
An Architectural Strategy for Self-Adapting Systems

Danny Weyns and Tom Holvoet
DistriNet Labs, Department of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium

{danny.weyns, tom.holvoet@cs.kuleuven.be}@cs.kuleuven.be

Abstract

Self-adaptation is the ability of a software system to
adapt to dynamic and changing operating conditions au-
tonomously. In this paper, we present an architectural strat-
egy for self-adapting systems. An architectural strategy em-
bodies architectural knowledge about a particular solution
approach. The architectural strategy for self-adapting sys-
tems structures the software into a number of interacting
autonomous entities (agents) that are situated in an envi-
ronment. It integrates a set of architectural patterns that
have proved to be valuable in the design of various self-
adapting applications. The self-adapting properties of the
approach are based on the agents’ abilities to adapt their
behavior to dynamic and changing circumstances. The ar-
chitectural strategy provides an asset base architects can
draw from when developing new self-adapting applications
that share its common base.

1. Introduction

The advances in computing and communication technol-
ogy pave the way to large-scale distributed software systems
such as automatic traffic systems and large scale sensor net-
works. At the same time, this evolution introduces increas-
ing levels of complexity to software engineers. Two impor-
tant factors for the growing complexity are: the highly dy-
namic operating conditions under which software systems
have to operate, and the inherent distribution of resources
which makes central control practically infeasible. In our
research, we investigate and apply situated multiagent sys-
tems for engineering such systems.

A situated multiagent system (situated MAS) structures
the software in a number of interacting autonomous entities
(agents) that are situated in an environment. Situated agents
employ the environment to share information and coordi-
nate their behavior. Control in situated MAS is decentral-
ized, the system functionality results from the cooperation

of the agents via the mediating environment. Decentral-
ized control is essential to cope with the inherent distribu-
tion of resources. Situated MAS provide a way to model
self-managing systems. We consider self-management as
a system’s ability to manage dynamism and change au-
tonomously. With dynamism and change we refer to the
variable circumstances a system can be subject to during
operation, such as altering workloads, variations in avail-
ability of resources and services, and subsystems that join
and leave. Our focus on self-management is closely related
to self-optimization and self-healing as defined in [11].

Over the last five years, we have developed various situ-
ated MAS applications, ranging from a prototypical peer-
to-peer file sharing system up to an industrial automated
transportation [24, 4]. In the course of building these ap-
plications, we have developed an integrated set of architec-
tural patterns for situated MAS. We call this set of patterns
an architectural strategy. The architectural strategy embod-
ies architectural knowledge about a particular solution ap-
proach. The self-adapting properties of the approach are
based on the agents’ abilities to adapt their behavior to dy-
namic and changing circumstances. The architectural strat-
egy supports the development of new software architectures
for self-adapting applications that share its common base.

Overview. The remainder of this paper is structured as fol-
lows. In section 2, we explain the notion of architectural
strategy and show how an architectural strategy is related
to other types of architectural approaches. Section 3 gives
a high-level overview of the architectural strategy for self-
adaptive systems. Section 4 compares our approach with
the architectural blueprint for autonomic computing pro-
posed by IBM. Finally, section 5 draws conclusions.

2. Architectural Strategy

Self-management is an increasingly important require-
ment for software intensive systems. Essentially, self-
management is a quality property of a software system; it



Figure 1. Types of architectural approaches.

allows a software system to adapt to dynamic and changing
circumstances autonomously, keeping the complexity hid-
den to the user. In this section, we give a brief overview of
architectural approaches for achieving qualities in general
and then we put architectural strategy in this picture.

