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Abstract. For the past few years, our research groups have independently been 
developing systems in which a multi-agent system (typically of lightweight 
agents) provides some functionality in service of a higher-level system, and of-
ten of a higher-level agent in that system. This paper compares our approaches 
to develop a more generic architecture of which our individual approaches are 
special cases. We summarize our existing systems, describe this architecture 
and the characteristics of problems for which it is attractive, and outline an 
agenda for further research in this area. 

1   Introduction 

Great ideas often occur to several researchers at the same time. At AAMAS06 and its 
workshops, NewVectors (NV) reported a modeling construct that represents a single 
domain entity with multiple agents, a “polyagent” [13, 14]. Katholieke Universiteit 
Leuven (KUL) described how individual agents in a manufacturing system could 
delegate certain tasks to a swarm of ant-like agents, a “delegate MAS” [5, 6]. 

The use of multiple agents to model a single agent is not new, but typically each of 
the multiple agents has a distinct function, which will be lost if that agent is elimi-
nated. An example of this functional decomposition is the CODAGE system devel-
oped at the Laboratoire d’Informatique of the Université de Paris [8]. What sets our 
systems apart is that they use multiple agents with the same function to explore some 
combinatorial space through which the single agent must move—a planning space, or 
a space of possible futures, or a space of alternative decisions. The multiple agents 
conduct concurrent agent-based simulations to guide the decisions of the single agent. 
The number of agents modulates the performance and efficiency of the system, but 
not the functionality that is achieved.  

The Latin phrase in our title applies to our topic in two ways. First, each of our sys-
tems uses a swarm of agents to provide a unified function, producing “one out of 
many” within the setting of a single application. Second, in seeking to unify our tech-
nical vision, we wish to produce “one (higher-level architecture) out of many” (or at 
least two) previously independent approaches. Realizing this second unification will 

reviewer
Text Box
Presented at the Eighth International Workshop on Multi-Agent-Based Simulation(MABS07) at AAMAS 2007, Honolulu, Hawaii, 15 May 2007. Forthcoming in the Proceedings.



enable us to pursue a common research agenda, develop common tools, and leverage 
off of one another’s results. 

Section 2 reviews our two approaches, with examples of how they have been ap-
plied in practice, and compares their motivations and foci. Section 3 discusses design 
considerations. Section 4 looks at future work. Section 5 concludes. 

2 Polyagents and Delegate MAS 

We begin by reviewing the two independent systems that motivate this analysis, and 
exploring their complementarities. 

2.1 Polyagents at NewVectors 

The Polyagent Model.—Agent-based 
modeling conventionally associates a 
software agent with each entity in the 
domain. For example, an entity might be 
a soldier in a military domain, or a vehi-
cle in a traffic model, or a person in a 
social simulation. A polyagent represents 
each domain entity with multiple agents: 
a single avatar that links it to the entity, 
and a swarm of ghosts that explore its 
alternative behaviors. Figure 1 shows the 
conceptual architecture of a polyagent. 

The avatar persists as long as its entity is active, and maintains its entity’s state. It 
may use sophisticated reasoning. Each avatar generates a stream of ghosts. Ghosts die 
after a fixed period of time or after some defined event. Each avatar controls the rate 
it generates ghosts, and typically has several concurrent ghosts. The ghosts are the 
“multiple agents with the same function” mentioned in our introduction.  

Ghosts explore alternative behaviors for their avatar. In the applications con-
structed by NewVectors researchers, they are computationally simple, and interact 
through a digital pheromone field, a vector of scalars that depends on both location 
and time. Each ghost chooses its actions stochastically based on a weighted function 
of nearby pheromones, and optionally deposits its own pheromone. A ghost’s “pro-
gram” is the vector of weights.  

The main benefit of representing a single domain entity with multiple agents is to 
multiply the number of interactions that a single run of the system can explore. In-
stead of one trajectory for each avatar, we now have one trajectory for each ghost. If 
each avatar has k concurrent ghosts, we explore k trajectories concurrently, leading to 
an increase in the number of interactions being explored at each step of an n-avatar 
system from n to kn [13]. The avatar can base its decisions within a single run of the 
system on the multiple possible futures explored by its ghosts. In effect, the ghosts 
form an agent-based model that supports the decisions of the higher-level avatar 
agent. 

