
Experiences with Theme/UML for Architectural Design
of a Multiagent System

Nelis Boucḱe, Danny Weyns, and Tom Holvoet

DistriNet, Department of Computer Science, KULeuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

{nelis.boucke,danny.weyns,tom.holvoet}@cs.kuleuven.be

Abstract. In a recent R&D project, our research group developed an industrial
AGV transportation system using a multiagent system (MAS). The software ar-
chitecture of this system is modeled using several architectural views. In this
paper, we study an alternative way of structuring of the architectural description
using Theme/UML. Theme/UML is an aspect-oriented design approach that pro-
vides support for advanced separation of concerns.
Our goal is twofold. (1) We structure the architectural description based on impor-
tantarchitectural concerns(such as coordination and distribution), instead of the
current structure based on different viewtypes (module, component, deployment).
The goal is to investigate the advantages and trade-offs of separating concerns in
architectural design of MASs. (2) Currently, Theme/UML provides only support
for detailed design. We aim to evaluate whether Theme/UML can be applied to
architectural design.
The results of our experience are promising. The advantage of separating archi-
tectural concerns is that the resulting architectural description (1) is better aligned
with the architectural concerns, and (2) facilitates the investigation of alterna-
tives for those concerns. We illustrate this by changing the distribution schema of
the AGV transportation system. A trade-off is that describing the concerns sep-
arately makes it more difficult to get an overall view on the system. Finally, the
experiment shows that Theme/UML is not ready for architectural design. To im-
prove support for architectural design of MASs, we propose several extensions to
Theme/UML .

1 Introduction

In a recent R&D project called EMC2 [1,2,3], our research group and Egemin1 devel-
oped an innovative version of an AGV transportation system. The goal of this project
was to investigate the feasibility of using a multiagent system (MAS) to improve the
flexibility of the transportation system. The software architecture of this system is mod-
eled with different architectural views, including module views, component and con-
nector views, and deployment views [5].

To cope with the complexity of a large-scale MAS such as the AGV transportation
system, a good separation of concerns is essential. Experience taught us that several
concerns, specific to MAS (e.g. decomposition agents/environment, and coordination)
and more general concerns (e.g. distribution, persistency, etc.), tend to crosscut each

1 Egemin is a Belgian manufacturer of automated logistic systems for warehouses [4].



other in multiple views and components. We use the termarchitectural concernsto de-
note such concerns. An architectural concern is an area of interest or a focus of the soft-
ware architect. Examples of architectural concerns for the AGV transportation system
are the decomposition into agents and an environment, coordination, and distribution.
In the project, a specific distribution scheme was chosen from the start. Distribution was
not considered as a separate concern for which alternatives may be considered. As a re-
sult, distribution is scattered over various design models2 of the software architecture.
This makes it difficult to use an alternative distribution schema for the system.

In this paper, we experiment with Theme/UML [6] to investigate an alternative way
of structuring the design models of the AGV transportation system. Theme/UML is an
aspect-oriented design approach that provides support for advanced separation of con-
cerns. The goal of our experiment is twofold. First, we aim to investigate the advantages
and the trade-offs of separating architectural concerns in architectural design of MAS.
Second, since a MAS structures a software system at the level of software architec-
ture in the first place, we aim to evaluate whether Theme/UML—that currently only
provides support for detailed design—can be extended for architectural design.

Overview. The remainder of this paper is structured as follows. Section 2 introduces the
necessary background. Section 3 describes the motivations for using Theme/UML. In
Sec. 4 we introduce Theme/UML and our architectural extensions. Section 5 illustrates
the architectural description of the AGV transportation system structured according
to the architectural concerns. In Sec. 6 we reflect on the design and the architectural
extensions to Theme/UML. Section 7 discusses related work. Finally, we conclude in
section 8.

2 Background

This section briefly introduces our position on MAS and software engineering, it ex-
plains the basic terminology of aspect-oriented software development (AOSD), and in-
troduces the AGV transportation system.

MAS and software engineering. Today’s distributed applications have to deal with
highly dynamic operating conditions, such as dynamically changing workloads, contin-
uous changes in availability of resources and services, etc. MASs are ascribed quality
attributes such as flexibility, openness, and robustness that enables the systems to handle
the dynamic operating conditions autonomously. Basically, a MAS structures a system
in a number of autonomous entities, embedded in an environment, which cooperate in
order to achieve the system goals [7].

With respect to software engineering and MAS, our position is that using MAS for
large scale system development does not render typical software engineering techniques
obsolete. On the contrary, we belief that MAS should be integrated with mainstream
software engineering practice. Two common software engineering techniques form a
recurring theme through this paper, namely software architecture and aspect-oriented
design techniques.

2 A view is an example of a design model. Other examples are module diagrams, interaction
diagrams, statecharts, etc.



Software architecturecovers the first design decisions that meet the essential quality
requirements of the system. A common definition for software architecture is [8]: “the
software architecture of a program or computing system is the structure or structures
of the system, which comprise architectural elements, the externally visible properties
of those components, and the relationships among them”. It is generally accepted that
architectures are too complex to be described in a simple one-dimensional fashion and
must be described using several views [9]. Each architectural view shows particular
types of elements and the corresponding relationships between them. Decomposing a
system in agents and an environment and using specific mechanisms for coordination
between the individual agents, determines the structure of the system and the fulfillment
of the quality attributes. As such, a MAS in the first place structures a software system
at the level of software architecture.

Aspect oriented software developmentaims to improve separation of concerns to
cope with the complexity of large-scale software systems. Obviously, good separation
of concerns is also important for MASs. During development there are always important
concerns that are intermingled, thus hampering the development and maintenance of the
application. Examples of concerns that a software architect has to conquer when devel-
oping MASs are coordination, agent mobility, learning, and autonomy (for a detailed
discussion, see [10, pag. 175-246]). In Sect. 3, we give several examples of crosscutting
concerns and point to the associated problems. Several approaches have been developed
in the AOSD community to deal with crosscutting concerns. Most approaches however,
are directed at the programming level or the level of detailed design. A good overview
of existing AOSD approaches can be found in [11]. Recently, the role of software ar-
chitecture in AOSD became subject of active research [12,13].

AOSD terminology. The terminology of this section is based on [11,14]. Since aspect
orientation origins from programming level, some of the basic terminology closely re-
sembles this level. Yet, we will provide some of the terms to show in the paper how this
relates to architecture.

A concernis an area of interest or focus in a system, important for a stakeholder
of the system. Concerns are the primary criteria for decomposing software into smaller,
more manageable and comprehensible parts that have meaning to a software engineer.
Some examples of concerns for a banking applications are the withdrawal of money,
logging, and authentication.

Crosscuttingof concerns means that concerns are both scattered and tangled with
each other in a particular representation.Scatteringmeans a single concerns is spread
over multiple modules.Tanglingmeans a single module contains parts of several con-
cerns. For example: if a system is decomposed in modules and if the two concerns under
consideration are logging and authentication, they are crosscutting if both concerns are
scattered over multiple modules and tangled in several of these modules.