2.1. Architectural Approaches

The achievement of a system’s quality requirements is
based on design decisions. A tactic is a widely used ar-
chitectural approach that has proven to be useful to achieve
a particular quality [2, 15]. For example, “rollback” is a
tactic to recover from a failure aiming to increase a sys-
tem availability. Actually, to realize one or more tactics an
architect typically chooses an appropriate architectural pat-
tern / style [17]. An architectural pattern is “a description
of architectural elements and relation types together with a
set of constraints on how they may be used” [2]. An ar-
chitectural pattern is a recurring architectural approach that
exhibits particular quality attributes. Examples of common
architectural patterns are layers, pipe-and-filter, and black-
board. Reference architectures [13, 2] go one step further
in reuse of best practices in architectural design. The Ra-
tional Unified Process [12] defines a reference architecture
as “a predefined set of architectural patterns [...] proven for
use in particular business and technical contexts, together
with supporting artifacts to enable their use.” A reference
architecture serves as a blueprint for developing software
architectures for a family of applications with specific func-
tionality and quality attribute requirements. The concept of
a reference architecture is closely related to a product line
architecture. A product line architecture provides a set of
software-intensive systems sharing a common, managed set
of features that satisfy specific needs of a particular market
segment and that are developed from a common set of core

assets in a prescribed way [8]. A product line architecture
stresses strategic reuse of architectural assets in producing
a family of products.

2.2. Architectural Strategy

An architectural strategy integrates a set of architectural
patterns that have proved to be useful in architectural de-
sign, similar to a reference architecture. Yet, both architec-
tural approaches differ in the type of architectural knowl-
edge they represent. Fig. 1 shows an overview of different
architectural approaches. Tactics and architectural patterns
provide reusable architectural building blocks to achieve
particular quality attributes. Reference architectures and
product line architectures integrate architectural building
blocks, embodying architectural knowledge about a partic-
ular problem domain. An architectural strategy comple-
ments these approaches by embodying architectural knowl-
edge about a particular solution approach. We now compare
the different approaches in more detail.

Architectural Patterns. Fig. 2 shows the layers pattern.
The architectural elements of this pattern are layers that are
related by the “is allowed to use” relationship. Layers are
neutral with respect to problem or solution domains.

Product Line Architecture. Fig. 3 shows an excerpt from
a product line architecture of a satellite control system. The
components in this view are organized according to a num-
ber of patterns. Maneuver, Orbit, Attitude, Vehicle, etc. are
components that refer to concepts that are specific to the
problem domain. The components in the shaded area cov-
ers core components of the product line architecture. These
components provide common features of the product line
and support variation to develop specific products.



Figure 2. Layers pattern [17, 6]

Architectural Strategy. Fig. 5 shows an excerpt of the ar-
chitectural strategy for situated MAS. The elements in this
architectural view refer to concepts in the solution domain
of situated MAS. An Agent is an autonomous entity that
uses Perception to sense the environment, Decision Making
to act in the environment, and Communication to interact
with other agents.

An architectural strategy provides architectural knowl-
edge to develop software systems with particular character-
istics and system requirements. On the one hand, the archi-
tectural strategy defines constraints on the architectural el-
ements and their relations, on the other hand, it defines the
required variability to develop concrete applications. For
example, Agent in the architectural strategy is abstractly de-
fined. Yet, for a concrete application different agent types
have to be defined that have different responsibilities which
will be reflected in different behavior and internal architec-
tural structures. For example, for an automated transporta-
tion system that uses automatic guided vehicles (AGVs),
each AGV may be controlled by an AGV agent, while each
transport may be represented by a Transport agent that is
responsible to assign the transport to an AGV.

3. Architectural Strategy for Self-Adapting
Systems

We now give an overview of the architectural strategy
for situated multiagent systems. The target domain of the
architectural strategy are software systems: (1) that are sub-

ject to highly dynamic and changing operating conditions,
such as dynamically changing workloads and variations in
availability of resources and services; (2) in which global
control is hard to achieve. Activity in the systems is in-
herently localized, i.e. global access to resources is difficult
to achieve or even infeasible. Example domains are mo-
bile and ad-hoc networks, sensor networks, and automated
transportation and traffic control systems. Important qual-
ity properties of the architectural strategy are flexibility and
openness. With flexibility we refer to the system’s ability
to deal with dynamic operating conditions, while openness
refers to the system’s ability to deal with changing situa-
tions, such as agents that enter and leave the system.

