulus ar-
rives. The response should be measurable so that the requirement can be tested.
Here is an example of a quality attribute scenario:

An Automatic Guided Vehicle (AGV) gets broken and blocks a path under
normal system operation. Other AGVs have to record this, choose an
alternative route—if available—and continue their work.

The stimulus in this example is “An Automatic Guided Vehicle gets broken and
blocks a path”, the context is “under normal system operation”, and the response
is “other AGVs have to record this, choose an alternative route—if available—
and continue their work”. Quality attribute scenarios provide a means to trans-
form vaguely formulated qualities such as “the system shall be modifiable” or
“the system shall exhibit acceptable flexibility” into concrete expressions. To
elicit and prioritize quality attribute scenarios, we use utility trees [14]. An util-
ity tree compels the architect and other stakeholders involved in a system to
define the relevant quality requirements precisely. An utility tree consists of four
levels. The root node of the tree is utility expressing the overall quality of the
system. High-level quality attributes form the second level of the tree. Each qual-
ity attribute is further refined in the third level. Finally, the leaf nodes of the
tree are the quality attribute scenarios. Eah scenario is assigned a ranking that
expresses its priority relatively to the other scenarios. Criteria for prioritization
include the importance of the scenario to the success of the system, and the

66 D. Weyns and T. Holvoet

difficulty to achieve the scenario. It is clear that the most important scenarios
are those that have a high ranking on both criteria. [8] shows an example of a
utility tree for the automatic transportation system we discuss in section 4.

Architectural Design. Architectural design includes the design and documen-
tation of the software architecture, and an evaluation of the architecture (see
Fig. 1).

Design. Designing a software architecture is moving from system requirements to
architectural decisions. The various requirements are achieved by architectural
decisions that are based on architectural approaches. One common architectural
approach are architectural patters [31]. An architectural pattern is a description
of architectural elements and their relationships that has proven to be useful
for achieving particular qualities. Examples of architectural patterns are lay-
ers and blackboard. In our research, we have developed a reference architecture
for MAS as a reusable architectural approach. This reference architecture in-
tegrates a set of architectural patterns that have proven their value in various
MAS applications we have studied and built. A reference architecture provides
an integrated set of architectural patterns the architect can draw from to select
suitable architectural solutions.

Architectural design requires a systematic approach to develop a software
architecture that meets the required functionality and satisfies the quality re-
quirements. In our research, we use techniques from the Attribute Driven Design
(ADD [10,6]) method to design the architecture for a software system with a
reference architecture. ADD is a decomposition method that is based on under-
standing how to achieve quality goals through proven architectural approaches.
Usually, the architect starts from the system as a whole and then iteratively
refines the architectural elements, until the elements are sufficiently fine-grained
to start detailed design and implementation. At that point, the software archi-
tecture becomes a prescriptive plan for construction of the system that enables
effective satisfaction of the systems functional and quality requirements [21,13].

A reference architecture serves as a blueprint to guide the architect through
the decomposition process. In particular, the ADD process can be used to iter-
atively refine the software architecture, and the reference architecture can serve
as a guidance in this decomposition process. In addition, common architectural
approaches have to be applied to refine and extend architectural elements when
necessary according to the requirements of the system at hand.

Documentation. A software architecture is described by different views. Each
view belongs to a viewtype [13]. A viewtype defines the elements and relation-
ship used to describe the architecture of a software system from a particular
perspective. We use three different viewtypes:

1. The module viewtype: views in this viewtype document a system’s principal
units of implementation.

2. The component-and-connector viewtype: views in this viewtype document
the system’s units of execution.

Architecture-Centric Software Development of Situated Multiagent Systems 67

3. The deployment viewtype: views in this viewtype document the relationships
between a system’s software and its development and execution environment.

Documenting a software architecture comes down to documenting the relevant
views of the software architecture for the application at hand. Each view is
documented by means of a number of view packets [13]. A view packet is a small,
relatively self-contained bundle of information of the reference architecture.

Evaluation. A software architecture is the foundation of a software system, it
represents a system’s earliest set of design decisions. Due to its large impact on
the development of the system, it is important to verify the architecture as soon
as possible. Modifications in early stages of the design are cheap and easy to
carry out. Deferring evaluation might require expensive changes or even result
in a system of inferior quality.

The evaluation of software architecture is an active research topic, see e.g.
[4,27]. In our research, we use the Architectural Tradeoff Analysis Method [14]
(ATAM). ATAM is a well-established method for software architecture evalua-
tion developed at the Software Engineering Institute [2]. The ATAM incites the
stakeholders to articulate specific quality goals and to prioritize conflicting goals;
it forces the architect to provide a clear explanation and documentation of the
software architecture; and especially it uncovers problems with the architecture
that can be used to improve the quality of the software architecture in an early
stage of the development cycle. An ATAM evaluation produces the following
results:

• A prioritized list of quality attribute requirements in the form of a quality
attribute utility tree.

• A mapping of architectural approaches to quality attributes. The analysis of
the architecture exposes how the architecture achieves—or fails to achieve—
the important quality attribute requirements.

• Risks and non-risks. Risks are potentially problematic architectural deci-
sions, non-risks are good architectural decisions.

• Sensitivity points and tradeoff points. A sensitivity point is an architectural
decision that is critical for achieving a particular quality attribute. A tradeoff
point is an architectural decision that affects more than one attribute, it is
a sensitivity point for more than one attribute.

[9] discusses our experiences with ATAM for the application discussed in Sect. 4.

Developing the Core System. The development of the core system includes
detailed design, implementation and testing. The software architecture defines
constraints on detailed design and implementation, it describes how the imple-
mentation must be divided into elements and how these elements must interact
with one another to fulfil the system requirements. On the other hand, a soft-
ware architecture does not define an implementation, many fine-grained design
decisions are left open by the architecture and must be completed by designers
and developers. For some tasks established techniques can be used such as design
patterns or well-know algorithms. However, other—MAS specific—tasks require

68 D. Weyns and T. Holvoet

dedicated design guidelines, e.g. the detailed design of an agent communication
language or a pheromone infrastructure.