 
Fig. 1. A polyagent represents a domain en-
tity with one avatar and multiple ghosts. 



The avatar can  
• modulate the number of its ghosts, their rate of generation, and the distribution of 

their parameters to control the exploration of alternative futures; 
• evolve them to learn the best parameters for a given situation; 
• review their behavior to estimate its own future experience. 

NewVectors researchers have applied the polyagent model to three distinct do-
mains: factory scheduling, robotic routing, and combat prediction.  

Factory Scheduling.—Our earliest application of polyagents did real-time job-
shop scheduling [1] with three types of agents: processing resources, parts, and policy 
agents. Avatars of processing resources with different capabilities and capacities and 
avatars of parts with changing processing needs (due to rework) coordinate to opti-
mize material flow through a complex, high-volume manufacturing transport system. 
Only part avatars deploy ghosts. Policy agents and resource (machine) avatars are tra-
ditional single agents, whose loads the ghosts explore in order to choose assignments 
for the parts. 

Robotic Routing.—Robotic vehicles must continuously replan their paths, as their 
knowledge of the environment changes due to limited sensor range and environmental 
change. In military applications, vehicles must navigate dynamically changing sets of 
targets and threats. Ants solve a similar problem in forming paths between nests and 
food sources [9]. Ants searching for food deposit nest pheromone while climbing the 
food pheromone gradient left by successful foragers. Ants who find food deposit food 
pheromone while climbing the nest pheromone gradient left by outbound ants. The 
pheromone fields collapse into a path as the ants interact. We have emulated this be-
havior to route robotic aircraft [16]. The agent controlling the robot sends out a stream 
of ghosts that execute the ant path planning algorithm in real time. The ghosts deposit 
nest pheromone as they move from the robot to seek out targets while avoiding 
threats, and target pheromone after they have found a target and are making their way 
home. Positive rein-
forcement among 
ghosts through their 
target pheromone leads 
to the emergence of 
high-density target 
pheromone paths that 
guide the robot. 

Combat Predic-
tion.—A commander in 
urban combat may have 
observations of the re-
cent behavior of the ad-
versary, and want to 
extrapolate these to 
predict future behavior. 
We use polyagents to 
evolve a model of the 
internal personality of 
each real-world entity 
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Fig. 2. Each avatar generates a stream of ghosts that sample the 
personality space of its entity. They evolve against the entity’s 
recent observed behavior, and the fittest ghosts run into the fu-
ture to generate predictions. 



and predict its future behavior [11]. Figure 2 shows the process. Ghosts live on a 
timeline of discrete pages indexed by τ (distinct from real time t) that begins in the 
past and runs into the future. The avatar inserts ghosts at the insertion horizon (say τ - 
t = -30, the state of the world 30 minutes ago), sampling each ghost’s parameters to 
explore alternative personalities of its entity. 

The avatars record pheromones representing the observed state of the world on 
each page between the insertion horizon and τ = t. The inserted ghosts interact with 
this past state. Their fitness depends not just on their own actions, but also on the be-
haviors of the rest of the population, which is also evolving. τ advances faster than 
real time, so eventually τ = t, when the avatar compares each ghost with its entity’s 
actual state.  

The fittest ghosts have three functions.  
1. Their personality estimates the personality of the corresponding entity. 
2. They breed, and their offspring reenter at the insertion horizon. 
3. They run into the future, exploring possible futures of the battle that the avatar 

analyzes to predict enemy behavior and recommend friendly behavior. In the fu-
ture, the pheromone field is generated by other ghosts rather than avatars. Thus it 
integrates the various futures that the system is considering, and each ghost inter-
acts with this composite view of other entities. 

While many of the applications summarized in this paper deal with robotic sys-
tems, this application is important in showing the relevance of polyagents to social 
systems. In the past, multiple ghosts can be evolved against an entity’s outward be-
havior to discover the underlying personality (including emotion). In the future, the 
ability of multiple ghosts from different avatars to interact with one another lets us 
explore multiple possible social interactions efficiently in a single run of the system. 