We have documented the architectural strategy for
self-adapting systems by means of various architectural
views [7]. In this paper, we limit the overview to the main
architectural views, i.e the top-level module decomposition
of a situated MAS and two component and connector views.
[20] gives an integral description of the architectural strat-
egy, including a description of the variability points and a
formal specification of the various architectural elements.

3.1. Top-Level Module Decomposition

Fig. 5 shows the top-level module decomposition of the
architectural strategy that shows the main software units in
the system. A situated MAS is decomposed in two basic
modules: Agent and Application Environment.

Agent is an autonomous problem solving entity in the sys-
tem. An agent encapsulates its state and controls its behav-
ior. The responsibility of an agent is to achieve its design
objectives, i.e. to realize the application specific goals it is
assigned. Agents are situated in an environment which they
can perceive and in which they can act and interact with one
another. Agents are able to adapt their behavior according
to the changing circumstances in the environment. A sit-
uated agent is a cooperative entity. The overall application
goals result from interaction among agents, rather than from
sophisticated capabilities of individual agents.

A concrete MAS application typically consists of differ-
ent agent types. Agents of different types typically have
different capabilities and are assigned different goals.

The Application Environment enables agents to
share information and to coordinate their behavior [23, 19].
The core responsibilities of the application environment are:

• To provide access to external entities and resources.

• To enable agents to perceive and manipulate their
neighborhood, and to interact with one another.

• To mediate the activities of agents. As a mediator, the
environment not only enables perception, action and
interaction, it also constrains them.



Figure 3. Excerpt from a product line architecture for satellite control [8]

Figure 4. Excerpt of the architectural strategy for situated multiagent systems [20]

The application environment provides functionality to
agents on top of the deployment context. The deployment
context consists of the given hardware and software and ex-
ternal resources such as sensors and actuators, a printer, a
network, a database, a web service, etc.

As an illustration, a peer-to-peer file sharing system is
deployed on top of a deployment context that consists of a

network of nodes with files and possibly other resources.
The application environment enables agents to access the
external resources, shielding low-level details. Addition-
ally, the application environment may provide a coordina-
tion infrastructure that enables agents to coordinate their
behavior. E.g., the application environment of a peer-to-
peer file share system can offer a pheromone infrastruc-



Figure 5. Top-level module decomposition

ture [5]. Such infrastructure enables agents to dynamically
form paths to locations of interest mimicking the behavior
of social insects.

For a distributed application, the deployment context
consists of multiple processors deployed on different nodes
that are connected through a network. Each node pro-
vides an application environment to the agents located at
that node. Depending on the specific application require-
ments, different application environment types may be pro-
vided. For some applications, the same type of application
environment subsystem is instantiated on each node. For
other applications, specific types are instantiated on differ-
ent nodes, e.g., when different types of agents are deployed
on different nodes.

Rationale. The main principles that underly the decompo-
sition of a situated MAS are:

• Decentralized control. In a situated MAS, control is
divided among the agents situated in the application
environment. Decentralized control is essential to cope
with the inherent locality of activity, which is a char-
acteristic of the target applications of the architectural
strategy.

• Self-management. In a situated MAS self-management
is essentially based on the ability of agents to adapt
their behavior. Self-management enables a system to
manage the dynamic and changing operating condi-
tions autonomously, which are important requirements
of the target applications of the architectural strategy.

However, the decentralized architecture of a situated MAS
implies a number of tradeoffs and limitations.

• Decentralized control typically requires more commu-

nication. The performance of the system may be af-
fected by the communication links between agents.

• There is a trade-off between the performance of the
system and its flexibility to handle disturbances. A sys-
tem that is designed to cope with many disturbances
generally needs redundancy, usually to the detriment
of performance, and vice versa.

• Agents’ decision making is based on local information
only, which may lead to suboptimal system behavior.