3 Reference Architecture for Situated Multiagent
Systems

In our research, we study the engineering of software systems with the following
main characteristics and requirements:

• Stakeholders of the systems (users, project managers, architects, developers,
maintenance engineers, etc.) have various—often conflicting—demands on
the quality of the software. Important quality requirements are flexibility
(adapt to variable operating conditions) and openness (cope with parts that
come and go during execution).

• The software systems are subject to highly dynamic and changing operat-
ing conditions, such as dynamically changing workloads and variations in
availability of resources and services. An important requirement of the soft-
ware systems is to manage the dynamic and changing operating conditions
autonomously.

• Global control is hard to achieve. Activity in the systems is inherently lo-
calized, i.e. global access to resources is difficult to achieve or even infeasi-
ble. The software systems are required to deal with the inherent locality of
activity.

Example domains are mobile and ad-hoc networks, sensor networks, automated
transportation and traffic control systems, and manufacturing control.

To deal with these requirement we apply the paradigm of situated MAS.
During the last five years, we have developed several mechanisms of adaptivity
for situated MAS, including selective perception [46], protocol-based commu-
nication [45], behavior-based decision making with roles and situated commit-
ments [33], and laws that mediate the activities of agents in the environment [38].
We have applied these mechanisms in various applications, ranging from exper-
imental simulations [37,39,36] and prototypical robot applications [44,33] up to
an industrial transportation system for automatic guided vehicles [43,40,9].

Based on these experiences, we have developed a reference architecture for
situated MAS. Motivations for the reference architecture are: (1) it integrates
the different mechanisms for adaptivity. It defines how the functionalities of the
various mechanisms are allocated to software elements of agents and the envi-
ronment and how these elements interact with one another, (2) it provides a
reusable design artifact, the reference architecture facilitates deriving new soft-
ware architectures for systems that share the common base more reliably and
cost effectively, and (3) the reference architecture embodies the knowledge and
expertise we have acquired during our research. It conscientiously documents
the know-how obtained from this research. As such, the reference architecture
offers a vehicle to study and learn the advanced perspective on situated MAS
we have developed.

Architecture-Centric Software Development of Situated Multiagent Systems 69

Fig. 2. Top-level module decomposition of a situated MAS

Fig. 2 shows the top-level module decomposition of the reference architecture
of situated MAS that shows the main software units in the system.

A situated multiagent system is decomposed in two basic modules: Agent and
Application Environment.

Agent is an autonomous problem solving entity in the system. An agent encap-
sulates its state and controls its behavior. The responsibility of an agent is to
achieve its design objectives, i.e. to realize the application specific goals it is
assigned. Agents are situated in an environment which they can perceive and
in which they can act and interact with one another. Agents are able to adapt
their behavior according to the changing circumstances in the environment. A
situated agent is a cooperative entity. The overall application goals result from
interaction among agents, rather than from sophisticated capabilities of individ-
ual agents.

A concrete MAS application typically consists of agents of different agent
types. Agents of different agent types typically have different capabilities and
are assigned different application goals.

The Application Environment is the part of the environment that has to be
designed for a concrete MAS application. The application environment enables
agents to share information and to coordinate their behavior. The core respon-
sibilities of the application environment are:

• To provide access to external entities and resources.
• To enable agents to perceive and manipulate their neighborhood, and to

interact with one another.
• To mediate the activities of agents. As a mediator, the environment not only

enables perception, action and interaction, it also constrains them.

70 D. Weyns and T. Holvoet

The application environment provides functionality to agents on top of the de-
ployment context. The deployment context consists of the given hardware and
software and external resources such as sensors and actuators, a printer, a net-
work, a database, a web service, etc.

As an illustration, a peer-to-peer file sharing system is deployed on top of
a deployment context that consists of a network of nodes with files and possi-
bly other resources. The application environment enables agents to access the
external resources, shielding low-level details. Additionally, the application en-
vironment may provide a coordination infrastructure that enables agents to co-
ordinate their behavior. E.g., the application environment of a peer-to-peer file
share system can offer a pheromone infrastructure to agents that they can use
to dynamically form paths to locations of interest.

Thus, we consider the environment as consisting of two parts, the deploy-
ment context and the application environment [42]. The internal structure of
the deployment context is not considered in the reference architecture. For a
distributed application, the deployment context consists of multiple processors
deployed on different nodes that are connected through a network. Each node
provides an application environment to the agents located at that node. Depend-
ing on the specific application requirements, different application environment
types may be provided. For some applications, the same type of application envi-
ronment subsystem is instantiated on each node. For other applications, specific
types are instantiated on different nodes, e.g., when different types of agents are
deployed on different nodes.

In the next section, we zoom in on the collaborating components view of the
reference architecture. For a description of other architectural views of the refer-
ence architecture and a formal specification of the various architectural elements
we refer to [34].

3.1 Collaborating Components View Packets

The collaborating components view shows the MAS or parts of it as a set of
interacting runtime components that use a set of shared data repositories to
realize the required system functionalities. The elements of the collaborating
components view are:

• Runtime components. Runtime components achieve a part of the system
functionality. Runtime components are instances of modules described in
the module decomposition view.

• Data repositories. Data repositories enable multiple runtime components to
share data. Data repositories correspond to the shared data repositories de-
scribed in the component and connector shared data view.

• Component–repository connectors. Component–repository connectors con-
nect runtime components which data repositories. These connectors deter-
mine which runtime components are able to read and write data in the
various data repositories of the system.