2.2 Delegate MAS at KUL  

Delegate MAS Model.—A delegate 
MAS is a modeling construct that con-
sists of a swarm of lightweight agents 
(ant agents) that provide a service for a 
higher level agent (the issuing agent) to 
support this agent in fulfilling its func-
tions (Figure 3).  

The issuing agent, representing a 
domain entity, may simultaneously have 
several delegate MAS, each rendering a 
specific service, and it may use a com-
bination of delegate MAS to handle a 
single one of its concerns. For example 
in resource allocation problems, two distinct delegate MAS often prove useful: a 
swarm of exploration ants that seek out possible routings among resources on behalf 
of a task, and a swarm of intention ants that communicate a task’s likely routing back 
to the resources. The issuing agent controls the number of ant agents, their program, 
and their parameter settings. The number is bounded at any instant. Each ant agent 

 
Fig. 3. A delegate MAS is a swarm of ant 
agents, and can provide various kinds of ser-
vices. 



may only perform a bounded computational effort within its bounded lifetime and has 
a bounded footprint (memory). In other words, a delegate MAS is (computationally) 
efficient by design. However, the ‘program’ of an ant agent is not constrained other-
wise.  

The ants in a delegate MAS deposit, observe, and modify information (pheromone) 
in the virtual counterpart of the real world. This information can be any kind of data 
structure; it is not limited to vectors of scalars. Moreover, the environment in which 
the information is deposited may transform this information. For instance, bookings 
made by intention ants are inserted into a resource agent’s planning scheme. All 
pheromone information has an expiration time (evaporation).  

Finally and most importantly, a delegate MAS delegates in two manners. First, the 
issuing agent assigns a responsibility to the delegate MAS. Second, the ant agents 
delegate to the environment in which they travel and evolve. For instance, exploration 
ants query resource agents about expected processing times, processing results, trans-
portation times, etc. Intention ants delegate the local scheduling to the resource 
agents. Exploring ants use product agents to evaluate routing options. This extreme 
usage of delegation enables a delegate MAS to cope with a dynamic, heterogeneous 
and unpredictable world. Its design nowhere assumes that data structures suffice to 
capture the diversity of the problem domain.  

Real-time Resource Allocation and Task Execution.— Delegate MAS have 
been developed for applications that perform real-time resource allocation and that 
supervise the execution of the tasks requiring these resources. The resources and tasks 
are diverse and heterogeneous. Furthermore, competitive performance requires re-
source allocation and task execution to account for the specific nature of both the re-
sources and the tasks, and their interactions. Moreover, the system must be able to 
deal with multiple allocations and task execution steps ahead in time. The applicabil-
ity of delegate MAS outside this domain remains an open issue.  

Until now, Manufacturing Execution Systems (MES) constitute the main applica-
tion area for delegate MAS research. The first application targeted by the research ad-
dressed car body painting. The design of this pioneering implementation has been im-
proved in subsequent developments, addressing a confection flow shop, a machine 
tool shop and a heat treatment facility respectively [18, 23]. Other application areas 
that have been explored are railway systems, traffic control and supply networks [3, 
20 ]. We briefly discuss two example applications. 

Manufacturing Execution Systems.— In the MES prototypes, the issuing agents 
are PROSA (Product-Resource-Order-Staff Agent) [22] agents . All PROSA agents 
have counterparts in reality, which facilitates integration and consistency (indeed, re-
ality is fully integrated and consistent). The main PROSA agents in the MES are:  
• Resource agents reflecting the actual factory. They offer a structure in cyber space 

on which other agents can virtually travel through the factory.  
• Order agents reflecting manufacturing tasks.  
• Product agents reflecting task/product types. 

Both resource agent and order agents issue delegate MAS. A single agent may 
have several delegate MAS. Each delegate MAS has its own responsibility.  

Resource agents use a delegate MAS to make their services known throughout the 
manufacturing system. Ant agents collect information about the processing capabili-
ties of resources while virtually traveling through the factory. These feasibility ants 



deposit this information (pheromone) at positions in cyber space that correspond to 
routing opportunities.  