These tradeoffs and limitations should be kept in mind
throughout the design and development of a situated MAS.
Special attention should be payed to communication which
could impose a major bottleneck.

3.2 Collaborating Components View

The collaborating components view shows the MAS or
parts of it as a set of interacting runtime components that
use a set of shared data repositories to realize the required
system functionalities [20]. The elements of the collabo-
rating components view are: (1) runtime components that
achieve a part of the system functionality, (2) data reposito-
ries that enable multiple runtime components to share data,
(3) component–repository connectors that connect runtime
components which data repositories. These connectors de-
termine which runtime components are able to read and
write data in the various data repositories of the system, (4)
component–component connectors enable runtime compo-
nents to request each other to perform a particular function-
ality.

The collaborating components view is an excellent ve-
hicle to learn the runtime behavior of a situated MAS. The
view shows the data flows between runtime components and
the interaction with data stores, and it specifies the func-
tionalities of the various components in terms of incom-
ing and outgoing data flows. We discuss two view pack-
ets of the collaborating components view. We start with the
view packet that describes the collaborating components of
agent. Next, we discuss the view packet that describes the
collaborating components of the application environment.

3.2.1 Collaborating Components of Agent

Primary Presentation The primary presentation is show
in Fig. 6.

Elements and their Properties The Agent component
(i.e. a runtime instance of the Agent module shown in
Fig. 5) consists of three subcomponents: Perception,
Decision Making, and Communication. These
components share the Current Knowledge repository.
We first give a brief explanation of the responsibilities of the



Figure 6. Collaborating Components of Agent

components and then we explain the architecture rationale
of the view packet.

Perception is responsible for collecting runtime infor-
mation from the environment (application environment and
deployment context). The perception component supports
selective perception [26]. Selective perception enables an
agent to direct its perception according to its current tasks.
To direct its perception an agent selects a set of foci and fil-
ters. Foci allow the agent to sense the environment only for
specific types of information. Sensing results in a represen-
tation of the sensed environment. A representation is a data
structure that represents elements or resources in the envi-
ronment. The perception module maps this representation
to a percept, i.e. a description of the sensed environment
in a form of data elements that can be used to update the
agent’s current knowledge. The selected set of filters fur-
ther reduces the percept according to the criteria specified
by the filters.

Decision Making is responsible for action selection.
The action model of the architectural strategy is based on
the influence–reaction model introduced in [9]. This ac-
tion model distinguishes between influences that are pro-
duced by agents and are attempts to modify the course of
events in the environment, and reactions, which result in
state changes in the environment. The responsibility of the
decision making module is to select influences to realize
the agent’s tasks, and to invoke the influences in the en-
vironment [21]. Situated agents use a behavior-based ac-
tion selection mechanism [22]. Behavior-based action se-

lection is efficient allowing agents to adapt their behavior
quickly with changing circumstances. To enable situated
agents to set up collaborations, we have extended behavior-
based action selection mechanisms with roles and situated
commitments [18, 25]. A role represents a coherent part of
an agent’s functionality in the context of an organization. A
situated commitment is an engagement of an agent to give
preference to the actions of a particular role in the commit-
ment. Agents typically commit relative to one another in
a collaboration, but an agent can also commit to itself, e.g.
when a vital task must be completed. Roles and commit-
ments have a well-known name that is part of the domain
ontology and that is shared among the agents in the system.
Sharing these names enable agents to set up collaborations
via message exchange. We explain the coordination among
decision making and communication below.

Communication is responsible for communicative in-
teractions with other agents. Message exchange enables
agents to share information and to set up collaborations.
The communication module processes incoming messages,
and produces outgoing messages according to well-defined
communication protocols [25]. A communication protocol
specifies a set of possible sequences of messages. We use
the notion of a conversation to refer to an ongoing commu-
nicative interaction. A conversation is initiated by the initial
message of a communication protocol. At each stage in the
conversation there is a limited set of possible messages that
can be exchanged. Terminal states determine when the con-
versation comes to an end.



