
Laws for Mediating Agents’ Activities in Situated Multiagent Systems

Danny Weyns and Tom Holvoet
Katholieke Universiteit Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium
{Danny.Weyns, Tom.Holvoet}@cs.kuleuven.be

Abstract

Research on situated multiagent systems (situated MAS) in-
vestigates decentralized architectures for software systems that
have to deal with highly dynamic operating conditions. To re-
alize the system requirements, the agents of a situated MAS
have to coordinate their behavior. The agent environment pro-
vides a means to mediate (i.e., enable and constrain) agents’
activities in the system. Laws embedded in the agent environ-
ment allow to define application specific constrains on agents
activities. In this paper, we declaratively specify the semantics
of laws for perception, action, and communication in situated
MAS. We illustrate the laws with concrete examples in an au-
tomated transportation system that we have developed. Medi-
ation of agents’ activities via the agent environment improves
separation of concerns in MAS and helps to manage complex-
ity, especially in open and pervasive environments.

1. Introduction

Research on multiagent systems (MAS) is concerned with
the study, behavior, and construction of a collection of au-
tonomous agents that interact with each other and their en-
vironment [14]. MAS architectures are assigned quality at-
tributes such as flexibility, openness, and robustness. Since the
late 1980s, the major trend in MAS research spawns from the
study of BDI-agents [11]. The basic philosophy of BDI-agents
is to reflect the practical reasoning of humans, who act in or-
der to achieve their intentions. Typical BDI approaches are
knowledge-oriented, and direct communication is employed
for knowledge sharing and agent coordination. Research in the
area of situated MAS investigates interaction-oriented agent
systems [6, 4, 2, 17, 8]. In situated MAS, the system re-
quirements are realized through interaction between coopera-
tive agents rather than as the result of advanced cognitive capa-
bilities of individual agents.

Originating from research on situated MAS, the agent en-
vironment has recently been put forward as an explicit design
abstraction in MAS [18]. The agent environment enables to
shield the complexity of the underlying deployment context to
agents, and it provides a means to mediate the agents’ activi-

ties in the system. Laws embedded in the agent environment
allow to define application specific constrains on agents’ activ-
ities. Mediation of agents’ activities via the agent environment
improves separation of concerns in MAS and helps to man-
age complexity, especially in open and pervasive environments.
The contribution of this paper is a declarative specification of
the semantics of laws for perception, action, and perception in
situated MAS. Such a specification is required to support the
disciplined engineering of situated MAS.

The remainder of the paper is structured as follows. Sec-
tion 2 gives a high-level overview of a model for the agent en-
vironment that we have developed. In section 3, we specify
laws for perception, action, and communication, and we illus-
trate the laws with concrete examples in an automated trans-
portation system that used automatic guided vehicles (AGV).
Section 4 discusses a number of related approaches. Finally,
we draw conclusions in section 5.

2. Agent environment

Over the last five years, we have developed various situated
MAS applications, ranging from a prototypical peer-to-peer file
sharing system up to an industrial automatic transportation. In
the course of building these applications, we have developed
an advanced model for situated MAS. In this section, we give
a high-level description of the agent environment in this model
and we briefly explain how we have applied the agent environ-
ment in an AGV transportation system.

2.1. Model for agent environment

Fig. 1 shows the model of the agent environment as a set
of interacting components that share a data repository. The
agent environment provides functionality to agents on top of
the deployment context. The deployment context consists of
the given hardware and software and external resources such
as sensors and actuators, a printer, a network, a database, a
web service, etc. For a distributed application, the deployment
context consists of multiple processors deployed on different
nodes that are connected through a network. Each node
provides an agent environment to the agents located at that
node. We briefly discuss the responsibilities of each of the



Figure 1. Model of the agent environment

elements of the agent environment in turn.

The State repository contains data that is shared between
the components of the agent environment. Data typically in-
cludes an abstraction of the deployment context together with
additional state related to the agent environment. Examples of
state related to the deployment context are a representation of
the local topology of a network, and data derived from a set of
sensors. Examples of additional state are the representation of
digital pheromones that are deployed on top of a network, and
virtual marks situated on a map of the physical environment.

The Representation Generator provides the func-
tionality to agents for perceiving the environment. Agents
use foci to sense the environment [21]. Foci allow an agent
to sense the environment (agent environment and deployment
context) only for specific types of information. The represen-
tation generator uses the current state of the agent environment
and possibly state collected from the deployment context to
produce a representation for the agent. Agents’ perception is
subject to perception laws that provide the means to constrain
perception. We elaborate on perception laws in the next
section.