A join point is a well defined element of a language on which additional behavior
can be attached. Examples of join points in the Java language are calling and executing a
method. Notice that the notion of join point on the architectural level must use architec-
tural language elements. Examples of join points for a components-oriented language
are using a component service and changes in the observable behavior of a component.
A pointcutdefines a set of join points. Typically, a pointcut is specified using a list of
join points or a regular expression over join points. Anadvicedescribes additional be-
havior to be executed on particular join points, thus defining a part of the crosscutting



– Module views
1. Layered: The ATS (AGVs transportation system)
2. Decomposition: The ATS, Transport base, AGV Control system,

Local virtual environment , Transport agent, AGV agent, Decisions
3. Uses:Transport Base, AGV Control system
4. Generalization:Agents

– Component and connector views
1. Shared date:Agent, Local virtual environment, Protocol description
2. Process views:Move action, Sending-Receive action, Background processes

– Combined views: ObjectPlaces middleware, collision avoidance
– Deployment view: Deployment

Fig. 1.List of design models made for the AGV transportation system.

behavior. Advices are used together with a pointcut: the pointcut specifies at what join
points the behavior of an advice has to be executed.

AGV transportation system. The application used in this paper is an Automatic
Guided Vehicle (AGV) transportation system. This is an automated industrial system
that uses multiple AGVs to transport loads in a warehouse or production plant. An AGV
is an unmanned, battery powered transportation vehicle that caries a computer that con-
trols the vehicle. The main functional requirements for this system are: (1) allocating
transportation tasks to individual AGVs; (2) performing those tasks; (3) preventing con-
flicts between AGVs on crossroads; and (4) charging the batteries of AGVs before they
are completely drained.

The AGV transportation system interfaces with two external systems: Ensor and a
Warehouse Management System. Ensor is a software system to control the AGV vehi-
cle. More specifically, Ensor provides an interface with commands to steer the vehicle
(e.g. move, turn). Internally, these commands are translated by Ensor into low-level
commands to control the engines and sensors on the vehicle.

A Warehouse Management System (WMS) is a software system to manage prod-
ucts or raw materials in an industrial environment. Examples of responsibilities of such
a system are transport management, stock management and accounting. The WMS in-
teracts with the AGV transportation system by generating the transportation tasks. Ad-
ditionally, the WMS keeps track of the ongoing tasks and is warned when a task starts
and completes.

The remainder of the paper will mainly focus on three architectural concerns: (1)
choosing the appropriate decomposition into agents and an environment; (2) handling
the coordination between the agents; and (3) handling the distribution of the application.

3 Motivation to apply Theme/UML for architectural design of
MASs

The motivation to apply Theme/UML for architectural design of MASs is twofold.
Our first motivation is to investigate whether Theme/UML is suitable for archi-

tectural design of MASs. Theme/UML is one of the best known aspect-oriented ap-
proaches for design, but experiences for architectural design are lacking. The goal is to



<<subsystem>>
TransportBase

<<component>>
TransportBaseLVE

TransportAgentSA

WMSInterface
<<component>>

TransportManagerAgent

ObjectSharingInterface

<<component>>
TransportAgent

<<component>>
ObjectPlaces

TMAgentSA

remote : RemoteCommunication

wms

<<use>>
<<use>>

<<subsystem>>
AGVControlSystem

<<component>>
AGVControlLVE

AGVAgentSA

ObjectSharingInterface

<<component>>
AGVAgent

<<component>>
ObjectPlaces

vehicle remote : RemoteCommunication

<<use>>

<<use>>
<<use>>

tbl SubsystemResponsitbilities

AGV Control system: Responsible for anything related to controlling an AGV vehicle.
Transport Base: Responsible for transports, i.e. communication with external warehouse managment 

system and searching suited AGV to do the job.

cc AGVControlSystem cc TransportBase

Fig. 2. Primary views of AGV transportation system design. Top: clarification table
describing the responsibility of each subsystem. Left: C&C model showing the AGV-
ControlSystem. Right: C&C model showing the TransportBase.

investigate whether Theme/UML can be extended for architectural design and to iden-
tify possible trade-offs and shortcomings of the approach with respect to architectural
design.

Secondly, architects using MASs for large-scale systems must cope with multiple
architectural concerns that tend to crosscut each other in the design models. Archi-
tectural concerns that are spread over multiple models are difficult to understand, and
considering alternative solutions to a particular concerns is complex. The Theme/UML
approach provides support for advanced separation of concerns in design and is specif-
ically aimed to cope with crosscutting concerns. Our goal is to use Theme/UML to
group the design models per concern, aiming for more coherent documentation and
better support to investigate alternatives for the separated concerns.

3.1 Illustration of crosscutting concerns

In this section, we give two examples of crosscutting concerns in the existing architec-
tural models of the AGV transportation system, and we explain the associated problems.

Coordination vs. decomposition agents/environment.The first example illustrates
crosscutting between coordination amongst the agents and the decomposition into agents
and the environment. Figure 1 lists the design models (in this case architectural views)
of the architectural documentation of the AGV transportation system. We have anno-
tated the list to illustrate how the two concerns are tackled in various design models.



: AGVVehicle transportBase : Server : WMS, WMS

AGVVehicleInterface

<<subsystem>>
AGVControlSystem

vehicle

remote

<<subsystem>>
TransportBase

remote

w ms

<<component>>
Ensor

<<component>>
WMS

Fig. 3.Deployment view.

Design model names marked in bold include fragments of the agent/environment
decomposition, underlined names include fragments of the coordination between the
agents. Thus design models that are bold and underlined intermingle the definition of
coordination with the decomposition into agents and the environment, illustrating that
the two concerns crosscut each other in the design models.

Firstly, notice that the representation on which we identified crosscutting concerns
are thedesign models, not the software components. As explained before, it is gener-
ally acknowledged that an architecture is described using several design models and
choosing a good set of design models is very important for architectural design [9]. As
advocated in [12], the design models themselves, rather than the software elements and
relationships they show, form the dominant decomposition for an architecture.

Secondly, notice that the current organization of the architectural documentation is
essentially based on thetypes of architectural elementslike modules, components, and
processes. The choice what to describe in a specific design model is left to the software
architect. Since architectural concerns are often not made explicit, this choice is not
made with the architectural concerns in mind [15].

When architectural concerns crosscut each other in several architectural models, an
architect who wants to change one concern (e.g. coordination) must search within all
design models, with few guidelines where to search. Even worse, because the relations
between concerns are implicit, changing one concern in one design model may have
unforseen effects on other concerns in other design models. As such, all design models
must be reexamined and possible adapted to change something to a single architectural
concern.

Distribution vs. decomposition agents/environment.As a second example of cross-
cutting concerns in the AGV transportation system, we consider the intermingling of
the decomposition into agents/environment and the distribution of the system.

Figure 2 shows the design models of the AGV transportation system that correspond
with the first three decomposition views of Fig. 1.

The system is decomposed in three types of agents (AGVAgent, TransportManager-
Agent, and TransportAgent) and an environment.

The design of the environment assumes a specific distributed scheme. The assump-
tions are: (1) the deployment infrastructure that consists of mobile AGVs equipped with
computers and a number of stationary computer systems; (2) each AGVAgent is part of
a AGVControlSystem that is deployed on an AGV; and (3) the TransportAgents and
a TransportManagerAgent are part of a TransportBase that is deployed on a stationary



computer system. Accordingly, the environment component is split up to provide en-
vironment services to the agents on each host. Therefore a local representation of the
environment (Local Virtual Environment, LVE) and middleware to exchange informa-
tion between hosts (ObjectPlaces component) are present on each computer system.
Figure 3 illustrates the deployment of the subsystems on the hosts.