The information exchanged via a message is encoded ac-
cording to a shared communication language. The com-
munication language defines the format of the messages,
i.e. the subsequent fields the message is composed of. A
message includes a field with a unique identifier of the on-
going conversation to which the message belong, fields with
the identity of the sender and the identities of the addressees
of the message, a field with the performative of the message,
and a field with the content of the message. Communicative
interactions among agents are based on an ontology that de-
fines a shared vocabulary of words that agents use in mes-
sages. The ontology enables agents to refer unambiguously
to concepts and relationships between concepts in the do-
main when exchanging messages.

Current Knowledge repository contains data that is
shared among the data accessors. Data stored in the cur-
rent knowledge repository refers to state perceived in the
environment, to state related to the agent’s roles and situ-
ated commitments, and possibly other internal state that is
shared among the data accessors. The current knowledge
repository exposes two interfaces, see Fig. 6. The provided
interface Update enables the perception component to up-
date the agents knowledge according to the information de-
rived from sensing the environment. The Read-Write
interface enables the communication and decision making
component to access and modify the agent’s current knowl-
edge.

Rationale. The overall behavior of the agent is the result
of the coordination of two components: decision making
and communication. To complete the agent’s tasks, deci-
sion making and communication coordinate via the current
knowledge repository. For example, agents can send each
other messages with requests for information that enable
them to act more efficient. Decision making and commu-
nication also coordinate during the progress of a collabora-
tion. Collaborations are typically established via message
exchange. Once a collaboration is achieved, the communi-
cation module activates a situated commitment. This com-
mitment will affect the agent’s decision making toward ac-
tions in the agent’s role in the collaboration. This continues
until the commitment is deactivated and the collaboration
ends.

The separation of functionality for coordination (via
communication) from the functionality to perform actions
to complete tasks has several advantages, including clear
design, improved modifiability and re-usability. Two par-
ticular advantages are: (1) it allows both functions to act in
parallel, and (2) it allows both functions to act at a different
pace. In many applications, sending messages and execut-
ing actions happen at different tempo; a typical example is
robotics. Separation of communication from performing ac-
tions enables agents to reconsider the coordination of their

behavior while they perform actions, improving flexibility
and efficiency.

3.2.2 Collaborating Components Application Environ-
ment

Primary Presentation The primary presentation is show
in Fig. 7.

Elements and their Properties The Application
Environment component consists of seven subcompo-
nents and the shared State repository. We discuss the
responsibilities of each of the elements in turn. Then, we
explain the architecture rationale of the view packet.

The Representation Generator provides the func-
tionality to agents for perceiving the environment. When
an agent senses the environment, the representation genera-
tor uses the current state of the application environment and
possibly state collected from the deployment context to pro-
duce a representation for the agent. Agents’ perception is
subject to perception laws that provide a means to constrain
perception [26]. For example, for reasons of efficiency a de-
signer can introduce default limits for perception in order to
restrain the amount of information that has to be processed,
or to limit the occupied bandwidth.

Observation & Data Processing provides the
functionality to observe the deployment context and collect
date from other nodes in a distributed setting. The obser-
vation & data processing component translates observation
requests into observation primitives that can be used to col-
lect the requested data from the deployment context. Data
may be collected from external resources in the deployment
context or from the application environment instances on
other nodes in a distributed application. The observation &
data processing component can provide additional functions
to pre-process data, examples are sorting and integration of
observed data.

Interaction is responsible to deal with agents’ influ-
ences in the environment. Agents’ influences can be di-
vided in two classes: influences that attempt to modify state
of the application environment and influences that attempt
to modify the state of resources of the deployment context.
An example of the former is an agent that drops a digital
pheromone in the environment. An example of the latter is
an agent that writes data in an external data base. Agents’
influences are subject to action laws [21]. Action laws put
restrictions on the influences invoked by the agents, repre-
senting domain specific constraints on agents’ actions. For
example, when several agents aim to access an external re-
source simultaneously, an interaction law may impose a pol-
icy on the access of that resource. For influences that relate
to the application environment, the interaction component
calculates the reaction of the influences resulting in an up-



Figure 7. Collaborating Components of Application Environment

date of the state of the application environment. Influences
related to the deployment context are passed to the Low-
Level Control component.