Each order agent is an issuing agent for a delegate MAS in which exploring ants 
scout for suitable task execution scenarios. In addition, each order agent is an issuing 
agent for a second delegate MAS that informs the resource agents of its intentions: 
Intention ants regularly reconfirm bookings for slots at resources (Figure 4). Specific 
manufacturing execution systems employ additional delegate MAS to deliver case-
specific services [21].  

Traffic Control System.— We have applied delegate MAS in an experimental 
traffic control system that proactively tries to predict and avoid road congestion [7]. 
Each car in the system is represented by a task agent, while road segments and cross-
roads are represented by resource agents. Task agents use resource agents to book a 
certain road in advance trying to avoid road congestion. Three types of delegate MAS 
are used: (i) resource agents issue feasibility ants to gather information about the un-
derlying environment (which roads lead to which destinations). (ii) task agents issue 
exploration ants to gather information about the costs of possible routes; (iii) task 
agents issue intention ants to book the best possible route. A booking must be re-
freshed regularly to maintain the reservation.  

We have applied the delegate MAS approach to the Leonard crossroad, a well-
known Belgian congestion point between the Brussels Ring and the E411 Motorway 
(Figure 5). Tests for a realistic morning peak scenario show a reduction of 26% of 
congestion time for an increase of only 4% of extra traveled distance. 

 

 
Fig. 4. Intention ants notify resource agents about the intentions of their respective 
order agent to occupy resources at a specific time slots in the near future. Re-
source agents use this information to self-schedule. 



2.3 Complementarities 

The Polyagent and Delegate MAS models were developed independently of one an-
other, and thus have differing objectives. 

The main insight in the Polyagent model is that multiple representatives of a single 
agent can be used to explore alternatives for that agent. Thus it emphasizes the rela-
tion between the single persistent avatar and the multiple transient ghosts. 

The main insight in the 
Delegate MAS model is 
that a swarm of agents 
can perform some service 
in support of a larger sys-
tem. A delegate MAS 
does not include an ava-
tar, though it is typically 
used to support the rea-
soning of a single agent. 
Thus a delegate MAS can 
be viewed as a part of a 
polyagent, the swarm of 
ghosts that is associated 
with an avatar. 

 

 
Fig. 5. A car at the circle (at the bottom right) has three possible routes: 
straight ahead, left, and straight on and then right. In the current situation, 
the car follows the route straight ahead, which has the minimal cost. 
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Fig. 6. A delegate MAS is a swarm of functionally homogene-
ous agents that explore multiple alternatives concurrently. A 
Polyagent uses a delegate MAS to explore alternatives for a 
single, usually more complex, agent, the Avatar. 



Figure 6 makes this orthogonal relationship explicit. 
The left-hand side of the picture shows the agent types in a conventional MAS, the 

PROSA architecture for manufacturing control [2]. The right hand shows the three 
delegate MAS that KUL has developed to support a PROSA system. Feasibility Ants 
explore connected sequences of resources, Exploration Ants estimate the quality of a 
particular sequence of resources on behalf of a task agent, and Intention Ants propa-
gate the task agent’s current intentions back to the resources so that they can schedule 
their availability. 

This figure contains two polyagents (or a single polyagent with two types of 
ghosts), and three different relations between conventional agents and delegate MAS.  

The Exploration Ants and Intention Ants both work on behalf of the Task Agent, 
which therefore constitutes an Avatar under the definition of a polyagent.  

For Feasibility Ants two alternative designs can be considered. In [6], Feasibility 
Ants do not represent a single resource agent, but construct virtual routes through the 
network of resource agents. Thus they support the system as a whole, but are not part 
of a polyagent. An alternative implementation is possible in which each Resource 
agent sends out its own Feasibility Ants to deposit a quantitative pheromone on up-
stream resources. The relative strength of this pheromone would encode the relative 
distance of the node from the issuing resource, and thus enable Exploration Ants to 
assess the sequence of resources available from a given node. In this alternative im-
plementation, a resource and its feasibility ants would constitute a polyagent. 

