DynCNET: A Protocol for Dynamic Task Assignment in Multiagent Systems

Danny Weyns, Nelis Boucké, Tom Holvoet, Bart Demarsin
Katholieke Universiteit Leuven, Celestijnenlaan 200A, Belgium
{Danny.Weyns, Nelis.Boucke, Tom.Holvoet}@cs.kuleuven.be

Abstract

Task assignment in multiagent systems is a complex co-
ordination problem, in particular in systems that are subject
to dynamic and changing operating conditions. To enable
agents to manage dynamism and change, adaptive task as-
signment approachesare needed. |n thispaper, weintroduce
DynCNET, a protocol for dynamic task assignment that ex-
tends standard contract net (CNET). DynCNET allows the
agents involved in the protocol to switch the assignment of
tasks dynamically. We use an industrial automated trans-
portation system asillustration and present results obtained
from a real-world test setting that compare DynCNET with
standard CNET and a field-based approach for task assign-
ment.

1 Introduction

Two important factors for the growing complexity of to-
day software systems are: the highly dynamic operating
conditions under which systems have to operate such as al-
tering workloads and variations in availability of resources,
and the inherent distribution of resources which makes cen-
tral control practically infeasible. In our research, we study
situated multiagent systems (situated MAS) for engineering
such systems. A situated MAS structures the software into
a number of interacting autonomous entities (agents) that
are situated in an environment. Control in situated MAS is
decentralized, the system functionality results from the co-
operation of the agents via the mediating environment.

One particularly challenging coordination problem in sit-
uated MAS is task assignment. Tasks in situated MAS are
often characterized by delayed commencement, i.e. the ex-
ecution of a task requires a preceding effort of an agent be-
fore the task can actually be executed. During delayed com-
mencement, the conditions in the environment may change.
Agents should be able to take into account these changes
and dynamically adapt the assignment of tasks. A charac-
teristic example application is a transportation system that
uses multiple automatic guided vehicles (AGVs) to trans-
port loads in an industrial environment. The stream of tasks
that enter the system is typically irregular and unpredictable.

Tasks in an AGV transportation system are characterized by
delayed commencement, i.e., an AGV first has to drive to a
load before it can pick the load and transport it to the desti-
nation. While driving toward the load all kinds of changes
in the system may occur. New tasks may enter the system
that are more suitable for the AGV to execute, new AGVs
may become available that are more suitable to perform the
task, etc. Such a problem setting requires a flexible task as-
signment approach that is able to cope with dynamics in the
system. In this paper, we introduce a protocol called DynC-
NET. DynCNET is an extention of the well-know contract
net protocol (CNET [8]), with “Dyn” referring to support
for dynamic task assignment.

Overview. In the next section, we explain the DynCNET
protocol. In section 3, we discuss test results obtained from
applying DynCNET in an AGV transportation system and
we compare DynCNET with CNET and a field-based ap-
proach for task assignment. Section 4 discusses related
work. Finally, in section 5 we draw conclusions.

2 DynCNET Protocol

We start by explaining a number of general properties of
the DynCNET protocol. Then we give an overview of the
default sequence of the protocol. Next we explain how the
agents involved in a protocol can switch the assignment of
tasks. We will use the AGV transportation scenario depicted
in Fig. 2 to illustrate the steps of the protocol. In the AGV
application two types of agents are used: AGV agents and
transport agents. Each AGV is controlled by an AGV agent.
Transports are represented by transport agents that reside at
a transport base system, i.e. a stationary computer located
in the warehouse.

General Properties. DynCNET is an m x n protocol. An
initiator that offers a task can interact with m participants,
i.e. the candidate agents that can execute the task. On the
other hand, each participant can interact with n initiators
that offer tasks. As an example, consider the scenario shown
in Fig. 2. In the AGV transportation system, an initiator cor-
responds with a transport agent that represents a task in the
system and the participant corresponds with an AGV agent
that can execute tasks. We denote the area where an initiator

Initiator

[task ready] P

Participant
[ready to work]

DynCNET Basic ProtocolJ

1: send(cfy ‘
start) send(cfp) m

start()

Participant

send(cfp)