Observation & Data Processing provides the func-
tionality to observe the deployment context and collect date
from other nodes in a distributed setting. The observation &
data processing component translates observation requests into
observation primitives that can be used to collect the requested
data from the deployment context. Data may be collected
from external resources in the deployment context or from the
agent environment instances on other nodes in a distributed
application. The observation & data processing component

can provide additional functions to pre-process data, examples
are sorting and integration of observed data.

Interaction is responsible to deal with agents’ actions
in the environment. Agents’ actions can be divided in two
classes: actions that attempt to modify state of the agent
environment and actions that attempt to modify the state of
resources of the deployment context. An example of the
former is an agent that drops a digital pheromone in the agent
environment. An example of the latter is an agent that writes
data to an external data base. Agents’ actions are subject to
action laws [17]. Action laws put restrictions on the actions
invoked by the agents, representing domain specific constraints
on agents’ actions. We elaborate on action laws in the next
section. For actions related to the agent environment, the
interaction component calculates the reaction, resulting in an
update of the state of the agent environment. Actions related to
the deployment context are passed to the Low-Level Control
component.

Low-Level Control converts the actions invoked by
the agents into low-level action primitives in the deployment
context. This decouples the interaction component from the
details of the deployment context.

Communication Mediation mediates the communica-
tive interactions among agents [20]. It is responsible for
collecting messages, it provides the necessary infrastructure to
buffer messages, and it delivers messages to the appropriate
agents. Communication mediation regulates the exchange of
messages between agents by imposing application specific
constraints on communicative interactions. We elaborate
on message laws below. To actually transmit the messages,
communication mediation makes use of the Communication
Service component.

Communication Service provides that actual infrastruc-
ture to transmit messages. Communication service transfers
high-level message descriptions used by agents to communi-
cation primitives of the deployment context and vice versa.
Depending on the particular application requirements, the
communication service may provide specific functionality to
enable the exchange of messages in a distributed setting, such
as white and yellow page services. An example infrastructure
for distributed communication is Jade [3].

Synchronization & Data Processing synchro-
nizes state of the agent environment with state of resources
in the deployment context as well as state of the agent
environment on different nodes. State updates may relate to
dynamics in the deployment context and dynamics of state in
the agent environment that happens independently of agents
or the deployment context. An example of the former is the
topology of a dynamic network which changes are reflected
in a network abstraction maintained in the state of the agent
environment. An example of the latter is the evaporation
of digital pheromones. Middleware can provide support to
spread and collect data in a distributed setting. Examples



for mobile network environments are discussed in [7, 12].
Synchronization & data processing converts the resource
data observed from the deployment context into a format that
can be used to update the state of the agent environment.
Such conversion typically includes a processing of collected
resource data.

2.2. Agent environment in AGV system

An AGV transportation system is a fully automated trans-
port system that uses multiple AGVs to transport loads in an
industrial environment. The task of the AGVs is to transport
loads from one location to another. The task stream is typical
irregular and unpredictable. In a joint project with Egemin, we
have applied a situated MAS to develop a decentralized AGV
control system aiming to improve the flexibility in the sys-
tem [19]. In the AGV application two types of agents are used:
AGV agents and transport agents. Each AGV is controlled by
an AGV agent. Transports are represented by transport agents
that reside at a stationary computer in the warehouse. Since the
physical environment of AGVs is very restricted, it offers little
opportunities for agents to use the environment for coordina-
tion. Therefore, we introduced an agent environment in which
agents are situated. The agent environment offers a medium
for agents to share information and coordinate their behavior.
An instance of the agent environment is deployed on each node
in the system (mobile AGVs and the computer with transport
agents). We developed the ObjectPlaces middleware [13] to
support communication among nodes and synchronization of
the state of neighboring agent environments.

3. Laws for mediating activities

In this section, we declaratively specify the semantics of
laws for perception, action, and communication. For the spec-
ification we use a simple formal language based on set theory
and illustrate the laws with examples from the AGV transporta-
tion system. Before we start with specifying the laws, we first
introduce a number of general definitions that are further used
in the specification.