• Component–component connectors. Collaborating components require func-
tionality from one another and provide functionality to one another.

Architecture-Centric Software Development of Situated Multiagent Systems 71

Component–component connectors enable runtime components to request
each other to perform a particular functionality.

The collaborating components view is an excellent vehicle to learn the runtime
behavior of a situated MAS. The view shows the data flows between runtime
components and the interaction with data stores, and it specifies the function-
alities of the various components in terms of incoming and outgoing data flows.

We discuss two view packets of the collaborating components view. We start
with the view packet that describes the collaborating components of agent. Next,
we discuss the view packet that describes the collaborating components of the
application environment.

A. Collaborating Components View Packet: Agent

Primary Presentation. The primary presentation is show in Fig. 3.

Fig. 3. Collaborating Components of Agent

Elements and their Properties. The Agent component (i.e. a runtime in-
stance of the Agent module shown in Fig. 2) consists of three subcomponents:
Perception, Decision Making, and Communication. These components share
the Current Knowledge repository. We first give a brief explantion of the re-
sponsibilities of the components and then we explain the collaboration between
the components and the shared data repository.

Perception is responsible for collecting runtime information from the environ-
ment (application environment and deployment context). The perception com-
ponent supports selective perception [46]. Selective perception enables an agent
to direct its perception according to its current tasks. To direct its perception an

72 D. Weyns and T. Holvoet

agent selects a set of foci and filters. Foci allow the agent to sense the environ-
ment only for specific types of information. Sensing results in a representation
of the sensed environment. A representation is a data structure that represents
elements or resources in the environment. The perception module maps this rep-
resentation to a percept, i.e. a description of the sensed environment in a form
of data elements that can be used to update the agent’s current knowledge. The
selected set of filters further reduces the percept according to the criteria speci-
fied by the filters.

Decision Making is responsible for action selection. The action model of the ref-
erence architecture is based on the influence–reaction model introduced in [15].
This action model distinguishes between influences that are produced by agents
and are attempts to modify the course of events in the environment, and reac-
tions, which result in state changes in the environment. The responsibility of the
decision making module is to select influences to realize the agent’s tasks, and
to invoke the influences in the environment [38].

Situated agents use a behavior-based action selection mechanism [41]. To en-
able situated agents to set up collaborations, we have extended behavior-based
action selection mechanisms with roles and situated commitments [44,33,45]. A
role represents a coherent part of an agent’s functionality in the context of an
organization. A situated commitment is an engagement of an agent to give pref-
erence to the actions of a particular role in the commitment. Agents typically
commit relative to one another in a collaboration, but an agent can also com-
mit to itself, e.g. when a vital task must be completed. Roles and commitments
have a well-known name that is part of the domain ontology and that is shared
among the agents in the system. Sharing these names enable agents to set up
collaborations via message exchange. We explain the coordination among deci-
sion making and communication in the design rationale of this view packet.

Communication is responsible for communicative interactions with other agents.
Message exchange enables agents to share information and to set up collabora-
tions. The communication module processes incoming messages, and produces
outgoing messages according to well-defined communication protocols [45]. A
communication protocol specifies a set of possible sequences of messages. We
use the notion of a conversation to refer to an ongoing communicative inter-
action. A conversation is initiated by the initial message of a communication
protocol. At each stage in the conversation there is a limited set of possible mes-
sages that can be exchanged. Terminal states determine when the conversation
comes to an end.

The information exchanged via a message is encoded according to a shared
communication language. The communication language defines the format of
the messages, i.e. the subsequent fields the message is composed of. A message
includes a field with a unique identifier of the ongoing conversation to which the
message belong, fields with the identity of the sender and the identities of the
addressees of the message, a field with the performative of the message, and a
field with the content of the message. Communicative interactions among agents
are based on an ontology that defines a shared vocabulary of words that agents

Architecture-Centric Software Development of Situated Multiagent Systems 73

use in messages. The ontology enables agents to refer unambiguously to concepts
and relationships between concepts in the domain when exchanging messages.

Current Knowledge repository contains data that is shared among the data ac-
cessors. Data stored in the current knowledge repository refers to state perceived
in the environment, to state related to the agent’s roles and situated commit-
ments, and possibly other internal state that is shared among the data accessors.
Fig. 3 shows the interconnections between the current knowledge repository and
the internal components of the agent. These interconnections are called assembly
connectors [3]. An assembly connector ties one component’s provided interface
with one or more components’ required interfaces, and is drawn as a lollipop
and socket symbols next to each other. Provided and required interfaces per
assembly connector share the same name.

The current knowledge repository exposes two interfaces. The provided in-
terface Update enables the perception component to update the agents knowl-
edge according to the information derived from sensing the environment. The
Read-Write interface enables the communication and decision making compo-
nent to access and modify the agent’s current knowledge.

Collaborations. The overall behavior of the agent is the result of the coordina-
tion of two components: decision making and communication. Decision making
is responsible for selecting suitable influences to act in the environment. Com-
munication is responsible for the communicative interactions with other agents.
When selecting actions and communicating messages with other agents, decision
making and communication typically request perceptions to update the agent’s
knowledge about the environment. By selecting an appropriate set of foci and
filters, the agent directs its attention to the current aspects of its interest, and
adapts it attention when the operating conditions change.

To complete the agent’s tasks, decision making and communication coordinate
via the current knowledge repository. For example, agents can send each other
messages with requests for information that enable them to act more purpose-
fully. Decision making and communication also coordinate during the progress of
a collaboration. Collaborations are typically established via message exchange.
Once a collaboration is achieved, the communication module activates a situated
commitment. This commitment will affect the agent’s decision making towards
actions in the agent’s role in the collaboration. This continues until the commit-
ment is deactivated and the collaboration ends.