Low-Level Control converts the influences invoked
by the agents into low-level action primitives in the deploy-
ment context. This decouples the interaction component
from the details of the deployment context.

Communication Mediation mediates the commu-
nicative interactions among agents. It is responsible for
collecting messages; it provides the necessary infrastruc-
ture to buffer messages, and it delivers messages to the
appropriate agents. Communication mediation regulates
the exchange of messages between agents according a set
of applicable communication laws [25]. Communication
laws impose constraints on the message stream or enforce
domain–specific rules to the exchange of messages. Exam-
ples are a law that drops messages directed to agents out-
side the communication–range of the sender and a law that
gives preferential treatment to high-priority messages. To
actually transmit the messages, communication mediation
makes use of the Communication Service component.

Communication Service provides that actual infras-

tructure to transmit messages. Communication service
transfers message descriptions used by agents to communi-
cation primitives of the deployment context. For example,
FIPA ACL message [10] enable a designer to express the
communicative interactions between agents independently
of the applied communication technology. However, to ac-
tually transmit such messages, they have to be translated
into low-level primitives of a communication infrastructure
provided by the deployment context. Depending on the spe-
cific application requirements, the communication service
may provide specific communication services to enable the
exchange of messages in a distributed setting, such as white
and yellow page services. An example infrastructure for
distributed communication is Jade [3]. Specific middleware
may provide support for communicative interaction in mo-
bile and ad-hoc network environments, an example is dis-
cussed in [16].

Synchronization & Data Processing synchro-
nizes state of the application environment with state of re-
sources in the deployment context as well as state of the
application environment on different nodes. State updates
may relate to dynamics in the deployment context and dy-
namics of state in the application environment that happens



independently of agents or the deployment context. An ex-
ample of the former is the topology of a dynamic network
which changes are reflected in a network abstraction main-
tained in the state of the application environment. An ex-
ample of the latter is the evaporation of digital pheromones.
Middleware may provide support to collect data in a dis-
tributed setting. An example of middleware support for
data collection in mobile and ad-hoc network environments
(views) is discussed in [14]. Synchronization & data pro-
cessing converts the resource data observed from the de-
ployment context into a format that can be used to update
the state of the application environment. Such conversion
typically includes a processing of collected resource data.

Rationale. The decomposition of the application environ-
ment can be considered in two dimensions: horizontally,
i.e. a decomposition based on the distinct ways agents can
access the environment; and vertically, i.e. a decomposition
based on the distinction between the high-level interactions
between agents and the application environment, and the
low-level interactions between the application environment
and the deployment context.

The horizontal decomposition of the application environ-
ment consists of three columns that basically correspond to
the various ways agents can access the environment: per-
ception, communication, and action. Besides influences in-
voked by agents, we consider activity from the deployment
context that affects the state of the application environment
(synchronization & data processing) as part of the action
column. The vertical decomposition of the application en-
vironment consists of two rows. The top row deals with
the access of agents to the application environment and in-
cludes representation generator, communication mediation,
and interaction. The top row deals with the mediation of
agents activities in the system. The bottom row deals with
the interaction of the application environment with the de-
ployment context and consists of observation & data pro-
cessing, low-level control and synchronization & data pro-
cessing, and communication service.

The two-dimensional decomposition of the application
environment yields a flexible modularization that can be
tailored to a broad family of application domains. For in-
stance, for applications that do not interact with an external
deployment context, the bottom layer of the vertical decom-
position can be omitted. For applications in which agents
interact via marks in the environment but do not commu-
nicate via message exchange, the column in the horizontal
decomposition that corresponds to message transfer (com-
munication mediation and communication service) can be
omitted.