Awarding

2: [available]

k=m-j send(proposal)

3: send(provisional-

accept) Ll

4: [task started]
send(bound)

\\Executmg
I
|

Active \

~ Working \

send(abort) send(proposal)

Switch Participant

[better
participant]

‘ [retracted]

send(provisional-accept)

[bounded]

[aborted]

[provisional accept]

/Y
:L“d(n.trd(,l) send(proposal)

[better offer]
send(provisional-

accept)
Swith Initiator
/N

send(cfp) I

Intentional

SwitchTask()

[task completed]

KEY Left: UML Interaction Diagram - Right: UML Statechart

é ParticipantInScope()

send(bound)
Assigned / \\

J
ParticipantOutO fScope()
[ready]

T 1

TaskInScope() TaskOutOfScope()

Figure 1. High-level diagrams of DynCNET. Left: interaction diagram; right: state diagram

(or participant) searches for participants (or initiators) the
area of interest of the initiator (or participant). The dotted
circles in Fig.2 show the current areas of interest of AGV
A (top) and task x (bottom). For task z, there are currently
two candidate AGVs to execute the task: Fand G (AGV E is
delivering a load). For AGV A on the other hand, there are
three possible tasks to execute: u, v, and w. Due to the dy-
namics in the system, the set of candidate tasks (initiators)
and agents that can execute a task (participants) can change
over time. E.g., when AGV E drops its load at location s, it
becomes a candidate to execute task z.

Default Sequence. The AUML interaction diagram of
Fig. 1 shows the default message sequence of DynCNET.
The default protocol consists of four steps: (1) the initiator
sends a call for proposals; (2) the participants respond with
proposals; (3) the initiator notifies the provisional winner;
and finally, (4) the selected participant informs the initiator
that the task is started. These four steps are basically the
same as in the standard CNET protocol. The flexibility of
DynCNET is based on the possible revision of the provi-
sional task assignment between the third and fourth step of
the protocol, i.e. the shades zones in Fig. 1.

Switching Initiators and Participants. To explain how
agents can switch tasks when the conditions in the environ-
ment change, we use the UML state diagram in Fig. 1 that
shows a compact representation of the behavior of the agents
in the protocol. First we look at the protocol from the per-
spective of the participant, then we look from the point of
view of the initiator.

Switching Initiators. Consider the situation in Fig. 2 where
AGV A has a provisional agreement to execute task w.

= [,
."-.

% Path with Crossroad

KEY =) AGV
W[1) Loaded AGV

Transport Base System

O Transport Location

@ Transport Location with Load

Figure 2. Scenario to illustrate DynCNET

While AGV A drives toward the pick location of task w,
a new task may enter at the transport location p. This new
task is an opportunity for AGV A. DynCNET enables par-
ticipants to switch initiators and exploit such opportunities.
When a participant is ready to execute a task, it enters the
Voting state where it answers cfp’s with proposals.
When the participant receives a provisional-accept
message (step 3 in the interaction diagram of Fig. 1), it en-
ters the Intentional state. As soon as the participant

starts the task, it sends a bound message to inform the
initiator. The participant is then committed to execute the
task. However, if a new opportunity occurs before the task
is started, i.e. the participant receives a better offer,
the participant changes to the Switch Initiator state.
In this state the participant retracts from the provi-
sional task assignment and switches to the more suitable task
(SwitchTask ()).

Switching Participants. Consider the situation in Fig. 2
where the task x has a provisional agreement with AGV
G. While AGV G drives toward the pick location of task
x, AGV E may drop its load at transport location s and
becomes available. This new AGV is an opportunity for
transport z. DynCNET enables initiators to switch partic-
ipants and exploit such opportunities. When an initiator has
sent a c£p and received the proposals from the partici-
pants, it sends a provisional-accept message (step 3
in interaction diagram of Fig. 1) and enters the Assigned
state. As soon as the initiator receives a bound message
from the selected participant it enters the state Execut ing
in which the task is effectively started. However, if a new
opportunity occurs before the task is started, i.e. the initia-
tor receives abetter offer, the initiator changes to the
Switch Participant state. In this state the initiator
sends an abort to the provisionally assigned participant
and switches to the more suitable participant.