Product Agents do not use the services of any delegate MAS, either directly or in-
directly. They show that delegate MAS may be applied to part of a MAS, while other 
parts function using conventional MAS mechanisms. 

To discuss these families of systems together, we need to establish some common 
vocabulary, which at points may differ from the vocabulary used in our previous pa-
pers. We propose (Figure 7): 

A delegate MAS is a swarm of agents that provide some service for a higher-level 
agent system. 

A Ghost Agent is one agent in a delegate MAS (where the term “ant” was used in 
the original Delegate MAS papers). 

A Polyagent is the combination of a high-level agent with one or more delegate 
MAS. The recognition 
that a single polyagent can 
include several delegate 
MAS is an extension of 
the original polyagent 
model. All of the ghosts in 
a single delegate MAS 
have the same function, 
but the different delegate 
MAS in a single polyagent 
support different func-
tions. 

An Avatar is the agent 
paired with a one or more 

 
Fig. 7. An EPU system may use several Polyagents. Each 
Polyagent is the combination of an Avatar and one or more 
delegate MAS. Each delegate MAS may render a specific ser-
vice for the Avatar, and the Avatar may use a combination of 
delegate MAS to handle a single one of its concerns. 



delegate MAS in a polyagent.  
An Entity is something in the domain that is represented by an agent. 
An EPU system is any system that draws on the constellation of ideas that we 

bring together in this paper. The acronym EPU recalls our motto, e pluribus unum. 
When we need to refer to the characteristics of specific systems that one or the 

other of our teams has previously constructed, we will designate them by NV (New-
Vectors) or KUL (Katholieke Universiteit Leuven). 

Integrating these two models yields clear benefits to both of our teams. 
From the dMAS perspective, the concepts of Avatar and Polyagent in an EPU sys-

tem provide explicit architectural constructs for designing systems. 
From the Polyagent perspective, the delegate MAS construct encapsulates a swarm 

of ghosts; this providing a clean approach to associate different types of ghosts (in 
terms of different delegate MAS) with a single Avatar/Polyagent   

3 Design Considerations 

As developers of real-world applications, we want to distill our experience into engi-
neering guidelines for future exploitation of EPU systems. In this section we develop 
an integrated list of the domain characteristics for their application, which reflect 
similarities between our respective systems. The differences between our systems re-
veal the variability along which EPU systems can be developed. 

3.1 Domain Characteristics 

Some of the domain characteristics for applying EPU systems are shared with other 
multi-agent systems. Other characteristics are peculiar to our approach. 

3.1.1 Common Domain Characteristics 
Dynamism.—Many domains are in constant change, and a MAS to manage them 

must be able to consider alternatives rapidly in order to adapt to this change. Using 
the parallelism of a delegate MAS is one way to support this dynamism.  

Locality of Decision and Action.—Agent systems naturally lend themselves to 
domains in which the primary information sources and the loci of action available to 
an agent are localized in some topology. This characteristic is especially valuable for 
EPU systems. The idea of using many representatives (the ghosts) to explore alterna-
tives concurrently requires that the ghosts execute extremely efficiently, and both of 
our approaches use environmentally-based coordination via digital pheromones to en-
able light-weight ghosts. Such techniques are most effective when there is a strong 
correlation between an agent’s location and its information and potential actions. 

Going Concerns.—Systems can conveniently be divided into problem solvers 
(typically activating a tightly coupled community of agents to reach an achievement 
goal, at which point the system can shut down) and going concerns (using a more 
loosely coupled set of agents to support a maintenance goal that requires constant at-



tention) [10]. The ability of EPU systems to deal with dynamism makes them particu-
larly valuable for handling going concerns. 

3.1.2 Specific Domain Characteristics for EPU Systems 
Temporal Constraints.—The delegate MAS must run fast enough to be of service 

to the real-world system it is supporting. This requirement usually means that the 
ghosts must be able to more faster than the avatar. Otherwise, one might just as well 
let the avatar do the search.1  One broad class of systems that satisfies this condition is 
systems dealing with the movement of physical entities. Physical constraints usually 
slow the movement of such entities so that ghosts, which can move at cyber-speed, 
can explore alternative trajectories faster than real time. 