The separation of functionality for coordination (via communication) from
the functionality to perform actions to complete tasks has several advantages,
including clear design, improved modifiability and reusability. Two particular
advantages are: (1) it allows both functions to act in parallel, and (2) it allows
both functions to act at a different pace. In many applications, sending messages
and executing actions happen at different tempo; a typical example is robotics.
Separation of communication from performing actions enables agents to recon-
sider the coordination of their behavior while they perform actions, improving
adaptability and efficiency.

74 D. Weyns and T. Holvoet

B. Collaborating Components View Packet: Application Environment

Primary Presentation. The primary presentation is show in Fig. 4.

Fig. 4. Collaborating Components of Application Environment

Elements and their Properties The Application Environment component
consists of seven subcomponents and the shared State repository. We discuss
the responsibilities of each of the elements in turn. Then, we zoom on the col-
laboration between de components.

The State repository contains data that is shared between the components of
the application environment. Data stored in the state repository typically in-
cludes an abstraction of the deployment context together with additional state
related to the application environment. Examples of state related to the deploy-
ment context are a representation of the local topology of a network, and data
derived from a set of sensors. Examples of additional state are the representation
of digital pheromones that are deployed on top of a network, and virtual marks
situated on the map of the physical environment. The state repository may also
include agent-specific data, such as the agents’ identities, the positions of the
agents, and tags used for coordination purposes.

Architecture-Centric Software Development of Situated Multiagent Systems 75

The Representation Generator provides the functionality to agents for per-
ceiving the environment. When an agent senses the environment, the representa-
tion generator uses the current state of the application environment and possibly
state collected from the deployment context to produce a representation for the
agent. Agents’ perception is subject to perception laws that provide a means
to constrain perception [46]. For example, for reasons of efficiency a designer
can introduce default limits for perception in order to restrain the amount of
information that has to be processed, or to limit the occupied bandwidth.

Observation & Data Processing provides the functionality to observe the de-
ployment context and collect date from other nodes in a distributed setting.
The observation & data processing module translates observation requests into
observation primitives that can be used to collect the requested data from the
deployment context. Data may be collected from external resources in the deploy-
ment context or from the application environment instances on other nodes in a
distributed application. The observation & data processing module can provide
additional functions to pre-process data, examples are sorting and integration of
observed data.

Interaction is responsible to deal with agents’ influences in the environment.
Agents’ influences can be divided in two classes: influences that attempt to mod-
ify state of the application environment and influences that attempt to modify
the state of resources of the deployment context. An example of the former is
an agent that drops a digital pheromone in the environment. An example of the
latter is an agent that writes data in an external data base. Agents’ influences
are subject to action laws [38]. Action laws put restrictions on the influences in-
voked by the agents, representing domain specific constraints on agents’ actions.
For example, when several agents aim to access an external resource simulta-
neously, an interaction law may impose a policy on the access of that resource.
For influences that relate to the application environment, the interaction module
calculates the reaction of the influences resulting in an update of the state of
the application environment. Influences related to the deployment context are
passed to the Low-Level Control module.

Low-Level Control bridges the gap between influences used by agents and the
corresponding action primitives of the deployment context. Low-level control
converts the influences invoked by the agents into low-level action primitives in
the deployment context. This decouples the interaction module from the details
of the deployment context.

The Communication Mediation mediates the communicative interactions
among agents. It is responsible for collecting messages; it provides the necessary
infrastructure to buffer messages, and it delivers messages to the appropriate
agents. Communication mediation regulates the exchange of messages between
agents according a set of applicable communication laws [45]. Communication
laws impose constraints on the message stream or enforce domain–specific rules
to the exchange of messages. Examples are a law that drops messages directed
to agents outside the communication–range of the sender and a law that gives

76 D. Weyns and T. Holvoet

preferential treatment to high-priority messages. To actually transmit the mes-
sages, communicationmediationmakesuse of theCommunicationServicemodule.

Communication Service provides that actual infrastructure to transmit mes-
sages. Communication service transfers message descriptions used by agents to
communication primitives of the deployment context. For example, FIPA ACL
message [16] enable a designer to express the communicative interactions be-
tween agents independently of the applied communication technology. However,
to actually transmit such messages, they have to be translated into low-level
primitives of a communication infrastructure provided by the deployment con-
text. Depending on the specific application requirements, the communication
service may provide specific communication services to enable the exchange of
messages in a distributed setting, such as white and yellow page services. An
example infrastructure for distributed communication is Jade [7]. Specific mid-
dleware may provide support for communicative interaction in mobile and ad-hoc
network environments, an example is discussed in [30].

Synchronization & Data Processing synchronizes state of the application en-
vironment with state of resources in the deployment context as well as state of
the application environment on different nodes. State updates may relate to
dynamics in the deployment context and dynamics of state in the application
environment that happens independently of agents or the deployment context.
An example of the former is the topology of a dynamic network which changes
are reflected in a network abstraction maintained in the state of the application
environment. An example of the latter is the evaporation of digital pheromones.
Middleware may provide support to collect data in a distributed setting. An ex-
ample of middleware support for data collection in mobile and ad-hoc network
environments is discussed in [29]. Synchronization & data processing converts
the resource data observed from the deployment context into a format that can
be used to update the state of the application environment. Such conversion
typically includes a processing or integration of collected resource data.

Collaborations. Successively, we zoom in on the collaborating components for
perception, interaction, communication, and the synchronization of state among
nodes and with resources in the deployment context.

Perception. The representation generator collects perception requests from the
agents and generates representations according to the given foci. Representation
generator collects the required state from the state repository, and optionally
it requests observation & data processing to collect additional data from the
deployment context and possibly state of other nodes. State collection is subject
to the perception laws. Observation & data processing returns the observed data
to representation generator that generates a representation that is returned to
the requesting agent.