TaskInScope () and TaskOutScope () are functions
that notify the participant when new tasks enter and leave
its area of interest. Such functionality can be provided by
the perception module [11] of the participant that moni-
tors the area of interest of the agent in the environment.
Similarly, the functions ParticipantInScope () and
ParticipantOutOfScope () notify the initiator when
new participants enter and leave its area of interest.

Convergence. A potential risk of DynCNET is that the
assignment of tasks oscillates between participants and no
tasks are executed. In the AGV application, oscillations
were avoided by: (1) limiting the areas of interest of the
agents, and (2) choosing different areas of interest for initia-
tors (task agents) and participants (AGV agents). In particu-
lar, the area of interests of AGV agents covered up to 1/10th
of the total area of the map and the area of transport agents
was 4 times smaller as that of AGV agents.
Synchronization messages. To handle synchronization,
confirmation messages are used. For example, when an ini-
tiator switches participants it first sends an abort to the par-
ticipant that has provisionally accepted, see state diagram
in Fig. 1. This latter then sends a message to confirm the
abort. However, if this participant has already started the
task (transition Intentional to Execute) but the ini-
tiator has not yet received the bound message, it refuses the
abort. The switch will then canceled. Due to space limi-
tations, we have made abstraction of these synchronization
messages in our explanation. For details, see [10].

3 DynCNET Applied in Practice

In this section, we give a number of test results obtained
from applying DynCNET in a simulated AGV transporta-
tion system. These tests where performed in the context
of a joint R&D project between AgentWise and Egemin
(http://femc2.egemin.com). The tests are performed on the
map of an transportation system with 14 AGVs that is im-
plemented by Egemin at EuroBaltic. We used a standard
transport test profile that generates 140 transports with a ran-
dom pick location and a random drop location per hour real
time. Every simulation was run for 200.000 timesteps, cor-
responding to approximately 4 hours real time. Displayed
test results are average values over 30 simulation runs. Er-
ror bars in the figures show the 95 % confidence interval for
the test results.

We compare DynCNET with standard CNET and a field-
based approach for task assignment (FiTA [9]). In FiTA,
AGV agents are guided towards pick locations of transports
by following the gradient of a field that combines attractive
fields emitted by transport agents and repulsing fields emit-
ted by other AGV agents.

Test Results. We discuss the test results of communica-
tion load and reaction time. To compare the communication
load, we have measured the average number of messages
sent per finished transport. The left part of Fig. 3 shows the
results of the test. DynCNET requires (as FiTA) about twice
the bandwidth of standard CNET. Average waiting time is
expressed as the number of timesteps a transport has to wait
before an AGV picks up the load. The right part of Fig. 3
shows the test results for average waiting time for trans-
ports. After four hours in real-time, this resulted in CNET
having handled 380 transports, DynCNET having handled
467 transports, and FiTA 515 transports. For the 467 exe-
cuted transports of DynCNET, we measured an average of
414 switches of transport assignments performed by trans-
port agents and AGV agents.

Discussion. DynCNET has similar performance character-
istics as FiTA and both outperform CNET, the cost is a dou-
bling of required bandwidth. DynCNET allows to specify
and reason about the behavior of the agents by means of
common engineering diagrams such as interaction and state
diagrams, such common engineering approaches are cur-
rently not available for FiTA. On the other hand, DynCNET
requires explicit support to deal with message loss. In FiTA,
the freshness of the received fields is taken into account toe
determine the attraction an repulsion of fields giving older
field values less importance.

4 Related Work

CNET was originally proposed by Smith and Davis [8]
and is included in a FIPA-standard [2]. [3] describes a pro-
tocol that allows a bidder to place bids for multiple tasks.