The three design models of Fig. 2 represent the basic decomposition on which the
architecture is built. Yet, the design models clearly intermingle at least two different
concerns (decomposition agent/environment and distribution). What belongs to which
concern is not made explicit, only the agent and environment components for the as-
sumed distribution schema are visible. Since distribution and the decomposition into
agents and an environment are not considered as separate concerns, it becomes difficult
to compare alternative solutions, or to change one of the concerns later on.

Currently Egemin considers to introduce the MAS solution step-by-step, starting
with a centralized server that contains all the agents. In such a setup, remote communi-
cation would only be needed to communicate with Ensor (the vehicle control software).
However, the original MAS design assumes as particular distribution schema, consid-
ering alternatives for distribution was not an upfront requirement. A consequence is
that the assumptions about distribution are implicitly embedded in the design models,
and that it is unclear what exactly needs to be changed. For example, in a centralized
setting, it makes no sense to split up the environment. But, since all other views are
based on the primary decomposition with LVE components, changing the architecture
is quite difficult. All views assuming the use of the LVE need to be changed, implying
that nearly all design diagrams need to be adapted.

The basic reason why this change is so difficult is that the design models are not
structured according to the architectural concerns. Structuring the software according to
important architectural concerns has the advantage that it becomes easier to change the
architecture and to consider alternative solutions. In Sec. 5, we show that reorganizing
the current architecture based on architectural concerns allows to investigate different
distribution schemas for the AGV transportation system.

Reflection. In both examples, the problems with crosscutting concerns stem from the
organization of the design models. As noted before, the architectural models are orga-
nized according totypes of architectural elements, grouping modules together, group-
ing components together, etc. Theme/UML promotes a way of structuring according
to architectural concerns, grouping all architectural elements belonging to a particular
concern together. After all, each architectural concern determines a part of the structure,
as such it seems logical to describe each concern as a separate block.

Notice that we are not questioning the value of the current design. The architects
designed the system for flexibility and performance, using the guidelines for organizing
architectural documentation of Clements et al. [9]. We only argue that a reorganization
of the design models, with minimal changes to the architecture, could largely improve
the coherence of the architecture documentation and easily allow to investigate alter-
native solutions for various concerns. In Sec. 5 we illustrate the design of the AGV
transportation system restructured according to the architectural concerns and show that
comparing different distribution schemas or changing the distribution schema, is easier.
But first we introduce Theme/UML and a number of architectural extensions needed to
describe the architecture of the AGV transportation system.



<<theme>> Test1

cl Classes

+opp1()

KlasseA

+opp3()

KlasseB

+opp3()

KlasseC

instance

sd opp1

a : KlasseA c : KlasseB

opp1()

opp3()

<<theme>> 
Test-Param

cl Classes

sd x

a : KlasseX

x()

do_x()

+x()

KlasseX

+check()

KlasseY

y : KlasseY

check()

KlasseX.x(..)

<<theme>> Test2

cl Classes

+opp1()

KlasseA

+opp3()
+opp4()

KlasseB

+opp3()
+opp4()

KlasseC

instance

sd opp1

a : KlasseA c : KlasseB

opp1()

opp4()

Fig. 4.Three example themes: Test1, Test2 and Test-Param.

4 Theme/UML and architectural extensions

Theme/UML is an aspect oriented design approach, introduced by Clarke et al. [16,6].
Historically, the approach originates from the work on subject oriented programming
and design [17,18] and multi-dimensional separation of concerns [19]. Currently, it is
one of the best known and documented aspect-oriented design approaches. The
Theme/UML languages is an extension to UML3.

The essential idea behind the Theme/UML approach is to structure the design (and
the corresponding design models) according to the important concerns. In this section
we briefly explain the Theme/UML essentials, together with extensions we have intro-
duced for architectural design.

A theme. A themedescribes a part of the design using several design models (e.g.
class diagrams or sequence diagrams), where only the portions relevant to a particular
concern are shown. Essentially, a theme groups several design models together that
describe a single concern.

Themes are graphically represented by a UML package with a<<theme>> stereo-
type. Yet, there is a significant difference between themes and packages. Themes must
be declaratively complete (meaning all elements used in the theme must be defined
within the theme) and are always described independently from other themes (there
is no “include” or “import” statement like for packages). Relations and dependencies
between themes are specified during the composition.

3 Originally defined as extension to UML 1.3 in [20], later used in UML 1.4 and UML 2.0.



<<theme>> Test

<<theme>> 
Test2

<<theme>> 
Test1

themename("Test")
match(name)
merge

cl Classes

+opp1()

KlasseA

+opp3()
+opp4()

KlasseB

+opp3()
+opp4()

KlasseC

instance

sd opp1

a : KlasseA c : KlasseB

opp1()

opp4()

opp3()

Fig. 5.Composing Test1 and Test2 together in the composed theme Test.

Themes can be composed together to form new themes. Themes defined by a com-
position of other themes are called composed themes, the other ones are called ba-
sic themes. For example, Fig. 4 contains three basic themes (Test1 , Test2 and
Test-Param ), Fig. 5 contains the composed themeTest and Fig. 6 contains the
composed themeSystem .

In the original Theme/UML approach, design models are either class or sequence
diagrams. We consider design models in a broader sense, a design model can be: graph-
ical (e.g. UML class diagram) or textual (e.g. a table with responsibilities for each
component or a formal description of the behavior); a general design model (e.g. an
architectural view or an UML diagram) or a domain specific model (e.g. Agent UML
(AUML [21])). For clarity every design model is named and embed in a frame. Em-
bedding all design models in frames is not standard in UML or Theme/UML, both
approaches only embed sequence diagrams in a frame. But we have used the frames
to allow a better visual separation between models within a theme, especially in case
of multiple design models. The types of design models are sequence diagrams (sd) and
class diagrams (cl); and we have added state diagrams (st), clarification tables (tbl),
C&C diagrams (cc) and deployment diagrams (dpl). The type of the design diagram is
visible in the upper-left corner of the frame. For example in Fig. 4, all themes contain
one class and one sequence diagram.

Parameterized themes.A theme can optionally containparameters, this defines pat-
terns that can be instantiated later on [22]. The parameters are specified in a dashed
box at the upper right corner of the theme. Themes with parameters can be instantiated
multiple times and a parameter can be bound to multiple values. A parameterized theme
describes crosscutting behavior.

For example in Fig. 4, theTest-Param theme contains one parameter, being the
KlasseX.x(..) method (the dots mean that the parameters are unspecified). The
sequence diagrambehavior specifies that when the operationx is called (which is
a parameter), the sequence of the parameterized method must be changed by first call-
ing thecheck operation and then the behavior of the original method. As such, the
Test-Param theme adds the check behavior to the methods whereKlasseX.x()



<<theme>> 
Test

<<theme>> 
Test-Param

themename("System")
bind(KlasseB.opp3())

<<theme>> System

cl Classes

+opp1()

KlasseA

+opp3()
+opp4()

KlasseB

+opp3()
+opp4()

KlasseC

instance

sd opp1

a : KlasseA c : KlasseB

opp1

opp4

opp3()
+check()

KlasseY

y : KlasseY

check()

do_opp3()

Fig. 6.Composing Test and Test-Param together in the composed theme System.

is bound to. The composition is described in details in Fig. 6 and the result is explained
in details when introducing the bind tag.