Interaction. Interaction collects the concurrently invoked influences of agents
and converts them into operations. The execution of operations is subject to
the action laws of the system. Operations that attempt to modify state of the

Architecture-Centric Software Development of Situated Multiagent Systems 77

application environment are immediately executed by the interaction compo-
nent. Operations that attempt to modify state of the deployment context are
forwarded to low-level control that converts the operations into low–level inter-
actions in the deployment context.

Communication. Communication mediation handles the communicative interac-
tions among agents. The component collects the messages sent by agents, applies
the communication laws, and subsequently passes the messages to the communi-
cation service. This latter component converts the messages directed to agents on
other nodes into low–level interactions that are transmitted via the deployment
context. Furthermore, communication service collects low–level messages from
the deployment context, converts the messages into a format understandable for
the agents, and forward the messages to communication mediation that delivers
the messages to the appropriate agents. Messages directed to agents that are
located at the same node are directly transferred to the appropriate agents.

State Synchronization. Synchronization & data processing performs its tasks in-
dependently of other components of the application environment. To synchronize
the state of the application environment in a distributed setting, synchronization
& data processing components on different nodes have to coordinate according
to the requirements of the application at hand.

4 Excerpt of a Software Architecture for an AGV
Transportation System

We now illustrate how we have used the reference architecture for the architec-
tural design of an automated transportation system for warehouse logistics that
has been developed in a joint R&D project between the DistriNet research group
and Egemin, a manufacturer of automating logistics services in warehouses and
manufactories [43,1]. The transportation system uses automatic guided vehicles
(AGVs) to transport loads through a warehouse. Typical applications include
distributing incoming goods to various branches, and distributing manufactured
products to storage locations. AGVs are battery-powered vehicles that can nav-
igate through a warehouse following predefined paths on the factory floor. The
low-level control of the AGVs in terms of sensors and actuators such as staying
on track on a path, turning, and determining the current position is handled by
the AGV control software.

4.1 Multiagent System for the AGV Transportation System

In the project, we have applied a MAS approach for the development of the
transportation system. The transportation system consists of two kinds of agents:
transport agents and AGV agents. Transport agents represent tasks that need
to be handled by an AGV and are located at a transport base, i.e. a stationary
computer system. AGV agents are responsible for executing transports and are
located in mobile vehicles. The communication infrastructure provides a wireless

78 D. Weyns and T. Holvoet

network that enables AGV agents at vehicles to communicate with each other
and with transport agents on the transport base.

AGVs are situated in a physical environment, however this environment is very
constrained: AGVs cannot manipulate the environment, except by picking and
dropping loads. This restricts how AGV agents can exploit their environment.
Therefore, a virtual environment was introduced for agents to inhabit. This vir-
tual environment provides an interaction medium that agents can use to exchange
information and coordinate their behavior. The virtual environment is necessarily
distributed over the AGVs and the transport base, i.e. a local virtual environment
is deployed on each AGV and the transport base. The local virtual environment
corresponds to the application environment in the reference architecture. State
on local virtual environments is merged opportunistically, as the need arises. The
synchronization of the state of neighboring local virtual environments is supported
by the ObjectPlaces middleware [29,30]. The AGV control system is developed on
top of the .NET framework and programmed in C#.

As an illustration of the software architecture of the AGV transportation
system, we zoom on the collaborating components view of the local virtual en-
vironment that is deployed on the AGVs.

4.2 Collaborating Components View of the Local Virtual
Environment

Fig. 5 shows the collaborating components view of the local virtual environment.
The general structure of the local virtual environment is related to the struc-

ture of the application environment in the reference architecture as follows. The
state repository corresponds to the state repository in the reference architec-
ture, see Fig. 4 in section 3.1. The state elements are specific to the local virtual
environment of an AGV control system. The perception manager provides the
functionality for selective perception of the environment, similar to the repre-
sentation generator in the reference architecture. Contrary to the representation
generator, the perception manager interacts only with the state repository; the
functionality of the observation & data processing component in the reference
architecture is absent in the local virtual environment. The action manager corre-
sponds to the interaction component of the application environment. Low-level
control corresponds with E’nsor, i.e. the control software to interact with the
sensors and actuators of the AGV. We fully reused E’nsor in the project. The
communication manager integrates the responsibilities of communication media-
tion and the communication service of the application environment. The commu-
nication service handles the bidirectional translation of messages and manages
message transmission via .Net remoting. Finally, the laws for perception, action,
and communication, are integrated in the applicable components.

Elements and Their Properties

State. Since the virtual environment is necessarily distributed over the AGVs
and the transport base, each local virtual environment is responsible to keep its

Architecture-Centric Software Development of Situated Multiagent Systems 79

Fig. 5. Collaborating components view of the local virtual environment of AGVs

state synchronized with other local virtual environments. The state of the local
virtual environment is divided into three categories:

1. Static state: this is state that does not change over time. Examples are the
layout of the factory floor, which is needed for the AGV agent to navigate,
and (AGV id, IP number) tuples used for communication. Static state must
never be exchanged between local virtual environments since it is common
knowledge and never changes.

2. Observable state: this is state that can be changed in one local virtual envi-
ronment, while other local virtual environments can only observe the state.
An AGV obtains this kind of state from its sensors directly. An example is
an AGV’s position. Local virtual environments are able to observe another

80 D. Weyns and T. Holvoet

AGV’s position, but only the local virtual environment on the AGV itself is
able to read it from its sensor, and change the representation of the position
in the local virtual environment. No conflict arises between two local virtual
environments concerning the update of observable state.

3. Shared state: this is state that can be modified in two local virtual environ-
ments concurrently. An example is a hull map. AGV agents mark the path
they are going to drive in their local virtual environment using hulls. The
hull of an AGV is the physical area the AGV occupies. A series of hulls de-
scribe the physical area an AGV occupies along a certain path. AGV agents
use hull for collision avoidance. When the local virtual environments on dif-
ferent machines synchronize, the local virtual environments must generate a
consistent and up-to-date state in both local virtual environments.