3.1. General definitions

Ag Ag = {a1, .., ai, .., an} is the set of agents;
the index i ∈ {1, .., n} is a unique identifier for agent ai ∈ Ag;
Y = {1, .., n} denotes the set of agent identifiers in the system

Ont the ontology of the application domain;
Ont defines the terminology of the domain and is specified as
a tuple 〈V oc,Rel 〉 with:
1. V oc: the vocabulary of domain concepts
2. Rel: the set of relationships between concepts of V oc

V oc and Rel are application specific and not further specified

S Ont
E the set of state elements of the agent environment;

the set of state elements is based on ontology Ont; a state ele-
ment represents a part of the state of the agent environment or
the deployment context and is specified as 〈 sname, sfields 〉
with sname the name of the state element, and sfields a set of
fields, each field consisting of a name and a value of an accom-
panying domain; sname and sfields are application specific
and are not further specified; for brevity we use SE hereafter

Σ ⊆ 2SE the powerset of state elements;
we denote the actual set of state elements σ ∈ Σ as the current
state of the agent environment

dom(f) the domain of a function f ;
for a function f : D → {v1, .., vn} we use dom(f) to denote
the domain of f , thus dom(f) = D; we use dom(f)→ vi to
denote the subdomain of elements of dom(f) that map to vi,
with vi ∈ {v1, .., vn}

3.2. Perception laws

We start with the specification of perception laws. Then we
give a practical example of a perception law.

Fo the set of foci for agents;
a focus fo ∈ Fo allows agents to sense the environment se-
lectively and is specified as a 3-tuple 〈 i, foname, foparam 〉
with i ∈ Y the identity of the agent, foname a name that
refers to the type of information the agent aims to observe, and
foparam a set of additional scoping variables of the focus;
foname and foparam are application specific and not further
specified

Θ ⊆ 2Fo the powerset of foci in the system;
θ ∈ Θ is a set of foci of a perception request invoked by an
agent

Sc the set of perception scopes (or scopes for short);
a scope sc ∈ Sc is typed as sc : SE → Bool; i.e. a scope
maps state elements of the environment on booleans; sc(si) re-
turns true for the elements si ∈ SE that are within the scope
of sc, and sc(so) = false for the elements so ∈ SE outside
the scope; we call the set of state elements that map on true as
the domain of interest of a scope, i.e. dom(sc)→ true

N ⊆ 2Sc the powerset of scopes in the system;
η ∈ N is a set of scopes derived from a set of foci of a per-
ception request; the conversion function Scoping is typed as:
Scoping : Θ → N ; the domain of interest of a set of scopes
η is defined as: domint(η) = {s ∈ SE | s ∈ dom(sc)→ true

forall sc ∈ η}
CoP the set of perception constraints in the system;

a perception constraint cop ∈ CoP is typed as cop : SE →
Bool; i.e. a perception constraint maps state elements s ∈ SE

on booleans restricting agents’ perception of the environment;
cop(s) returns true for the state elements s ∈ SE that are re-
stricted for perception, and false for unconstrained elements

LP the set of perception laws;



a perception law lp ∈ LP is typed as lp : Sc × Σ → CoP ;
i.e., a perception law lp(sc, σ) = cop takes a scope sc together
with the current state of the agent environment σ and produces
a perception constraint cop

The application of the perception laws is defined by the
ApplyLP function that is typed as follows:

ApplyLP : N × Σ → N
ApplyLP (η, σ) = η′

ApplyLP applies the set of perception laws Lp to a set of
scopes η, given the current state of the agent environment σ.
ApplyLP results in a restricted perception scope η′. For η′

holds:

∀s ∈ SE , σ ∈ Σ :
s ∈ domint(η′) iff (s ∈ domint(η)) ∧

(∀ lp ∈ LP ,∀ sc ∈ η′ :
(∀ co ∈ lp (sc, σ) : co(s) = false))

s /∈ domint(η′) otherwise

That is, a state element is within the restricted perception scope
if (i) the state element is within the domain of interest of the
original set of scopes, and (ii) none of the constraints of the
applied perception laws is applicable to the state element. For
the domain of interest of η′ holds:

domint(η′) = (
⋃

sc∈ η dom(sc)→ true)⋂
(
⋃

lp∈LP , sc∈ η, co∈ lp(sc,σ) dom(co)→ false)

The observable domain of the perception scope (i.e. the subdo-
main of elements of observable state of the agen environment
that map to true) consists of the intersection of the domain of
interest of the scopes of the perception request and the subdo-
main of elements of the state of the agent environment that are
not constrained by the perception laws.