Composition of themes. Once the concerns are designed in separate themes, the
themes must be integrated to understand the system as a whole.

Theme composition is done in a theme composition diagram. Relations are repre-
sented by lines connecting the themes. Every relation is annotated with a UML note
containing composition tags (additional information about how the concerns should be
related / composed). Composition tags must be interpreted from top to bottom. Typ-
ically, a composition relationship contains tags identifying corresponding design ele-
ments in the related models and tags specifying how the corresponding elements must
be integrated. For parameterized themes, the composition relationship contains binding
tags to bind the parameters to concrete values. Possible tags are:

themename(”x”): Specifies the name of a composite theme. In Fig. 5 the composed
themeTest describes the composition between themeTest1 and Test2 . In
Fig. 6 theTest theme is further composed with theTest-Param theme, this
new composed theme is calledSystem .

match(name): Matches the elements of different themes based on their name. The
match relations only applies for elements of the same type. The match relations is
used in Fig. 5 to match elements from themeTest1 with elements form theme
Test2 . In the example, all classes match with each other. The operationopp1 is
defined in both themes, but but the behavior specified in the themes is different and
must be integrated (see further).

map(expression,componentType):Maps the component types in expression on the
type componentType. The expression can either be a single type (e.g.
map(typeA,typeB)), a list of types (e.g. map({typeA1,typeA2},typeB) or a regu-
lar expression on types (e.g. typeA+ stands for typeA and all subtypes, typeA*



stands for all types of which their name starts with typeA). The map tag is not part
of standard Theme/UML.

merge: Merge matching elements. For each type of model and type of element, one
have to specify what happens in case of a merge. An example can be found in
Fig. 5. The figure contains both the composition specification (left) and the reifi-
cation of this specification (at the right). As can be seen from the figure, both the
class definitions and behavior have been merged.

override(themeA,themeB): Overrides matching elements from themeA with elements
from themeB. This tag is part of standard Theme/UML, but we have not used it.

bind(params): Binds concrete values to parameters. “params” stands for a list of con-
crete values to fill in. For example, Fig. 6 binds themeTest-Param to the theme
Test . More concretely, the composition tag bind(KlasseB.opp3()) specifies to bind
KlasseB to KlasseX andopp3() to x() . The result of the binding is that the
behavior specified in the parameterized theme (Test-Param ) is inserted in the
behavior of the theme it is composed with (Test ). The right part of Fig. 6 is a
reification of the binding.

Finally, we introduceinteraction refinements. An interaction refinement is a relation be-
tween two design models (not themes!). It is not part of standard UML or Theme/UML.
Figure 11 contains an example of the interaction refinement. Interaction refinement is
indicated by a forked arrow between design models. Above the arrow is the description
of the original interaction, below the arrow is a description on how the interaction must
be refined. Using AOSD terminology: the part above the arrow (a situation description)
together the bind tags roughly corresponds to a pointcut and the part below the arrow
roughly corresponds to an advice.

Overview of our architectural extensions to Theme/UML Firstly, we integrated sev-
eral new types of design models, namely state diagram, clarification table, deployment
diagram, AUML sequence diagram.

Secondly, we introduced support for refinement, both for components and interac-
tion. Refinement on the level of components is supported by the map tag that can be
added to the composition specification, mapping several component of a theme on a
single component of another theme. Refinement on the level of interaction is added by
the interaction refinement relations between design models.

Finally, we used a slightly different notation to specify the composition relation be-
tween themes. All composition tags are specified in a single composition specification
–a UML note attached to the composition– and must be interpreted from top to bottom.

5 Design of the AGV transportation system

In this section we illustrate the design of the AGV transportation system restructured
according to the concerns, and we show that changing the distribution schema and com-
paring different distribution schemas is easier with the new design4.

4 From now on we refer to the design of the motivation section (and associated previous work)
as the original design, the design of this section is called the new design.



<<theme>> Agents-Environment-Decomposition

AGVAgent: Agent controlling an AGV-vehicle. Decides on transportation tasks, 
routing, maintenance, …

TransportAgent: Agent responsible for a transportation task. Searches for most 
suited AGV and keep track of the state of the task.

TransportManagerAgent: responsible for communication with external WMS, 
instanciating TransportAgents and processing query’s and updates of 
WMS.

Environment: Provides abstraction layer: (1) offering communication and 
coordination between agents (2) between the agent and the real 
world, i.e. representation of real world state of AGV in an 
understandable format and translating high level operation to format 
understandeable for Ensor.

WMS: Warehouse Managment System (WMS). External to system. Generates 
tasks and possible changes task or queries progress.

Ensor: Low level vehicle control software. External to system. Provides operation 
to drive around and to query the vehicle status.

<<component>>
Environment

TransportAgentSA

WMSInterface

AGVAgentSA

<<component>>
TransportManagerAgent

AGVVehicleInterface

TMAgentSA

<<component>>
TransportAgent

<<component>>
Ensor

<<component>>
AGVAgent

<<component>>
WMS

System boundary

cc C&C tbl ComponentReponsibilities

Fig. 7.Theme describing the decomposition into agents and environment.

<<theme>> TransportManagerAgent-Behavior

sd NewTransportArrival

wms : WMS tm : TransportManager env : Environment

createTransportAgent

ta : TransportAgent

new(t)

start()

newTransport

sd TransportFinished

sd QueryTransportStatus

sd AdaptTranportState

cl Interfaces

+newTransport(in t : Transport)

«interface»
WMSInterface

+createTransportAgent(in t : Transport)

«interface»
TMAgentSA

+new(in t : Transport)
+start()

«interface»
TransportAgentSA

Fig. 8.Theme grouping the behavior of the TransportManagerAgent.

<<theme>> 
Agents-Environment-

Decomposition

<<theme>>
TransportManagerAgent

-Behavior

themename("AEDAgentBehavior")
match(name)
merge

Fig. 9. Composition of Agent-Environment-Decomposition theme (Fig. 7) and
TransportManagerAgent-Behavior theme (Fig. 8).



In Sec. 5.1 we start from two important architectural concerns to define basic themes,
the decomposition into agent and an environment and the behavior of the individual
agents. In Sec. 5.2, the coordination protocol between the agents is introduced. In
Sec. 5.3 we add distribution into the design, describing two deployment alternatives:
centralized and decentralized deployment of agents. Finally, we reflect on the design
and the architectural extensions of Theme/UML in Sec. 6.

5.1 Decomposition of agents and individual behavior

This section starts from two important architectural concerns: the decomposition into
agent and an environment (Agents-Environment-Decomposition theme) and
the behavior of individual agents (we only elaborate on the behavior of the Trans-
portManagerAgent in theTransportManagerAgent-Behavior theme). We de-
scribe both themes in more detail and describe how they can be composed.