Perception Manager handles perception in the local virtual environment. The
perception manager’s task is straightforward: when the agent requests a percept,
for example the current positions of neighboring AGVs, the perception manager
queries the necessary information from the state repository of the local virtual
environment and returns the percept to the agent. Perception is subject to laws
that restrict agents perception of the virtual environment. For example, when
an agent senses the hulls for collision avoidance of neighboring AGVs, only the
hulls within collision range are returned to the AGV agent.

Action Manager handles agents’ influences. AGV agents can perform two kinds
of influences. One kind of influences are commands to the AGV, for example
moving over a segment and picking up a load. These influences are handled
fairly easily by translating them and passing them to the E’nsor control soft-
ware. A second kind of influences attempt to manipulate the state of the local
virtual environment. Putting marks in the local virtual environment is an ex-
ample. An influence that changes the state of the local virtual environment may
in turn trigger state changes of neighboring local virtual environments (see Syn-
chronization below). Influences are subject to laws, e.g., when an AGV agent
projects a hull in the local virtual environment, this latter determines when an
AGV acquires the right to move on. In particular, if the area is not marked by
other hulls (the AGV’s own hulls do not intersect with others), the AGV can
move along and actually drive over the reserved path. In case of a conflict, the
involved local virtual environments use the priorities of the transported loads
and the vehicles to determine which AGV can move on. AGV agents monitor
the local virtual environment and only instruct the AGV to move on when they
are allowed. Afterwards, the AGV agents remove the markings in the environ-
ment. This example shows that the local virtual environment serves as a flexible
coordination medium: agents coordinate by putting marks in the environment,
and observing marks from other agents.

Communication Manager is responsible for exchanging messages between agents.
Agents can communicate with other agents through the virtual environment. A
typical example is an AGV agent that communicates with a transport agent to
assign a transport. Another example is an AGV agent that requests the AGV

Architecture-Centric Software Development of Situated Multiagent Systems 81

agent of a waiting AGV to move out of the way. The communication manager
translates the high-level messages to low-level communication instructions that
can be sent through the network and vise versa (resolving agent names to IP
numbers, etc.). Communication is subject to laws, an example is the restriction
of communication range for messages used for transport assignment [35].

Synchronization has a dual responsibility. It periodically polls E’nsor and up-
dates the state of the local virtual environment accordingly. An example is the
maintenance of the actual position of the AGV in the local virtual environment.
Furthermore, synchronization is responsible for synchronizing state between local
virtual environments of neighboring machines. An example is the synchronization
of hulls on neighboring AGVs.

Design Rationale

Changes in the system (e.g., AGVs that enter/leave the system) are reflected
in the state of the local virtual environment, releasing agents from the burden
of such dynamics. As such, the local virtual environment—supported by the
ObjectPlaces middleware—supports openness.

Since an AGV agent continuously needs up-to-date data about the system
(position of the vehicles, status of the battery, etc.), we decided to keep the rep-
resentation of the relevant state of the deployment context in the local virtual
environment synchronized with the actual state. Therefore, E’nsor and the Ob-
jectPlaces middleware are periodically polled to update the status of the system.
As such, the state repository maintains an accurate representation of the state
of the system to the AGV agent.

5 Related Work

Current practice in agent-oriented software engineering considers MAS as a rad-
ically new way of engineering software. For example, in [10], Wooldridge et al.
state “There is a fundamental mismatch between the concepts used by object-
oriented developers and other mainstream software engineering paradigms, and
the agent-oriented view. [...] Existing software development techniques are un-
suitable to realize the potential of agents as a software engineering paradigm.”
As a result, numerous MAS methodologies have been developed [19]. Although
some of the methodologies adopt techniques and practices from mainstream soft-
ware engineering, such as object-oriented techniques and the Unified Modeling
Language, nearly all methodologies take an independent position, little or not
related to mainstream software engineering practice. The position of being a rad-
ically new paradigm for software development isolates agent-oriented software
engineering from mainstream software engineering. In contrast, the architecture-
centric perspective on MAS we follow in our research aims to integrate MAS in
mainstream software engineering.

Related work that explicitly connects MAS with software architecture is rather
limited. We briefly discuss a number of representative examples. In [32], Shehory
presents an initial study on the role of MAS as a software architecture style. We

82 D. Weyns and T. Holvoet

share the author’s observation that the largest part of research in the design
of MAS addresses the question: given a computational problem, can one build
a MAS to solve it? However, a more fundamental question is left unanswered:
given a computational problem, is a MAS an appropriate solution? An answer
to this question should precede the previous one, lest MAS may be developed
where much simpler, more efficient solutions apply. Almost a decade later, the
majority of researchers in agent-oriented software engineering still pass over the
analysis whether a MAS is an appropriate solution for a given problem.

As part of the Tropos methodology [18], a set of architectural styles were pro-
posed which adopt concepts from organization management theory [24,12]. The
styles are modelled using the i� framework [48] which offers modelling concepts
such as actor, goal, and actor dependency. Styles are evaluated with respect
to various software quality attributes. The specification of quality attributes is
based on te notion of softgoal. [24] states that softgoals do not have a formal
definition, and are amenable to a more qualitative kind of analysis. Whereas we
use a utility tree to prioritize quality requirements and to determine the drivers
for architectural design, Tropos does not consider a systematic prioritization of
quality goals. In Tropos, a designer visualizes the design process and simultane-
ously attempts to satisfy the collection of softgoals for a system.