Example. AGV agents in the AGV transportation system avoid
collisions by coordinating with other agents through the agent
environment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is the
physical area the AGV occupies. A series of hulls then de-
scribes the physical area an AGV occupies along a certain path.
An example of a perception law in the AGV transportation sys-
tem is a law that determines the AGVs in collision range. To
guarantee safety, the subset of AGVs with which a requesting
AGV might collide must be included. Yet, the amount of in-
formation that needs to be communicated among AGVs must
be reasonably small. Fig. 2 illustrates how the safe subset of
AGVs is determined. When an AGV agent requests the AGVs
in collision range, the agent environment selects the AGVs
whose hull projection circle overlaps with the hull projection
circle of the requesting AGV. The radius of the hull projection
circle is equal to the distance between the AGV and the furthest
point on its hull projection. The set of AGVs with overlapping
circles provides a first approximation of the vehicles that are
in collision range. The constraint to select the set of AGVs in

AGV A

AGV B

Hull
projection

Hull
Projection 

circle

Figure 2. Determining AGVs in collision range

collision range of an AGVreq is defined as:

in-col-rangereq = {AGVother ∈ AGV |
dist(AGVreq.pos, AGVother.pos) ≤
AGVreq.hullrad + AGVother.hullrad }

pos denotes the current (x, y) position of an AGV and hullrad
its current hull radius.

3.3. Action laws

We start with the specification of action laws. Then we give
a practical example.

Act the set of actions in the system;
an action act ∈ Act is defined as a 3-tuple
〈 i, aname, aparam 〉 with i ∈ Y the identity of the
agent, aname a name that refers to the type of action the agent
invokes and aparam is a set of additional parameters of the
action; aname and aparam are application specific and not
further specified

G the set of operations in the system;
an operation g ∈ G is typed as: g : SE →
{ true, false, unspec }; g(st) = true denotes that st ∈ SE

is part of the target state of the operation, g(sf) = false
denotes that sf ∈ SE is not part of the target state, and finally
g(su) = unspec denotes that su ∈ SE is invariable to the
operation; the function OperationGeneration converts the
selected action into an operation and is typed as follows:
OperationGeneration : Inf → G

CoA the set of operation constraints in the system;
an operation constraint coa ∈ CoA is typed as
coa : SE → Bool; i.e. an operation constraint maps
state elements s ∈ SE on booleans restricting agents’ actions
in the environment; coa(s) returns true for the state elements
that are constrained for modification, and false for uncon-
strained state elements

LA the set of action laws in the system;
an action law la ∈ LA is typed as: la : G × Σ → CoA; an
action law la(g, σ) = coa takes an operation g and the current
state of the agent environment σ and returns an operation



constraint coa

The application of the action laws is defined by the ApplyLA

function that is typed as follows:

ApplyLA : G× Σ → G

ApplyLA(g, σ) = g′

ApplyLA applies the set of action laws LA to operation g,
given the current state of the agent environment σ. ApplyLA

restricts the operation g according to the set of applicable
action laws. For the restricted g′ holds:

∀s ∈ SE :
g′(s) = true iff (g(s) = true) ∧
(∀ la ∈ LA : (∀ co ∈ la(g, σ) : co(s) = false))

g′(s) = false iff (g(s) = false) ∧
(∀ la ∈ LA : (∀ co ∈ la(g, σ) : co(s) = false))

g′(s) = unspec otherwise

That is, (1) a state element of the agent environment is part of
the target state of the restricted operation if the state element
is part of the target state of the operation and none of the
constraints of the applied action laws is applicable to the state
element; (2) the restricted operation is invariable to the rest of
the state elements. For the restricted operation holds:

dom(g′)→ true =
(dom(g)→ true)

⋂
(
⋃

la∈LA, co∈ la(g,σ) dom(co)→ false)
dom(g′)→ false =
(dom(g)→ false)

⋂
(
⋃

la∈LA, co∈ la(g,σ) dom(co)→ false)
dom(g′)→unspec =
(dom(g)→unspec)

⋃
(
⋃

la∈LA, co∈ la(g,σ) dom(co)→ true)

The target domain of the restricted operation (i.e. the subdo-
mains of state elements that map to true or false) consists of
the intersection of the target domain of the original operation
and the subdomain of state elements of the agent environment
that are not constrained by the action laws.