The Agent-Environment-Decomposition theme defines the decomposi-
tion into agents and environment, and the responsibilities of the component types.
Figure 7 shows the theme and its two design models. The first model, calledC&C,
contains a component/connector view showing the component types, the connectors
and the respective interfaces. Two components are external to the system, Ensor and
WMS. We decided to include them into this decomposition view to illustrate how and
where they interact with the system. The second model, a clarification table called
ComponentResponsibilities , lists the main responsibilities of the individual
components. Notice that the relations between elements in different design models
within a single theme are implicit, based on the names and types of the elements. For ex-
ample, the TransportAgent appears in both models (C&C and
ComponentResponsibilities ) and represents the same component.

TheTransportManagerAgent-Behavior theme in Fig. 8 describes the be-
havior of the TransportManagerAgent and the respective interaction with the environ-
ment. Only the arrival of a new task together with the creation of a TransportAgent is
detailed, other possible interactions are represented by the empty model frames. We
decided to provide a separate theme to describe the behavior of each agent, separating
the behavior description from the decomposition.

The two themes of this section are composed in theAEDAgentBehavior theme
in Fig. 9. The composition tags specify that matching is based on names and that merge
integration is used to compose the themes together. In this particular example, there is
no real merging because all models are of a different type. The composition groups the
models together and because of the implicit relations between the design models within
the new theme, theTransportManagerAgent-Behavior theme adds interface
specifications and behavior to theAgent-Environment-Decomposition theme.

5.2 Adding coordination

In this paper we focus on a single subproblem for coordination: the allocation of tasks to
AGVs. Since there is no central controlling entity, the agents have to agree amongst each
other which AGV performs what transport. To solve this problem, we have used the well
known Contract Net (CNET) protocol. The CNET protocol is originally proposed by
Smith et al. [23]. We used the FIPA-CNET protocol described in the FIPA standard [24],
slightly extending the original protocol.



<<theme>> FIPA-ContractNet-Protocol

sd <<auml>> Protocol interaction

Initiator Participant

cfp

refuse

propose

reject-Proposal

accept-Proposal

failure

inform-done

m

m - k

k

k-1

st Initiator

Proposing
/ cfp

refuse 

propose 

Notifying
na: / selectWinner

/ reject-Proposal

TaskInProcess

/ accept-Proposal

inform-done 

failure 

st Participant

cfp 

[suited] / propose

PossibleTask

[unsuited] / refuse

PerformTask

accept-proposal / startTask

reject-Proposal 

[suceed] / inform-done

[failure] / failure

Proposing
/ isSuited

isSuited(...)

selectWinner(...)

start(...)

<Initiator{start(..)},Participant>

startTask(...)

cl Classes

+selectWinner(in ...)
+start(in ...)
«signal»-refuse()
«signal»-propose()
«signal»-failure()
«signal»-inform-done()

Initiator

+isSuited() : bool
+startTask()
«signal»-cfp()
«signal»-reject-Proposal()
«signal»-accept-Proposal()

-succesful : bool
-done : bool

Participant

Agent

Fig. 10.Theme describing the FIPA Contract Net protocol.

<<theme>> Message-Send

sd MessageComSubSys

A B

<A,B.x,ComSubSys>

mf : MessageFactory

x = assemble("x")

sd MessageSend

A B

x

ComSubSys

send(x,B)

mi : MessageInterpreter

mi=getMessagIn()

put(x)

x

cl Classes

A

«signal»-x()

B

+send()

ComSubSys

MessageInterpreter+getMessageIn()

Agent
mf

mi

MessageFactory

Fig. 11.Theme describing the handling of a message between agent A and agent B.



<<theme>> Fipa-
CNET-Protocol

<<theme>> 
NetworkMessages

<<theme>>
AED+AgentBehavior

themename("System-With-Coord")
NetworkMessages.bind(Fipa-CNET-Protocol.Initiator,Fipa-CNET-Protocol.Participant.*)
NetworkMessages.bind(Fipa-CNET-Protocol.Participant,Fipa-CNET-Protocol.Initiator.*)

Fipa-CNET-Protocol.bind(TransportAgent.start(...),AGVAgent)

Fig. 12.Composition of CNET coordination and agents/environment.

Figure 10 describes the CNET protocol as a parameterized theme, called
Fipa-ContractNet-Protocol , independent of a particular application. The pa-
rameters are specified when binding the theme with a particular application, e.g. in
Fig. 12 the CNET protocol is bound to the agents of the AGV transportation system.

The CNET protocol description contains four models. The ProtocolSequence model
describes the interaction between the agents, using the AUML language [21]. Notice the
difference between operations calls (black arrow head) and sending messages. This di-
agram does not specify how these messages are sent. The Initiator and the Participant
design models describe the internal states and the transitions between these states for the
respective agents. The annotations of the transitions are
’event [condition] / action ’. The ’na:’ in the transition between Propos-
ing and Notifying stands for an event triggered by a timer. Finally, the Classes model
describes the interfaces of the participating classes.

Before being able to bind the CNET protocol to the decomposition into agents and
an environment in the AGV transportation system, we must solve a mismatch between
them. At the one hand, the CNET protocol is described as an interaction between agents,
abstracting away how exactly this interaction takes place. At the other hand, in the de-
composition into agents/environment all interactions are mediated by the environment.
To solve the mismatch we defined a new themeMessage-Send to describe message
sending between two agents, in Fig. 11. TheMessage-Send theme contains an inter-
action refinement indicated by an forked arrow. TheMessage-Send theme describes
that each signal x between types A and B (i.e. the interaction matching model Mes-
sageSend) is replaced by assembling the appropriate message, sending it through the
communication subsystem and interpretation and signalling by the MessageInterpreter.
We still abstract from how messages are handled within the environment.

Finally, we come to the binding of the CNET protocol, sending of messages and
the agents/environment decomposition, illustrated in Fig. 12. For clarity, we add a
prefix with the theme name to the elements used in the binding. As last illustration,
we partially instantiated the composition of coordination and the decomposition into
agents/environment in Fig. 13.

5.3 Adding distribution

To add distribution, we first considered the distributed infrastructure on which the AGV
transportation system has to be deployed (Fig. 14). The architectural decisions on how



ta : TransportAgent B : AGVAgentmf : MessageFactory

cfp = assemble("cfp")

env

send(cfp,B)

mi : MessageInterpreter

mi=getMessagIn()

put(cfp)

cfp

mf2 : MessageFactory

propose = assemble("propose")

send(propose,A)

isSuited(...)

Fig. 13.Partial instantiation of composing between coordination and the decomposition
into agents/environment.

<<theme>> Infrastructure

<<device>>
WirelessHub

<<device>>
WiredRouter

AGV Vehicle Server

When instanciating this infrastructure there will be multiple 
AGVVehicles and possibly multiple wirelessAccessPoints 
and Servers

dpl DeploymentInfrastructure

Fig. 14.Partial instantiation of composing between coordination and the decomposition
into agents/environment.



<<theme>> Centralized-deployment

tbl SubsystemResponsibilities

WMS: external to system, contains 
the Warehouse 
Management System 
(WMS)

CentralServer: centralized server 
responsible to run all 
agent and environment 
logic

AGVVehicle: contains only 
components to support 
remote acces to ensor.