Each module of the application environment is located
in a particular column and row and is assigned a particu-
lar functionality. Minimizing the overlap of functionality
among modules, helps the architect to focus on one partic-

ular aspect of the functionality of the application environ-
ment. It supports reuse, and it further helps to accommo-
date change and to update one module without affecting the
others.

4. Comparison with IBM Blueprint Architec-
ture for Autonomic Computing

In this section, we reflect on the architectural blueprint
for autonomic computing proposed by IBM and we point
to opportunities provided by the architectural strategy for
situated MAS to the blueprint architecture.

Autonomic Computing is an initiative started by IBM
in 2001. Its ultimate aim is to create self-managing com-
puter systems to overcome their growing complexity [11].
IBM has developed an architectural blueprint for autonomic
computing. This architectural blueprint specifies the funda-
mental concepts and the architectural building blocks used
to construct autonomic systems [1]. The blueprint archi-
tecture organizes an autonomic computing system into five
layers. The lowest layer contains the system components
that are managed by the autonomic system. System com-
ponents can be any type of resource, a server, a database,
a network, etc. The next layer incorporates touchpoints,
i.e. standard manageability interfaces for accessing and con-
trolling the managed resources. Layer three constitutes of
autonomic managers that provide the core functionality for
self-management. An autonomic manager is an agent-like
component that manages other software or hardware com-
ponents using a control loop. The control loop of the au-
tonomic manager includes functions to monitor, analyze,
plan and execute. Layer four contains autonomic managers
that compose other autonomic managers. These composi-
tion enables system-wide autonomic capabilities. The top
layer provides a common system management interface that
enables a system administrator to enter high-level policies
to specify the autonomic behavior of the system. The lay-
ers can obtain and share knowledge via knowledge sources,
such as a registry, a dictionary, and a database.

Although presented as architecture, to our opinion, the
blueprint describes a reference model. The discussion
mainly focuses on functionality and relationships between
functional entities. The specification of the horizontal inter-
action among autonomic managers is lacking in the model.
Moreover, the functionality for self-management must be
completely provided by the autonomic managers. Obvi-
ously, this results in complex internal structures and causes
high computational loads. The concept of application envi-
ronment in the architectural strategy for self-adapting sys-
tems provides an interesting opportunity to manage com-
plexity, yet, it is not part of the IBM blueprint. The applica-
tion environment could enable the coordination among au-
tonomic managers and provide supporting services. Laws



embedded in the application environment could provide a
means to impose rules on the autonomic system that go be-
yond individual autonomic managers.

5. Conclusions

In this paper, we gave a high-level overview of an archi-
tectural strategy for self-adapting systems. This architec-
tural strategy generalizes common functions and structures
from various experimental applications we have studied and
built. This generalized architecture provides a reusable de-
sign artifact, it embodies architectural knowledge that al-
lows architects to design new software architectures for sys-
tems that share the common base more reliably and cost ef-
fectively.

The current description of the architectural strategy al-
lows flexible modeling of architectural elements and re-
lations; however, the documentation exhibits semantic in-
completeness. This hampers reasoning on an architecture
and verification of system properties. Our long-term goal
is to develop a formally founded architectural description
language (ADL) for decentralized, self-adapting systems.
Such an ADL enables analysis and formal verification of
desired system properties which is crucial for the practical
applicability of such systems.

References

[1] IBM, An Architectural Blueprint for Autonomic Comput-
ing, (6/2006). www-03.ibm.com/autonomic/.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison Wesley Publishing Comp., 2003.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. Jade, A FIPA-
compliant Agent Framework. In 4th International Con-
ference on Practical Application of Intelligent Agents and
Multi-Agent Technology, London, UK, 1999.

[4] N. Boucké, D. Weyns, K. Schelfthout, and T. Holvoet. Ap-
plying the ATAM to an Architecture for Decentralized Con-
tol of a AGV Transportation System. In 2nd International
Conference on Quality of Software Architecture, QoSA, Lec-
ture Notes in Computer Science, Vol. 4214, Vasteras, Swe-
den, 2006. Springer.