140 T

CNET »—o—‘<

DYynCNET :--x---

120 | Field-based]
o 100 X i
3 i
? b ST S N VI Yow g
% 80 H S S Sl SRR SN PEL CEES A A S - X
@ L 4
£ ey
B \
@ 60 \ B
Qo \
€ E\}

TE—

2407 = - = - o+ o+ 5 =]

20 b

O | | | |
50000 100000 150000 200000

Time of simulation [timesteps]

Average waiting time [timesteps]

T T
CNET ——+—
16000 - DYnCNET -]
Field-based

14000 E

I LrFEE

12000
10000 [E
8000 E

6000

4000 |~

2000 | | | |
50000 100000 150000 200000

Time of simulation [timesteps]

Figure 3. Left: amount of messages being sent per finished transport. Right: average waiting time

This protocol does not supports changes at both sides or de-
layed commencement.

The protocol introduced in [1] introduces two levels of
bidding, i.e. a pre-bidding phase in which the participants
can still change their commitment and a definitive bidding
phase in which the task is effectively assigned to a single
participant.

The FIPA Iterated CNET protocol allows multi-round it-
erative bidding [2]. Related are leveled-commitment con-
tracts [6]. The idea of a leveled-commitment contract is that
any of the agents in a contract can de-commit by paying an
agreed penalty to the other agent(s) in the contract. Leveled-
commitment contracts are typically intended for negotiation
protocols between self-interesting agents.

Finally, several researchers combine CNET with other
strategies to provide support for dynamism. [7, 4, 5] are ex-
amples that use a mediator pattern for dynamic scheduling
and CNET to produce a schedule. These mechanisms allow
for some flexibility, but task rescheduling is time consum-
ing making the approaches more suitable for systems with
limited dynamics.

5 Conclusions

In this paper, we presented DynCNET, a protocol for
dynamic task assignment in situated MAS and we showed
test results from a real-world test setting that compare the
approach with standard CNET and a field based approach.
DynCNET allows agents to switch the assignment of tasks
dynamically. Our experiences show that DynCNET out-
performs standard CNET, while it has similar performance
characteristics as FiTA. There is an important difference be-
tween DynCNET and FiTA with respect to engineering sup-
port. DynCNET allows to use common engineering dia-
grams for design and reasoning, wheras no common engi-
neering support is currently available for FiTA. On the other

hand, DynCNET requires explicit support to deal with mes-

sage loss while this is naturally supported in FiTA.

References

[1] S.Aknine, S. Pinson, and M. F. Shakun. An Extended Multi-
Agent Negotiation Protocol. Journal on Autonomous Agents
and Multi-Agent Systems, 8(4), 2004.

FIPA TC Communication. FIPA Contract Net Protocol and
Iterated Contract Net Protocol Specification, Doc. SC00029,
Doc. SC00030, 2002.

T. Knabe, M. Schillo, and K. Fischer. Improvements to the
fipa contract net protocol for performance increase and cas-
cading applications. In Multiagent Interoperability, 2002.

F. Maturana, W. Shen, and D. Norrie. Metamorph: An adap-
tive agent-based architecture for intelligent manufacturing.
Journal of Production Research, 37(10), 1999.

D. Ouelhadj, P. Cowling, and S. Petrovic. Intelligent systems

design and applications. Springer-Verlag, 2003.

T. Sandholm and V. Lesser. Levelled-commitment contract-
ing: A backtracking instrument for multiagent systems. Al
Magazine, 23(3):89100, 2002.

W. Shen and D. Norrie. An agent-based approach for dy-
namic manufacturing scheduling. In Agent-Based Manufac-
turing, Minneapolis, 1998.

R. Smith. The contract net protocol: High level communi-
cation and control in a distributed problem solver. In IEEE

Transactions on Computers, C-29(12), 1980.

D. Weyns, N. Boucké, and T. Holvoet. Gradient Field Based
Transport Assignment in AGV Systems. In 5th International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS, Hakodate, Japan, 2006.

D. Weyns, N. Boucké, T. Holvoet, and B. Demarsin.
DynCNET: A Protocol for Flexible Transport Assign-
ment in AGV Transportation Systems. Technical Report
CW 478, Katholieke Universiteit Leuven, Belgium, 2007.
http://lwww.cs.kuleuven.ac.be/publicaties/rapporten/CW/2007/.
D. Weyns, E. Steegmans, and T. Holvoet. Towards Active
Perception in Situated Multi-Agent Systems. Applied Artifi-
cial Intelligence, 18(9-10):867-883, 2004.

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]

