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Abstract.
Task assignment in multi-agent systems is a complex coordination problem, in particular

in systems that are subject to dynamic and changing operating conditions. To enable agents
to deal with dynamism and change, adaptive task assignment approaches are needed. In this
paper, we study two approaches for adaptive task assignment that are characteristic for two
classical families of task assignment approaches. FiTA is a field-based approach in which
tasks emit fields in the environment that guide idle agents to tasks. DynCNET is a protocol-
based approach that extends standard contract net (CNET). In DynCNET, agents use explicit
negotiation to assign tasks.

We compare both approaches in a simulation of an industrial automated transportation
system. Our experiences show that: (1) the performance of DynCNET and FiTA are similar,
while both outperform CNET; (2) the complexity to engineer DynCNET is similar to FiTA
but much more complex than CNET; (3) whereas task assignment with FiTA is an emergent
solution, DynCNET specifies the interaction among agents explicitly allowing engineers to
reason on the assignment of tasks, (4) FiTA is inherently robust to message loss while DynC-
NET requires substantial additional support. The tradeoff between (3) and (4) is an important
criteria for the selection of an adaptive task assignment approach in practice.

1. Introduction

The advances in computing and communication technology pave the way
to large-scale distributed software systems such as automated transportation
systems and online manufacturing control. At the same time, these systems
introduce increasing levels of complexity to software engineers. Two impor-
tant factors for the growing complexity are: the highly dynamic operating
conditions under which systems have to operate, such as altering workloads
and variations in availability of resources, and the inherent distribution of
resources which makes central control practically infeasible.

In our research, we study situated multi-agent systems (situated MAS)
for engineering such systems. A situated MAS structures the software as a
number of interacting autonomous entities (agents) that have an explicit po-
sition in an environment. Situated agents use computationally efficient action
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selection mechanisms (Tyrrell, 1993, Maes, 1994, Ferber and Muller, 1996,
Bandini et al., 2002, Weyns and Holvoet, 2006) to respond rapidly to dy-
namic and changing circumstances. Situated MAS are collaborative systems
in which agents work together locally to solve a complex overall problem.
Great emphasis is put on a suitable coordination mechanism. Situated agents
typically coordinate indirectly through a shared coordination medium. Ex-
amples are agents that coordinate their behavior via computational fields or
digital pheromones.
Task Assignment in Situated MAS. One particularly challenging coordi-
nation problem in situated MAS is task assignment. Tasks in situated MAS
are often characterized by delayed commencement, i.e. the execution of a
task requires a preceding effort of an agent before the task can actually be
executed. We illustrate the problems of assigning tasks with delayed com-
mencement in dynamic systems with an example application from the domain
of manufacturing control that is described in (Bussmann and Schild, 2000).
In this system, workpieces move on a conveyor belt along a set of machines.
Workpieces have to pass through a series of operations. Some of the machines
can perform the next operation on the workpieces. The authors propose an
approach where workpieces select the next machine based on a first-price
single-round auction. However, several kinds of dynamics may arise while
a workpiece moves toward the assigned machine. A machine may finish an
operation on another workpiece, making the machine available for the work-
piece that is on its way to its assigned machine. Machines can be added to
the system, or can be temporarily unavailable due to a breakdown or mainte-
nance. Task assignment with a first-price single round auction is not able to
deal with such kinds of dynamics. The assignment of tasks with delayed com-
mencement requires adaptive task assignment approaches that enable agents
to deal with dynamism and change in the system and its environment.
Two Approaches for Adaptive Task Assignment. In this paper, we study
two approaches for adaptive task assignment that are characteristic for two
classical families of task assignment approaches. In particular, we study and
compare a field-based approach for task assignment (FiTA) with a protocol-
based approach (DynCNET). In FiTA, tasks emit fields in the environment
that attract idle agents. Agents follow the gradient of the combined field that
guide them toward tasks. DynCNET is an extension of the well-know contract
net protocol (CNET (Smith, 1980)), with “Dyn” referring to support for dy-
namic task assignment. Both FiTA and DynCNET enable task assignment in
the system based on local interaction among agents and allow for adaptation
of tasks assignment during delayed commencement. Yet, the approaches dif-
fer in the manner agents realize task assignment. In FiTA, agents use simple
rules that guide them toward tasks, providing an emergent solution for task
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assignment. Contrary, in DynCNET agents use explicit selection mechanisms
and can negotiate about task assignment.

Our focus is on systems with homogeneous tasks that can be executed
by individual agents. In this paper, we do not consider complex tasks, for
instance composite tasks that have to be divided among agents, or a combina-
tion of related tasks that have to be executed by a single agent. The motivation
for this restriction is twofold. First, the adaptive task assignment approaches
were developed and tested in the context of an R&D project in which we
developed a decentralized control architecture for an automated transporta-
tion system. The basic task of the automatic guided vehicles (AGVs) in such
system is to transport loads in an industrial environment. Second, it allowed
us to focus on the basic challenges of task assignment in systems that are
subject to dynamic and changing operation conditions.

In our study, we apply DynCNET and FiTA to a simulation of an indus-
trial transportation system. We make a tradeoff analysis and compare: (1)
the performance of both approaches (throughput and bandwidth usage), (2) a
number of important quality attributes, including flexibility (adapt to dynam-
ics that happen during task assignment), openness (take into account agents
that enter/leave the system in the process of task assignment), and robustness
to message loss (degrade gracefully with increasing loss of messages), and (3)
the complexity and support to engineer the approaches. In the experiments,
CNET is used as a reference protocol. CNET is equivalent to DynCNET
without reallocation of tasks.
Overview. In the next section, we introduce the AGV transportation system.
Section 3 discusses the two approaches for dynamic task assignment: FiTA
and DynCNET. In section 4, we present test results obtained from applying
both approaches in a simulated AGV transportation system, and we make a
tradeof analysis. Section 5 discusses related work. Finally, in section 6 we
draw conclusions.