CentralServerWMS

Server

dpl Infrastructure

: CentralServer

<<component>>
Environment

: AGVVehicle

TransportAgentSA

WMSInterface

AGVAgentSA

<<component>>
TransportManagerAgent

AGVVehicleInterface
AGVVehicleInterface

RemoteCommunication

: WMS

<<component>>
RemoteProxyEnsor

<<component>>
LocalProxyEnsor

TMAgentSA

<<component>>
TransportAgent

<<component>>
WMS <<component>>

AGVAgent

<<component>>
Ensor

dpl Central

Fig. 15.Centralized deployment.

to deploy the system on this infrastructure are important because of significant influence
on the qualities and the structure of the system. We describe two deployment alterna-
tives: centralized deployment —with all agents on a single server—, and decentralized
deployment —with the AGV agents located on the AGV vehicles—.

Centralized deployment The idea behind the centralized deployment schema is to
keep all computation on a centralized server. This deployment schema is described
in Fig. 15. The system has two subsystems: an AGVVehicle subsystem and the Cen-
tralServer subsystem. In this case, all agents are deployed on a central server subsys-
tem and the AGV vehicle subsystem only contains the vehicle control software and
a remote interface to handle communication with the environment component on the
central server subsystem.

Notice that central deployment is easy, only the communication with the remote
vehicle software needs to be added. The LocalProxyEnsor could also contain some
caching mechanism to speed up the communication between the Environment and En-
sor. Figure 16 describes the relations between theInfrastructure , the
Centralized-Deployment and theSystem-With-Coord theme.

Decentralized deploymentThe idea behind the second deployment schema is to dis-
tribute the computation over the AGV vehicles, described in Fig. 17.

The decentralized deployment schema has also two subsystems: the AGV Control
subsystem and the Transport Base subsystem. The AGV Agents are deployed on the
first subsystem, a transport manager and all transport agents are deployed on the second
subsystem. Because the agents are spread over multiple computer systems, the environ-
ment needs to be split up into several components and additional support is needed for
communication and state maintenance between the different parts of the environment
(provided by an in-house developed middleware called ObjectPlaces [25,26]).



<<theme>> 
Infrastructure

<<theme>> Centralized-
Deployment

<<theme>> System-
With-Coord

themename(“Centralized-System”)
match(name)
merge

Fig. 16.Composition of infrastructure, centralized deployment and the remainder of the
system.

cc LVE

<<component>>
LVE

<<component>>
AGVControlLVE

ObjectSharingInterface

<<component>>
TransportBaseLVE

<<component>>
ObjectPlaces

TransportBase: Server subsystem containing at least one TransportManagerAgent and several TranportAgents. In practice there can be 
multiple instanced of the TransportBase in a single system.
AGVControl: Subsystem to control an AGV vehicle. Contains exactly one AGVAgent. There will be one AGVControl subsystem for every 
AGV in the system.

LVE: Local Virtual Environment, local representation of the environment. An additional 
responsibility is to keep the LVE consistent with the other LVEs. 

AGVControlLVE: LVE accessible by the AGVAgent and handling the communication 
with Ensor.

TransportBaseLVE: LVE accesible by the TranportAgent and TransportAgentManager.
ObjectPlaces: Middleware for coordination in ad-hoc networks. 

tbl SubSystemResponsibilities

<<subsystem>>
AGVControlSystem

<<component>>
AGVControlLVE

AGVAgentSA

ObjectSharingInterface

<<component>>
AGVAgent

<<component>>
ObjectPlaces

vehicle remote : RemoteCommunication

<<use>>

<<use>>
<<use>>

cc AGVControlSubsystem

<<subsystem>>
TransportBase

<<component>>
TransportBaseLVE

TransportAgentSA

WMSInterface
<<component>>

TransportManagerAgent

ObjectSharingInterface

<<component>>
TransportAgent

<<component>>
ObjectPlaces

TMAgentSA

remote : RemoteCommunication

wms

<<use>>
<<use>>

cc TransportBaseSubsystem

<<theme>> Decentralized-deployment

: AGVVehicle

: WMS, WMS

transportBase : Server

AGVVehicleInterface

<<subsystem>>
AGVControlSystem

vehicle

remote

<<subsystem>>
TransportBase

remote

wms

<<component>>
WMS

<<component>>
Ensor

dpl Decentralized

tbl ComponentResponsibilities

Fig. 17.Decentralized deployment and associated refinements of design.

<<theme>> 
Infrastructure

<<theme>> Decentralized-
Deployment

<<theme>> System-
With-Coord

themename(“Decentralized-System”)
map({LVE+,ObjectPlaces},Environment)
match(name)
merge

Fig. 18.Composition of infrastructure, decentralized deployment and the remainder of
the system.



The Decentralized-Deployment theme contains five design models. Two
clarification tables explain the responsibilities of newly introduced subsystems and
components. The AGVControlSubsystem and the TransportBaseSubsystem C&C di-
agram explain the internal structure of the respective subsystems. The LVE C&C dia-
gram shows the generalization relation between the LVE and the specialized AGVCon-
trolLVE and TransportBaseLVE. The final design model, the Decentralized deployment
diagram, describes the deployment of the system.
Notice that the design diagrams of Fig. 17 (new design) are similar to the diagrams of
Fig. 7 (original design). As we have explained before, the first design models in the
original design are the result of relating the decomposition into agents and an envi-
ronment and the deployment infrastructure, the same is true for the models in Fig. 17.
Additionally, we did not alter the design, we only restructured it. The new descripstion
also contains separate models for the decomposition into agents and an environment
and a separate model describing the infrastructure. These models are lost in the original
documentation.

Finally, we describe the relation between theInfrastructure ,
Decentralized-Deployment and theSystemWithCoordination theme in
Fig. 18. The composition maps the LVE+ (LVE and all subtypes) and Objectplaces
on the environment. For the remainder we use straightforward matching by name and
merge integration.

6 Discussion

6.1 Design of the AGV transportation system

Using Theme/UML for the architectural design of the AGV transportation system proved
to be a valuable experience. Restructuring the design according to the important archi-
tectural concerns makes comparing alternative solutions or changing the architecture
easier. Section 5 shows that the new design (1) makes it easier to compare two differ-
ent deployment schemas for the same decomposition into agents/environment, and (2)
allows to change the deployment of the software without any change to the design for
coordination.

It is important to notice that reifying the composition of the new design will yield the
same system as in the original design. The difference is that the architectural description
is structured to align with the architectural concerns. Since each concern determines a
specific part of the architectural structure, describing this structure as a single block
makes it easier to change the concern. For example, since all decisions for distribution
are described in a single theme, it is easier to change the distribution.

Critical notes. Obviously, the advantages of separating concerns only applies to the
concerns that are explicitly considered during architectural design. As such, choosing
the appropriate architectural concerns is very important.

The composition of different parts of the design is not always easy. Assuming that
all composition relations can be defined using a few composition tags would be naive.
For example, we encountered a mismatch between the structures of the
FIPA-ContractNet-Protocol and theAgent-Environment-Decomposition
themes which need to be composed (see Fig. 10 and Fig. 7 respectively). To solve this



problem, we first build the additionalSystem-With-Coord theme that defines how
the different structures should be matched with each other. Afterwards, we composed
the mismatching themes with the additional theme, forming a solution to the composi-
tion.