PROSA is an acronym for Product–Resource–Order–Staff Architecture and
defines a reference architecture for a family of coordination and control applica-
tion, with manufacturing systems as the main domain [47]. These systems are
characterized by frequent changes and disturbances. PROSA aims to provide
the required flexibility to cope with these dynamics. [20] presents an interest-
ing extension of PROSA in which the environment is exploited to obtain BDI
(Believe, Desire, Intention [28]) functionality for the various PROSA agents.
The PROSA reference architecture embodies architectural knowledge of a par-
ticular problem domain. On the contrary, the reference architecture for situa-
ted MAS embodies architectural knowledge in terms of a particular solution
approach.

In [17], Garcia et al. observe that several concerns such as autonomy, learning,
and mobility crosscut each other and the basic functionality of agents. The au-
thors state that existing approaches that apply well-known patterns to structure
agent architectures—an example is the layered architecture of Kendall [22]—fail
to cleanly separate the various concerns. This results in architectures that are
difficult to understand, reuse, and maintain. To cope with the problem of cross-
cutting concerns, the authors propose an aspect-oriented approach to structure
agent architectures. An aspect-oriented agent architecture consists of a “kernel”
that encapsulates the core functionality of the agent (essentially the agent’s in-
ternal state), and a set of aspects [23]. Each aspect modularizes a particular
concern of the agent. Yet, it is unclear whether the interaction of the different
concerns in the kernel (feature interaction [11]) will not lead to similar problems
the approach initially aimed to resolve. Anyway, crosscutting concerns in MAS
are hardly explored and provide an interesting venue for future research.

Architecture-Centric Software Development of Situated Multiagent Systems 83

6 Conclusions

There is a close connection between MAS and software architecture, yet, this
connection is often neglected or remains implicit. In our research, we have de-
rived a reference architecture for situated MAS from various applications we
have studied and built. This reference architecture provides a blueprint to de-
velop new software architectures for systems that have similar characteristics
and requirements as the systems from which it was derived.

The reference architecture shows how knowledge and experiences with MAS
can systematically be documented and maturated in a form that has proven its
value in mainstream software engineering. Rather than considering MAS as a
radical new way of engineering software, we believe that the integration of MAS
in mainstream software engineering is a key to industrial adoption of MAS.

References

1. EMC 2: Egemin Modular Controls Concept, Project Supported by the Institute
for the Promotion of Innovation Through Science and Technology in Flanders
(IWTVlaanderen), (8/2006), http://emc2.egemin.com/

2. Software Engineering Institute: Carnegie Mellon University, (8/2006),
http://www.sei.cmu.edu/

3. The Unified Modeling Language: (8/2006), http://www.uml.org/
4. Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi, F., Benatallah, B.: A Quality-Driven

Systematic Approach for Architecting Distributed Software Applications. In: 27th
International Conference on Software Engineering, Orlando, Florida (2005)

5. Barbacci, M., Klein, M., Longstaff, T., Weinstock, C.: uality Attribute Workshops.
Technical Report CMU/SEI-95-TR-21, Software Engineering Institute, Carnegie
Mellon University, PA, USA (1995)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison
Wesley, London, UK (2003)

7. Bellifemine, F., Poggi, A., Rimassa, G.: Jade, A FIPA-compliant Agent Framework.
In: 4th International Conference on Practical Application of Intelligent Agents and
Multi-Agent Technology, London, UK (1999)

8. Boucké, N., Holvoet, T., Lefever, T., Sempels, R., Schelfthout, K., Weyns, D.,
Wielemans, J.: Applying the Architecture Tradeoff Analysis Method to an Indus-
trial Multiagent System Application. In: Technical Report CW 431. Department
of Computer Science, Katholieke Universiteit Leuven, Belgium (2005)

9. Boucké, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the ATAM to an Ar-
chitecture for Decentralized Contol of a AGV Transportation System. In: Hofmeis-
ter, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 180–198.
Springer, Heidelberg (2006)

10. Buchmann, F., Bass, L.: Introduction to the Attribute Driven Design Method. In:
23rd International Conference on Software Engineering, Toronto, Ontario, Canada.
IEEE Computer Society Press, Los Alamitos (2001)

11. Calder, M., Kolberg, M., Magill, E., Reiff-Marganiec, S.: Feature Interaction: A
Critical Review and Considered Forecast. Comp. Netw. 41(1), 115–141 (2003)

12. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Inf. Syst. 27(6), 365–389 (2002)

http://emc2.egemin.com/
http://www.sei.cmu.edu/
http://www.uml.org/

84 D. Weyns and T. Holvoet

13. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, London, UK (2002)

14. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison Wesley, London, UK (2002)

15. Ferber, J., Muller, J.: Influences and Reaction: a Model of Situated Multiagent
Systems. In: 2nd International Conference on Multi-agent Systems, Japan. AAAI
Press, Stanford, California, USA (1996)

16. FIPA: Foundation for Intelligent Physical Agents, FIPA Abstract Architecture
Specification (8/2006), http://www.fipa.org/repository/bysubject.html

17. Garcia, A., Kulesza, U., Lucena, C.: Aspectizing Multi-Agent Systems: From Ar-
chitecture to Implementation. In: Choren, R., Garcia, A., Lucena, C., Romanovsky,
A. (eds.) Software Engineering for Multi-Agent Systems III. LNCS, vol. 3390.
Springer, Heidelberg (2005)

18. Giunchiglia, F., Mylopoulos, J., Perini, A.: The TROPOS Software Development
Methodology: Processes, Models and Diagrams. In: 1st International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems. ACM Press, New York
(2002)

19. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group
Publishing, USA (2005)

20. Holvoet, T., Valckenaers, P.: Exploiting the Environment for Coordinating Agent
Intentions. In: E4MAS, Hakodate, Japan. LNCS, vol. 4389, pp. 51–66. Springer,
Heidelberg (2006)

21. Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for Product Fam-
ilies. Addison Wesley Longman Inc. Redwood City,CA, USA (2000)