Example. When an AGV agent projects a hull in the agent
environment, an action law determines how the agent can
proceed. If the area is not marked by other hulls (the AGV’s
own hulls do not intersect with others), the AGV can move
along and actually drive over the reserved path. In case of a
conflict, the involved agent environments use the priorities
of the transported loads and the vehicles to determine which
AGV can move on. Afterward, the AGV removes the markings
in the agent environment. The constraint that determines the
safe condition of a hull projected by AGVreq is defined as:

AGVreq.hullstate = safe iff in-col-rangereq = Ø ∨
∀AGVother ∈ in-col-rangereq :

AGVother.hullstate ! = safe
∧ prior(AGVreq.hullprio,AGVother.hullprio)

hullstate denotes the state of a hull projection (safe or
unsafe); prior(AGVx.hullprio,AGVy.hullprio) = true if
the hull priority of AGVx is higher than that of AGVy and
false otherwise.

3.4. Communication laws

First, we specify communication laws. Then we give a con-
crete example in the AGV application.

M the set of messages in the system;
a message mi→des ∈ M is a formatted structure of characters
that represents a message sent by the agent with identity i ∈ Y
to a set of agents with identities specified in des ∈ 2Y

CoC the set of communication constraints in the system;
a communication constraint coc ∈ CoC is typed as coc : Y →
Bool, i.e. coc maps identities of agents i ∈ Y on booleans;
coc(i) returns true for identities of agents that are excluded
for a particular message, and false for non constrained identi-
ties

LC the set of communication laws in the system;
a communication law lc ∈ LC is typed as lc : M ×Σ → CoC ;
a communication law lc(mi→des, σ) = coc takes a message
mi→des and the current state of the agent environment σ and
returns a communication constraint coc

The application of the communication laws is defined by the
ApplyLC function that is typed as follows:

ApplyLC : M × Σ → M

ApplyLC(mi→des, σ) = mi→des ′

ApplyLC applies the set of communication laws LC to mes-
sage mi→des, given the current state of the agent environment
σ. For the resulting message mi→des ′ holds:

∀ y ∈ des ′ :
(y ∈ des) ∧
(∀ lc ∈ LC : (∀ co ∈ lc(mi→des, σ) : co(y) = false))

That is, the message mi→des′ will be transmitted to all ad-
dressees of the original message that are not constrained by
any of the communication laws.

Example. An example of a communication law in the AGV
transportation system is a law that determines nearby agents in
the environment to interact with. Such a law is for example ap-
plied when a transport agent is searching for a suitable AGV to
execute its tasks and vice versa. To enable adaptive task assign-
ment, we have developed a dynamic contract net protocol that
allows both types of agents to revise task assignment when op-
portunities occur while AGVs drive toward loads [16]. Since
it is not scalable to interact with all agents in the system, the
agent environment will restrict the communication to nearby
candidates. If an agent does not find a candidate, it may in-
crease its scope of interaction. The constraint that restricts the
set of candidate AGVs for task assignment for a task agent TAt

is defined as:

candidt = {AGVi ∈ AGV |
dist(AGVi.pos, TAt.pos) ≤ comrange × prioi }

comrange is the default communication range for candidates
and 1 ≤ prioi is the actual priority of transport agent TAi



4. Related approaches

Stigmergic agents coordinate their behavior through the ma-
nipulation of marks in the environment. Classic examples are
digital pheromones [4] and computational fields [8]. In stig-
mergic approaches, coordination laws are implicitly defined by
the coordination infrastructure. In contrast, we propose explicit
laws for mediating agents’ activities. [6, 2] consider explicitly
defined laws that determine the outcome of interactions among
situated agents in the environment. These approaches however,
do not consider explicit laws for perception and communica-
tion of situated agents.

Coordination artifacts [10] embody and enact the laws of
MAS coordination. The focus of coordination artifacts is on
cognitive agents in the first place, while the focus of our work
is on situated agents. Low-Governed Interaction (LGI [9]) is
an advanced approach for decentralized coordination of agent
behavior based on explicitly specified policies. LGI does not
make an explicit distinction between laws for perception, ac-
tion, and communication. On the other hand, LGI emphasizes
the necessity of security in open systems.

Research on computational institutions such as electronic
institutions [1], logic-based institutions [15], and normative
MAS [5] have developed a specific line of regulating infrastruc-
tures. The focus of computation institutions in on the regula-
tion of interactions among cognitive agents via laws and norms.
These approaches do not consider action, perception, and com-
munication as first-class activities of agents in the environment.

5. Conclusions

The agent environment provides a design abstraction that
MAS engineers can exploit to mediate the agents’ activities in
the system. In this paper, we specified laws that allow to define
application specific constraints on agents perception, action,
and communication in situated MAS. We illustrated the vari-
ous laws in an AGV transportation system. Embedding laws
in the agent environment improves separation of concerns in
MAS and helps to manage complexity. Our long-term goal
is to develop a formally founded architectural description lan-
guage for situated MAS. Support for defining application spe-
cific laws will be an important part of this language.