A drawback of the new design is that it is more difficult to have an overall view on
the system. While the structures of individual architectural concerns is much clearer,
reification of some compositions will be needed to to get an overall view of the system.
Adding reified design models in the architectural documentation helps to improve the
understanding of the system as a whole.

In our experiment, only a small part of the design of the AGV transportation system
has been considered. How scalable the approach is in case of a large increase in concerns
and themes needs furter study.

Each theme describes a separated concern, however, a theme provides no encap-
sulation. All parts of the structure and behavior of a theme can always be overriden
or changed by another theme. For example, in Fig. 4 there is no direct composition
relations betweenTest2 andTest-Param , but still Test-Param changes the be-
havior specified inTest2 . The change happens because Test-Param is composed with
Test , being a composition ofTest1 andTest2 . Clearly, this can lead to unexpected
interferences between concerns. As a consequence, to determine if the behavior has
changed or is overridden one must study the relations of the theme and all composite
themes containing this theme.

6.2 Theme/UML

We point out a number of limitations of Theme/UML for architectural design of MAS,
and we explain the extensions we have introduced to deal with these limitations.

There is no support to integrate new types of design models. As explained in sec-
tion 4, the UML specification contains several types of diagrams related to detailed
design. MAS architects however, use design models specific for architecture (such as
the set of diagrams used by Clements et al. in [9]), and MAS-specific design models
(such as AUML). The integration of new types of design models in this paper shows that
new models can be integrated relatively easily. Still, disciplined guidelines to integrate
new types of models are essential to extend Theme/UML for architectural design.

Theme/UML has no support for gradual refinement of design models, however this
is essential for architectural design. To allow refinement of components, we added the
map tag to the Theme/UML composition. A map tag expresses the refinement of a com-
ponent in one theme in several subcomponents belonging to other themes. To support
refinement of interactions, we introduced an interaction refinement relation that is in-
spired by the work of Atkinson et al. [27,28]. Interaction refinement relations, together
with the parametrization of Theme/UML, provides a powerful way of refining interac-
tions between components.

Theme/UML only supports execution joinpoints. Figure 19 illustrates the difference
between call joinpoints and execution joinpoints. Joinpoints are represented by a black
disc. This is a severe limitation, both for detailed and for architectural design.

There is a lack of tool support for Theme/UML. A designer using Theme/UML
must use a standard UML drawing tool and must do every reification of a composition
by hand, a cumbersome process. A tool that includes support for automatic reification
of compositions would be most helpful.



caller : A callee : B

operation()

before call

after call

before execution

after execution

Fig. 19.Composition of infrastructure, decentralized deployment and the remainder of
the system.

7 Related work

Software architecture in MAS. Several researchers use the notion of software archi-
tecture and architectural design (based on [8,9,29]) to develop MASs. Shehory [30]
considers MAS from the perspective of architectural styles, to reasons about the qual-
ities that are typically attributed to the MAS styles. PROSA [31] offers a reference
architecture for coordination in manufacturing control. Our research group defined a
reference architecture for situated MAS [32] and developed an industrial AGV trans-
portation system using MAS. The software architecture of this system is modeled with
different architectural views and structured according to different viewtypes (module,
component, deployment). The approach promoted in this paper differs from previous
approaches, since it advocates a way of structuring the architectural models based on
importantarchitectural concerns.

Aspect orientation and MAS. Aspect orientation is rarely used to develop MAS.
Kendall describes the use of aspect orientation in the context of MAS in [33,34] (more
recently continued in [35]). The approach uses aspect-oriented programming to design
and implement role models.
In [36], Garcia et al. observe that several agent concerns such as autonomy, learning,
and mobility crosscut each other and the basic functionality of an agent. The authors
propose an aspect-oriented approach to develop agent architectures, using two types of
interfaces: regular and crosscutting interfaces. A crosscutting interface specifies when
and how an aspectual component crosscuts other components. The authors claim that
the proposed approach provides a clean separation between the agent’s basic function-
ality and the crosscutting agent properties. Unfortunately, a precise semantics of the
crosscutting interface is lacking. The differences with the work in this paper are: (1)
we focus on MASs as a whole, identifying concerns that span several agents; (2) we
use the well known aspect-oriented design language Theme/UML; and (3) we identify
crosscutting and separation of concerns on the level of design models, not components.
More recent, Garcia et al. [37] identifies crosscutting concerns for agent systems de-
scribed in the ANote modeling language. ANote defines several domain specific views,
e.g. an agent view, a goal view and a scenario view. Both in the goal and scenario view
crosscutting concerns have been identified and a new notation is provided to cope with
this crosscutting. The main differences with the work in this paper are: (1) the authors



used a domain specific language ANote, while we use several types of design models
based on UML; and (2) the authors provide a specific extension to the domain specific
language, while we use the model separation capabilities of Theme/UML.

Architectural design and aspect orientation. Next to Theme/UML there are several
aspect-oriented design languages. A good survey on design approaches (both architec-
tural and detailed design) can be found in [38,39]. We briefly introduce two approaches
closely related to the work in this paper.

Atkinson and K̈uhne [28] propose architectural stratification to combine the strengths
of component-based frameworks and model-driven architectures to support AOSD. The
approach is about gradual refinement of architectural structures base on architectural
concerns, introducing interaction refinement as a relations between different design
models (in this case architectural views). Our notion of interaction refinement is based
on this work.

Katara and Katz [40] observe that incremental design of aspects has been neglected
and that cooperation or interference between aspects should be made clear at the design
level. The work is strongly related to Theme/UML, since it provides a similar extension
to UML. The concern diagram of that paper is similar to our notion of concern compo-
sition diagram. The main difference is that Katara et al. focusses on how aspects can be
combined to treat different concerns of a system and possible interactions between con-
cerns, while the work in this paper and Theme/UML only use the diagram to describe
the composition of design models.

8 Conclusion

In this paper, we studied an alternative way of structuring the design models of a MAS
for an AGV transportation system using Theme/UML.

The results of our experience are promising. Separating the architectural concerns
results in more coherent architectural description and allows to better investigate alter-
natives for particular concerns. We illustrated this by changing the distribution schema
of the AGV transportation system. On the other hand, documenting different concerns
separately makes it more difficult to have an overall view of the system.

Finally, the experiment shows that Theme/UML is not ready yet for architectural
design. We propose several extensions to Theme/UML to support architectural design.
Extensions include the integration of new types of design models and support for refine-
ment. The proposed extensions are based on particular needs we experienced during the
restructuring of the design models of the AGV transportation system. As future work,
we plan to use Theme/UML for a number of additional architectural (re) designs. From
these experiences we aim to extend Theme/UML for architectural design in a disci-
plined manner.

9 Acknowledgement

EMC2 and Nelis Boucḱe are supported by the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen). Thanks to Steven Op de beeck and Dim-
itri Van Landuyt for the discussions about this paper.