22. Kendall, E., Jiang, C.: Multiagent System Design Based on Object Oriented Pat-
terns. Journal of Object Oriented Programming 10(3), 41–47 (1997)

23. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J., Ir-
win, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241. Springer, Heidelberg (1997)

24. Kolp, M., Giorgini, P., Mylopoulos, J.: A Goal-Based Organizational Perspective
on Multi-agent Architectures. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001.
LNCS (LNAI), vol. 2333, pp. 128–140. Springer, Heidelberg (2002)

25. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design. Prentice-Hall, Englewood Cliffs (2002)

26. McConell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft
Press, Redmond, Washington (1996)

27. Olumofin, F., Misic, V.: Extending the ATAM Architecture Evaluation to Prod-
uct Line Architectures. In: 5th IEEE-IFIP Conference on Software Architecture,
Pittsburgh, Pennsylvania, USA (2005)

28. Rao, A., Georgeff, M.: BDI Agents: From Theory to Practice. In: 1st Interna-
tional Conference on Multiagent Systems, San Francisco, California, USA. The
MIT Press, Cambridge (1995)

29. Schelfthout, K., Holvoet, T.: Views: Customizable abstractions for context-aware
applications in MANETs. In: Software Engineering for Large-Scale Multi-Agent
Systems, St. Louis, USA (2005)

30. Schelfthout, K., Weyns, D., Holvoet, T.: Middleware that Enables Protocol-Based
Coordination Applied in Automatic Guided Vehicle Control. IEEE Distributed
Systems Online 7(8) (2006)

31. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, Englewood Cliffs (1996)

http://www.fipa.org/repository/bysubject.html

Architecture-Centric Software Development of Situated Multiagent Systems 85

32. O. Shehory. Architectural Properties of MultiAgent Systems. Technical Report
CMU-RI-TR-98-28, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, 1998.

33. Steegmans, E., Weyns, D., Holvoet, T., Berbers, Y.: A Design Process for Adaptive
Behavior of Situated Agents. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE
2004. LNCS, vol. 3382. Springer, Heidelberg (2005)

34. Weyns, D.: An Architecture-Centric Approach for Software Engineering with Sit-
uated Multiagent Systems. Ph.D, Katholieke Universiteit Leuven (2006)

35. Weyns, D., Boucké, N., Holvoet, T.: Gradient Field Based Transport Assignment
in AGV Systems. In: 5th International Joint Conference on Autonomous Agents
and Multi-Agent Systems, AAMAS, Hakodate, Japan (2006)

36. Weyns, D., Helleboogh, A., Holvoet, T.: The Packet-World: a Test Bed for Inves-
tigating Situated Multi-Agent Systems. In: Agent-based applications, platforms,
and development kits. Whitestein Series in Software Agent Technology (2005)

37. Weyns, D., Holvoet, T.: Model for Simultaneous Actions in Situated Multiagent
Systems. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.) Multiagent
System Technologies. LNCS (LNAI), vol. 2831. Springer, Heidelberg (2003)

38. Weyns, D., Holvoet, T.: Formal Model for Situated Multi-Agent Systems. Funda-
menta Informaticae 63(1-2), 125–158 (2004)

39. Weyns, D., Holvoet, T.: Regional Synchronization for Situated Multi-agent Sys-
tems. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS
(LNAI), vol. 2691. Springer, Heidelberg (2003)

40. Weyns, D., Holvoet, T.: Architectural Design of an Industrial AGV Transportation
System with a Multiagent System Approach. In: Software Architecture Technol-
ogy User Network Workshop, SATURN, Pittsburg, USA, Software Engineering
Institute, Carnegie Mellon University (2006)

41. Weyns, D., Holvoet, T.: From Reactive Robotics to Situated Multiagent Systems:
A Historical Perspective on the Role of Environment in Multiagent Systems. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963.
Springer, Heidelberg (2006)

42. Weyns, D., Omicini, A., Odell, J.: Environment as a First-Class Abstraction in
Multiagent Systems. Autonomous Agents and Multi-Agent Systems 14(1) (2007)

43. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV
transportation systems. In: 4th Joint Conference on Autonomous Agents and Mul-
tiagent Systems, Industry Track, Utrecht, The Netherlands. ACM Press, New York
(2005)

44. Weyns, D., Steegmans, E., Holvoet, T.: Integrating Free-Flow Architectures with
Role Models Based on Statecharts. In: Choren, R., Garcia, A., Lucena, C., Ro-
manovsky, A. (eds.) Software Engineering for Multi-Agent Systems III. LNCS,
vol. 3390. Springer, Heidelberg (2005)

45. Weyns, D., Steegmans, E., Holvoet, T.: Protocol Based Communication for Situ-
ated Multi-Agent Systems. In: 3th Joint Conference on Autonomous Agents and
Multi-Agent Systems, New York, USA. IEEE Computer Society Press, Los Alami-
tos (2004)

46. Weyns, D., Steegmans, E., Holvoet, T.: Towards Active Perception in Situated
Multi-Agent Systems. Applied Artificial Intelligence 18(9-10), 867–883 (2004)

47. Wyns, J., Van Brussel, H., Valckenaers, P., Bongaerts, L.: Workstation Architec-
ture in Holonic Manufacturing Systems. In: 28th CIRP International Seminar on
Manufacturing Systems, Johannesburg, South Africa (1996)

48. Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD Disser-
tation: University of Toronto, Canada (1995)

	Architecture-Centric Software Development of Situated Multiagent Systems
	Introduction
	Architecture-Centric Software Development
	Reference Architecture for Situated Multiagent Systems
	Collaborating Components View Packets

	Excerpt of a Software Architecture for an AGV Transportation System
	Multiagent System for the AGV Transportation System
	Collaborating Components View of the Local Virtual Environment

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