Space of Multiple Options.—The replication of ghosts in an EPU system has the 
purpose of exploring alternatives concurrently. Such techniques are more useful as the 
problem space presents higher levels of combinatorial complexity. 

Simulation-Friendly.—The ghosts must be able to simulate the problem domain 
efficiently. This requirement is supported by two further characteristics: 
• Simulation Models.—Ghosts need efficient simulation models or other mecha-

nisms to evaluate single options quickly, at least to a rough level of accuracy. 
• Constrained Problem Space.—If a system is highly constrained, its behavior may 

be relatively insensitive to details of individual agent actions, permitting the use of 
simplified models. We call this characteristic “universality” [17]. Such constraints 
may arise in two ways. First, the static structure of the environment may reduce the 
options that agents can follow. Second, the dynamics of the system may exhibit a 
few large basins of attraction leading to large equivalence classes in the space of 
possible solutions. 

3.2 Variability in Applying EPU Systems 

Contrasts between our systems reveal a number of degrees of freedom that can be ex-
ploited in engineering an EPU system  for a particular application. 

Locus of Functionality.— KUL provides a plug-in architecture that allows the be-
havior of ghosts to be modulated by injecting additional functionality, while NV’s 
implementations tend to have monolithic ghosts. 

How Smart is a Ghost?—Previous NV applications tend to use stigmergic agents, 
but this is not a requirement for application of EPU system’s. The KUL plug-in archi-
tecture can use any computational method, so long as it respects the temporal con-
straints outlined in Section 3.1. 

Ghost Interaction.—Past NV applications of polyagents tend to take advantage of 
interactions among ghosts of the same avatar, mediated environmentally. For exam-
ple, path planning depends on positive feedback among ghosts representing the same 
entity. In this approach, the ghosts in a polyagent not only retrieve knowledge from 
the environment, but actually generate new knowledge, reducing the decision-making 

                                                            
1 This restriction is not strictly true. Even if ghosts only move at the same speed as their ava-

tars, an EPU system may still be of some value on physically parallel hardware, enabling 
multiple alternatives to be evaluated in parallel with one another. 



load in the avatar. KUL ghosts could behave this way, but currently do not. The result 
is to place more responsibility for decision-making on the avatar. However, KUL’s 
ghosts do interact with those of other types, in that exploration ghosts read symbolic 
pheromones written by feasibility ghosts.  

Writing to the Environment.—Closely related to ghost interaction is the question 
of whether or not ghosts can change the state of the environmental nodes that they 
visit. Three alternatives are available. 
1. Ghosts can read from the environment but not write to it. This is the approach 

taken by the exploration ghosts in the KUL factory control system. 
2. Ghosts can leave information in the environment for use by other ghosts, either of 

the same types or of different types. The first approach is used in NV’s path-
planning application, where it enables the generation of information (a routing) 
by positive feedback among the ghosts. The second is used in KUL’s factory con-
trol system, where exploration ghosts read the accessibility information left by 
feasibility ghosts. 

3. Ghosts can leave information for consumption by the environment, as do the in-
tention ghosts in KUL’s system. 

Ghost Speciation.—In KUL’s factory control system, a single task agent has two 
separate delegate MAS, one for exploration and the other for propagating intentions. 
NV’s applications have had a single type of ghosts for each avatar, and Brueckner’s 
factory architecture [1] used pheromones deposited by a task agent’s ghosts to esti-
mate the level of intention that the task agent has for a given resource. 

Time Management.—Frequently, the space of alternatives over which ghosts are 
searching extends over time, and ghosts need some way to distinguish different future 
times from one another. One alternative, used by KUL and in Brueckner’s early work, 
associates a timeline with each entity in the system that the ghosts may encounter, an 
approach we call entity priority. The other, used in NV’s more recent systems, main-
tains a book of pheromone pages, each for a successive moment in time, and all enti-
ties are represented on each page. We call this approach time priority. The two alter-
natives pose an interesting trade-off. In an entity-priority system, a ghost on an en-
tity’s agent can easily compare the state of that entity at different times, but to com-
pare different entities at the same time, it must move from one to the other. With time 
priority, a ghost can efficiently see the effect of multiple entities at a moment in time 
(to the degree that their pheromone fields overlap), but to see the state of one entity at 
different times, it must move through time.  