References

1. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV trans-
portation systems. In: International Conference on Autonomous Agents and Multi-Agent
Systems, Industry Track. (2005) 25–29

2. Boucḱe, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the atam to an architecture for
decentralized control of a transportation system: Experience report. In: Quality of Software
Architectures conference (QoSA). (2006)

3. Egemin, DistriNet: Emc2: Egemin modular controls concept. (IWT-funded project with
Distrinet and Egemin. http://emc2.egemin.com)

4. Egemin: Egemin website. (www.egemin.com )
5. Boucḱe, N., Holvoet, T., Lefever, T., Sempels, R., Schelfthout, K., Weyns, D., Wielemans, J.:

Applying the Architecture Tradeoff Analysis Method (ATAM) to an industrial multi-agent
system application. Technical Report CW431, Departement of Computer Sience, KULeuven
(2005)

6. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. Addison-Wesley (2005)
7. Weyns, D., Helleboogh, A., Steegmans, E., De Wolf, T., Mertens, K., Boucké, N., Holvoet,

T.: Agents are not part of the problem, agents can solve the problem. In: Proceedings of the
OOPSLA 2004 Workshop on Agent-oriented Methodologies. (2004)

8. Bass, L., Clements, P., Kazman, R.: Software Architectures in Practice (Second Edition).
Addison-Wesley (2003)

9. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures, Views and Beyond. Addison Wesley (2003)

10. Loughran, N., Rashid, A., Chitchyan, R., Leidenfrost, N., Fabry, J., Cacho, N., Garcia, A.,
Sanen, F., Truyen, E., Win, B.D., Joosen, W., Boucké, N., Holvoet, T., Jackson, A., Nedos,
A., Hatton, N., Munnelly, J., Fritsch, S., Clarke, S., Amor, M., Fuentes, L., Pinto, M., Canal,
C.: A domain analysis of key concerns known and new candidates. AOSD-Europe Deliver-
able D43, AOSD-Europe-KUL-6 (2006)

11. Filman, R.E., Elrad, T., Clarke, S., Aks.it, M., eds.: Aspect-Oriented Software Development.
Addison-Wesley (2005)

12. Baniassad, E., Clements, P.C., Araujo, J., Moreira, A., Rashid, A., Tekinerdogan, B.: Dis-
covering early aspects. IEEE SoftwareJanuary/February (2006)

13. Early Aspects: Aspect-oriented requirements engineering and architecture design. (www.
early-aspects.net/ )

14. AOSD Wiki: Glossary. (www.aosd.net/wiki/index.php?title=Glossary )
15. Boucḱe, N., Holvoet, T.: Relating architectural views with architectural concerns. In: Ac-

cepted on Early Aspects at ICSE. (2006)
16. Baniassad, E., Clarke, S.: Theme: An approach for aspect-oriented analysis and design. In:

Proceedings of the International Conference on Software Engineering. (2004)
17. Harrison, W., Ossher, H.: Subject-oriented programming: a critique of pure objects. SIG-

PLAN Not. 28 (1993) 411–428
18. Clarke, S., Harrison, W., Ossher, H., Tarr, P.: Subject-oriented design: towards improved

alignment of requirements, design, and code. SIGPLAN Not.34 (1999) 325–339
19. Tarr, P.L., Ossher, H., Harrison, W.H., Jr., S.M.S.: N degrees of separation: Multi-

dimensional separation of concerns. In: International Conference on Software Engineering.
(1999) 107–119

20. Clarke, S.: Extending standard uml with model composition semantics. Science of Computer
Programming44 (2002) 71–100

21. Odell, J., Parunak, H.V.D., Bauer, B.: Extending uml for agents. In abd Yves Lesperance,
G.W., Yu, E., eds.: Proc. of the Agent-Oriented Information Systems Workshop at the 17th
National conference on Artificial Intelligence. (2000) 3–17

www.egemin.com
www.early-aspects.net/
www.early-aspects.net/
www.aosd.net/wiki/index.php?title=Glossary


22. Clarke, S., Walker, R.J.: Composition patterns: an approach to designing reusable aspects.
In: Proceedings of the International Conference on Software Engineering. (2001) 5–14

23. Smith, R.G.: The contract net protocol: high-level communication and control in a distributed
problem solver. Distributed Artificial Intelligence (1988) 357–366

24. FIPA TC Communication: Fipa contract net interaction protocol specification (document
sc00029).http://www.fipa.org/specs/fipa00029/SC00029H.html (2002)
FIPA-Standard.

25. Schelfthout, K., Weyns, D., Holvoet, T.: Middleware for protocol-based coordination in
dynamic networks. In: MPAC ’05: Proceedings of the 3rd international workshop on Mid-
dleware for pervasive and ad-hoc computing, New York, NY, USA, ACM Press (2005) 1–8

26. Schelfthout, K., Holvoet, T., Berbers, Y.: Views: Customizable abstractions for context-
aware applications in manets. In: Proceedings of SELMAS’05, workshop at ICSE’05. (2005)

27. Atkinson, C., K̈uhne, T.: Stratified frameworks. International Journal of Computing Science
and Informatics, Informatica25 (2001) 393401

28. Atkinson, C., K̈uhne, T.: Aspect-oriented development with stratified frameworks. IEEE
Software20 (2003) 81–89

29. Garlan, D., Shaw, M.: An introduction to software architecture. In Ambriola, V., Tortora,
G., eds.: Advances in Software Engineering and Knowledge Engineering, Singapore, World
Scientific Publishing Company (1993) 1–39

30. Shehory, O.: Architectural properties of multiagent systems. Technical Report CMU-RI-
TR-98-28, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1998)

31. Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture
for holonic manufacturing systems: Prosa. Computers in Industry37 (1998)

32. Weyns, D., Holvoet, T.: Multiagent systems and software architecture. In: Special Track on
Muliagent Systems and Software Architecture, Net.ObjectDays. (2006)

33. Kendall, E.A.: Role model designs and implementations with aspect-oriented program-
ming. In: OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, New York, NY, USA, ACM
Press (1999) 353–369

34. Kendall, E.A.: Role modelling for agent systems analysis, design and implementation. IEEE
Concurrency8 (2000) 34–41

35. Cabri, G., Leonardi, L., Zambonelli, F.: Modeling role-based interactions for agents. In: The
Workshop on Agent-oriented methodologies at OOPSLA. (2002)

36. Garcia, A., Kulesza, U., Lucena, C.: Aspectizing multi-agent systems: From architecture
to implementation. Software Engineering for Multi-Agent Systems IIILNCS 3390(2004)
121–143

37. Garcia, A., Chavez, C., Choren, R.: Enhancing agent-oriented models with aspects. In:
Proceedings of the ACM Fifth International Joint Conference on Autonomous Agents &
Multi Agent Systems. (2006)

38. Op de beeck, S., Truyen, E., Boucké, N., Sanen, F., Bynens, M., Joosen,
W.: A study of aspect-oriented design approaches. Report CW 435, De-
partment of Computer Science, K.U.Leuven, Leuven, Belgium (2006) URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW435.abs.html.

39. Chitchyan, R., Rashid, A., Sawyer, P., Bakker, J., Alarcon, M.P., Garcia, A., Tekinerdogan,
B., Clarke, S., Jackson, A.: Survey of aspect-oriented analysis and design (2005) AOSD-
Europe Deliverable No: AOSD-Europe-ULANC-9.

40. Katara, M., Katz, S.: Architectural views of aspects. In: Proceedings International conference
on Aspect-oriented software development. (2003) 1–10

http://www.fipa.org/specs/fipa00029/SC00029H.html

	Experiences with Theme/UML for Architectural Design of a Multiagent System
	Nelis Boucké, Danny Weyns, and Tom Holvoet