References

[1] J. Arcos, P. Noriega, J. Rodriguez-Aguilar, and C. Sierra.
E4MAS through Electronic Institutions. In Environments for
Multi-Agent Systems III, Lecture Notes in Computer Science,
Vol. 4389. Springer-Verlag.

[2] S. Bandini, S. Manzoni, and C. Simone. Dealing with Space in
Multiagent Systems: A Model for Situated Multiagent Systems.
In 1st Joint Conference on Autonomous Agents and Multiagent
Systems. ACM Press, 2002.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. Jade, A FIPA-
compliant Agent Framework. In 4th International Conference

on Practical Application of Intelligent Agents and Multi-Agent
Technology, London, UK, 1999.

[4] S. Brueckner. Return from the Ant, Synthetic Ecosystems for
Manufacturing Control. Ph.D Dissertation, Humboldt Univer-
sity, Berlin, Germany, 2000.

[5] C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur. Delibera-
tive Normative Agents: Principles and Architecture. In 6th In-
ternational Workshop on Intelligent Agents VI, Agent Theories,
Architectures, and Languages. Springer, 2000.

[6] J. Ferber and J. Muller. Influences and Reaction: a Model of
Situated Multiagent Systems. 2nd International Conference on
Multi-agent Systems, Japan, AAAI Press, 1996.

[7] M. Mamei and F. Zambonelli. Programming pervasive and mo-
bile computing applications with the TOTA middleware. In 2nd
International Conference on Pervasive Computing and Commu-
nications. IEEE Computer Society, USA, 2004.

[8] M. Mamei and F. Zambonelli. Field-Based Coordination for
Pervasive Multiagent Systems. Springer, 2006.

[9] N. Minsky and V. Ungureanu. Law-Governed Interaction: A
Coordination and Control Mechanism for Heterogeneous Dis-
tributed Systems. ACM Transactions on Software Engineering
Methodologies, 9(3), 2000.

[10] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tum-
molini. Coordination artifacts: Environment-based coordination
for intelligent agents. In 3rd Joint Conference on Autonomous
Agents and Multiagent Systems, NY, 2004.

[11] A. Rao and M. Georgeff. BDI Agents: From Theory to Practice.
In 1st International Conference on Multiagent Systems, 1995,
Agents, San Francisco, USA. MIT Press, 1995.

[12] G. Roman, C. Julien, and A. Murphy. A Declarative Approach
to Agent Centered Context-Aware Computing in Ad Hoc Wire-
less Environments. In Software Engineering for Large-Scale
Multi-Agent Systems, LNCS, Vol. 2603. Springer Verlag, 2003.

[13] K. Schelfthout. Supporting Coordination in Mobile Networks:
A Middleware Approach. Ph.D Dissertation, Katholieke Univer-
siteit Leuven, Belgium, 2006.

[14] K. Sycara. Multiagent Systems. Artificial Intelligence,
10(2):79–93, 1998.

[15] W. Vasconcelos. Logic-Based Electronic Institutions. Vol. 2990
of Lecture Notes in Computer Science. Springer, 2004.

[16] D. Weyns, N. Boucké, and T. Holvoet. DynCNET: A Proto-
col for Flexible Task Assignment in Situated Multiagent Sys-
tems. In 1st International Conference on Self-Adaptive and Self-
Organizing Systems, Boston, 2007.

[17] D. Weyns and T. Holvoet. Formal Model for Situated Multi-
Agent Systems. Fundamenta Informaticae, 63(1-2):125–158,
2004.

[18] D. Weyns, A. Omicini, and J. Odell. Environment as a First-
Class Abstraction in Multiagent Systems. Autonomous Agents
and Multi-Agent Systems, 14(1), 2007.

[19] D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. Decen-
tralized control of E’GV transportation systems. In 4th Joint
Conference on Autonomous Agents and Multiagent Systems, In-
dustry Track, Utrecht, 2005. ACM Press.

[20] D. Weyns, E. Steegmans, and T. Holvoet. Protocol Based Com-
munication for Situated Multi-Agent Systems. In 3th Joint Con-
ference on Autonomous Agents and Multi-Agent Systems, New
York, USA, 2004. IEEE Computer Society.

[21] D. Weyns, E. Steegmans, and T. Holvoet. Towards Active Per-
ception in Situated Multi-Agent Systems. Applied Artificial In-
telligence, 18(9-10):867–883, 2004.