These two models have evolved naturally in the domains in which KUL and NV 
have developed their systems. Two factors have motivated the respective decisions: 
the kinds of entities involved, and the nature of the reasoning to be done. 

In most factory settings, resource agents and task agents behave in space-wise local 
but time-wise spread-out ways. This distinction makes it natural that timelines are lo-
cal to agents representing application entities (resources, tasks). Indeed, the manufac-
turing machines are independent of one another, so entity priority enables faster selec-
tion of candidate time slots without significant sacrifice. In the combat modeling ad-
dressed in NV’s latest systems, the most important entities are all combatants, and 
whatever Red does to Blue, Blue may also consider doing to Red. So the asymmetry 
that makes it feasible to manage time on one type of entity and not the other in the 
factory setting is not available. In addition, in combat, it is more important to under-



stand how entities are interacting with one another than it is to examine a single en-
tity’s evolution over time, so time priority is preferable. 

4 Future Work 

Up to this point, EPU systems have been driven by the needs of specific problems. As 
we refine the approach into a reusable architectural approach, several issues require 
further investigation. We record them here as a roadmap for our own activity, and to 
invite other researchers to join us in extending this powerful approach. 

Architectural Patterns for EPU Systems—The conceptual architecture of EPU 
systems described in Section 2.3 (Figure 7) represents a generic architectural pattern 
to develop agent systems for domains that satisfy the characteristics described in Sec-
tion 3.1. The conceptual architecture describes the essential architectural elements 
(avatars, delegate MAS, ...) and relation types together with a set of constraints on 
how it may be used to build EPU’s.  

From experience with particular classes of EPU systems, we have derived concrete 
instances of the general architectural pattern. Figure 8 shows one recurring pattern.  

This architectural pattern consists of two specific Avatar types: Task and Resource 
Avatars that extend the general Avatar type. Three specialized delegate MAS provide 
BDI-like functionality through the environment to the Task Avatar:   
• Feasibility delegate MAS are managed by Resource Avatars and build up beliefs 

about the environment (e.g., feasible production paths through a factory or a map 
in a traffic environment)  

• Exploration delegate MAS are managed by Task Avatars and build up desires 
(e.g., useful paths through the factory to produce a particular product or useful 
routes in a traffic application)  

 
Fig. 8. Resource Avatars issue Feasibility Delegate MAS and Task Avatars issue Exploration 
and Intention Delegate MAS to obtain BDI-like functionality through the environment. 



• Intention delegate MAS are managed by Task Avatars and build up intentions 
(e.g., paths of booked resources to produce a product or selected routes in a traffic 
application)  
This architectural pattern is one specific instance of the general EPU pattern. Such 

an architectural pattern provides a reusable asset for engineers to build new EPU ap-
plications. An interesting venue for future work is to derive other architectural pat-
terns for EPU systems.  

Dynamics.—Any system with multiple interacting nonlinear components has the 
potential for complex dynamics that may either support or compromise the purpose 
for which the system has been constructed. EPU systems multiply the problem by 
embedding many MAS within a single system. Thus special attention must be paid to 
issues such as convergence, stability, and catastrophic discontinuities in behavior.  

When an EPU system is used to reason into the future, one particular dynamic con-
cern is of special interest. Nonlinear systems can exhibit chaotic behavior that causes 
the trajectories emanating from nearby points in state space to diverge arbitrarily far 
from one another, making long-range prediction impossible. Short-range prediction is 
still possible, and by continuously generating short-term predictions, one can reliably 
move ahead, as we have shown elsewhere [15]. But it is important to estimate just 
how far ahead predictions are meaningful, and at what point (the “prediction hori-
zon”) they become no better than random noise. We discuss some preliminary steps to 
studying this problem elsewhere [12]. Much remains to be done in enabling individual 
avatars to estimate how far into the future they should let their ghosts search, thus im-
proving both their efficiency and the accuracy of the information that they produce. 