[5] S. Brueckner. Return from the Ant, Synthetic Ecosystems
for Manufacturing Control. Ph.D Dissertation, Humboldt
University, Berlin, Germany, 2000.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Patten-Oriented Software Architecture. John Wley
and Sons, November 2002.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison Wesley Publish-
ing Comp., 2002.

[8] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison Wesley Publishing Comp., Au-
gust 2001.

[9] J. Ferber and J. Muller. Influences and Reaction: a Model of
Situated Multiagent Systems. 2nd International Conference
on Multi-agent Systems, Japan, AAAI Press, 1996.

[10] FIPA. Foundation for Intelligent Physical
Agents, FIPA Abstract Architecture Specification.
http://www.fipa.org/repository/bysubject.html, (8/2006).

[11] J. Kephart and D. Chess. The Vision of Autonomic Com-
puting. IEEE Computer Magazine, 36(1):41–52, 2003.

[12] P. Kruchten. The Rational Unified Process. Addison Wesley
Publishing Comp., 2003.

[13] P. Reed. Reference Architecture: The Best of
Best Practices. The Rational Edge, 2002. www-
128.ibm.com/developerworks/rational/library/2774.html.

[14] G. Roman, C. Julien, and A. Murphy. A Declarative Ap-
proach to Agent Centered Context-Aware Computing in
Ad Hoc Wireless Environments, Software Engineering for
Large-Scale Multi-Agent Systems, Lecture Notes in Com-
puter Science, Vol. 2603, 2003.

[15] N. Rozanski and E. Woods. Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspec-
tives. Addison Wesley Publishing Comp., 2005.

[16] K. Schelfthout, D. Weyns, and T. Holvoet. Middleware that
Enables Protocol-Based Coordination Applied in AGV Con-
trol. IEEE Distributed Systems Online, 7(8), 2006.

[17] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[18] E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. A
Design Process for Adaptive Behavior of Situated Agents.
In Agent-Oriented Software Engineering V, Lecture Notes
in Computer Science, Vol. 3382. Springer, 2004.

[19] M. Viroli, T. Holvoet, A. Ricci, K. Schelfthout, and F. Zam-
bonelli. Infrastructures for the Environment of Multiagent
Systems. Autonomous Agents and Multi-Agent Systems,
14(1):49–60, 2007.

[20] D. Weyns. An Architecture-Centric Approach for Soft-
ware Engineering with Situated Multiagent Systems. Ph.D,
Katholieke Universiteit Leuven, 2006.

[21] D. Weyns and T. Holvoet. Formal Model for Situated Multi-
Agent Systems. Fundam. Inform., 63(1-2):125–158, 2004.

[22] D. Weyns and T. Holvoet. From Reactive Robotics to Sit-
uated Multiagent Systems: A Historical Perspective on the
Role of Environment in Multiagent Systems. In Engineering
Societies in the Agents World VI, Lecture Notes in Computer
Science, Vol. 3963. Springer-Verlag, 2006.

[23] D. Weyns, A. Omicini, and J. Odell. Environment as a
First-Class Abstraction in Multiagent Systems. Autonomous
Agents and Multi-Agent Systems, 14(1):5–29, 2007.

[24] D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. De-
centralized control of E’GV transportation systems. In 4th
Joint Conference on Autonomous Agents and Multiagent
Systems, Industry Track, Utrecht, The Netherlands, 2005.
ACM Press.

[25] D. Weyns, E. Steegmans, and T. Holvoet. Protocol Based
Communication for Situated Multi-Agent Systems. In 3th
Joint Conference on Autonomous Agents and Multi-Agent
Systems, New York, USA, 2004. IEEE Computer Society.

[26] D. Weyns, E. Steegmans, and T. Holvoet. Towards Active
Perception in Situated Multi-Agent Systems. Applied Artifi-
cial Intelligence, 18(9-10):867–883, 2004.