Mechanism Design.—Current EPU systems are closed, with a single developer 
who can ensure honest behavior on the part of avatars and ghosts. We expect the 
technique to become more widespread and enter the general toolbox of MAS devel-
opers, a prospect enhanced by the modular plug-in architecture being developed at 
KUL. EPU systems may have components developed by different parties, and in this 
case we need to give attention to the possibility that a delegate MAS may conduct de-
ception on behalf of its avatar (or be deceived by the ghosts of another avatar). This 
problem is a generalization of the problem of deception and reliability in MAS in 
general, and techniques for mechanism design need to be adapted to this setting. 

One promising approach is the use of reputation maintenance mechanisms. The at-
tractiveness of EPU systems to going concerns (discussed in Section 3.1.1) means that 
avatars (or the organizations that issue them) can be expected to appear repeatedly, 
and other entities can learn their reliability. For example, in the KUL factory system, 
if task agents from a particular source regularly renege on an unusually high percent-
age of their reservations, it would be natural for resource agents to discount further 
reservations from those agents to avoid being undersubscribed. In this example, an 
agent’s reputation transforms its statements into an expectation based on the state-
ment, with an associated level of uncertainty.[19].  

Guarantees vs. Adaptability.—The large space of alternatives that a delegate 
MAS can explore can make a system more adaptable, but also less predictable. In 
many commercial settings, users require firm guarantees, at least on lower-bound be-
havior. Providing such guarantees requires ways to balance the exploration of the sys-
tem against fixed behaviors that may be less adaptable but more predictable.[4]. 



Integration with Legacy Systems.—Rarely will an EPU system completely sup-
plant an existing system. It is more likely to be applied to part of the system, to give 
some advantage such as improving performance, adapting more rapidly to changes, or 
reducing variance. The techniques for achieving such integration are a rich field for 
study. In some cases, it may be possible to run the EPU system alongside the existing 
system and use its outputs selectively to adjust the legacy system. In other cases, one 
may embed components of the legacy system into the EPU system to provide specific 
functions, which must then interact with the functions being provided by the EPU sys-
tem. Both approaches (and others) invite investigation. 

Interference.—The need for ghosts to run efficiently makes pheromone-based co-
ordination attractive for delegate MAS, but leads to a problem. As ghosts explore al-
ternative futures, they may deposit pheromones along different paths. Sometimes both 
paths are reasonable, but in other cases they are mutually exclusive, and it can be dif-
ficult to distinguish the two cases. More generally, the problem is that pheromones 
can accumulate and decay, but cannot interfere with one another, and over time the 
pheromone space can become muddy. As a result, when many futures are being ex-
plored, the space becomes muddy. If competing options could interfere, one could 
cancel out the other, avoiding the muddiness. 

Autonomic Capabilities.—Delegate MAS are a promising approach to addressing 
the self-X capabilities required for autonomic computing: self-monitoring, self-
adjusting, self-healing, and so forth. In this case, the ghosts’ focus is inward, on the 
components of the system, rather than outward toward the application domain. Devel-
oping idioms and mechanisms for these functions is an important research objective, 
and will greatly increase the potential for open EPU systems. 

5 Conclusion 

Traditionally, agents in a MAS are mapped to domain entities either one-to-one, or 
according to a functional decomposition. Sometimes it is advantageous to assign mul-
tiple agents with the same function to a single domain entity, in order to explore alter-
natives concurrently. When the single agent is controlling a physical system, its mul-
tiple representatives constitute a set of interacting agent-based simulations exploring 
the combinatorial space through which the single agent moves. Such an approach 
yields an EPU system. Between our two research teams, we have constructed EPU 
systems in several domains, including manufacturing control in several industries, 
supply chains, traffic control, robotic routing, and combat prediction. By examining 
our techniques together, we have been able to identify both the conditions under 
which such an approach is useful, and a number of design choices that are available to 
engineers who wish to exploit this technique for future applications. The approach 
opens up a range of interesting and important questions for further research. 
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