2. The AGV Transportation System

FiTA and DynCNET were developed in the context of a joint R&D project
between DistriNet Labs at the Katholieke Universiteit Leuven and Egemin1, a
manufacturer of AGVs and control software for automating logistics services
in warehouses and manufactories. In this project, we have applied a situated
MAS to develop a decentralized control architecture for an automated trans-
portation system that uses multiple AGVs (Weyns et al., 2005). The goal of
the project was to improve flexibility and openness. To deal with the dynamic
operating conditions, we have tested both FiTA and DynCNET for task as-
signment in a simulated AGV transportation system. It is common practice

1 http://www.egemin.com/.
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in AGV system development to perform extensive simulation tests before the
system is deployed on site. This avoids high costs of physical test settings
with many AGVs. We use the AGV transportation system in this paper as a
case to explain the two approaches for adaptive task assignment, and we make
a tradeoff analysis of the approaches for a simulated AGV transportation
system.

In this section, we give an overview of the AGV transportation system,
providing the necessary background for the remainder of the paper. First, we
briefly explain the main architectural views of the real system that was tested
on a setup with AGVs at the Egmin test site (Weyns and Holvoet, 2007).
Then, we give a general overview of the architecture of the simulated system
that we have used for the tests presented in this paper, and we explain the
assumptions of the simulation.

2.1. AGVS AND TRANSPORTS

An AGV is a unmanned, battery powered vehicle, capable of picking up a
load, driving around and dropping it. AGVs can communicate by means of
a wireless LAN. The AGVs are restricted to follow a predefined layout in
the warehouse environment. The layout is defined in a map that consists of
a network of stations and segments that are accessible by the AGVs. AGVs
can leave and re-enter the system to charge their battery or for maintenance.
AGVs are equipped with low-level control software that uses sensors and
actuators to stay on track, turn, pick and drop a load, and determine the current
position.

A transport represents a task to move a load from a pick location to a
drop location. Transports are generated by an external system, typically a
warehouse management system. The stream of transports that enter the sys-
tem is typically irregular and unpredictable. Each transport has a priority that
depends on the importance of the task and that increases over time to avoid
starvation. Transports in an AGV transportation system are characterized by
delayed commencement, i.e., an AGV first has to drive to a load before it
can pick the load and transport it to the destination. While driving toward
the load all kinds of changes in the system may occur. New tasks may enter
the system that are more suitable for the AGV to execute, new AGVs may
become available that are more suitable to perform the task, etc.

2.2. MAIN VIEWS OF THE SOFTWARE ARCHITECTURE

Fig. 1 shows the deployment view of the decentralized AGV transportation
system that describes how the software is deployed on hardware elements.
The software system consists of two subsystems: the AGV Control System
and the Transport Base System.
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Figure 1. Deployment view of the AGV transportation system.

AGV Control System. Each AGV is equipped with a computer containing an
AGV control system. The AGV control system contains a single AGV agent
that is responsible for obtaining and executing transports, and ensuring that
the AGV gets maintenance on time (such as charging the AGV’s battery).
As such, an AGV becomes an autonomous entity that can take advantage of
opportunities that occur in its vicinity, and that can enter/leave the system
without interrupting the rest of the system.
Transport Base System. Each transport in the system is represented by a
transport agent. Transport agents are part of the transport base system that is
deployed on a stationary computer system located in the warehouse. A trans-
port agent is responsible for assigning the transport to an AGV and reporting
the status and completion of the transport to the warehouse management sys-
tem. Transport agents are autonomous entities that interact with AGV agents
to find suitable AGVs to execute the transports.
All subsystems can communicate via a wireless network. The warehouse
management system interacts with the AGV transportation system via a wired
network. In the next section, we zoom in on the internal structure of the AGV
control system. The transport base system has a similar architecture.

2.3. AGV CONTROL SYSTEM

The left part of Fig. 2 shows the architecture of the AGV control system. The
right part zooms in on the AGV agent architecture.
AGV Agent. AGV agent is responsible for controlling the AGV and execut-
ing transports. The main functionalities of an AGV agent are: (1) obtaining
transport tasks; (2) handling jobs and reporting the completion of jobs; (3)

weyns-boucke-jaamas-2007-revision-11-2007.tex; 22/11/2007; 15:45; p.5



6 D. Weyns, N. Boucké and T. Holvoet

avoiding collisions; (4) avoiding deadlock; (5) maintaining the AGV machine
(charging battery, calibrating etc.); (6) parking when the AGV is idle. The
AGV agent consists of three submodules: Decision Making is responsible for
selecting actions, Communication handles communicative interactions, and
Perception perceives the local virtual environment based on requests of Deci-
sion Making and Communication. The AGV agent’s knowledge is maintained
in the Current Knowledge repository.
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Figure 2. Architecture of the AGV control system on the right, with a detail of the AGV agent
on the left

Local Virtual Environment. Since the physical environment of AGVs is
very restricted, it offers little opportunities for agents to use the environment
for coordination purposes. The local virtual environment is a software entity
that represents and maintains relevant state of the physical environment and
state that is used by the AGV agent to exchange information with other agents
and to coordinate their behavior (e.g., by means of fields in FiTA). The local
virtual environment also shields the AGV agent from low-level issues, such
as the communication of messages to remote agents and the physical control
of the AGV. Particular responsibilities of the local virtual environment are:
(1) representing and maintaining relevant state of the physical environment
and the AGV vehicle; (2) representing additional state for coordination pur-
poses; (3) enabling the manipulation of state; (4) synchronization of state with
neighboring local virtual environments; (5) providing support to signal state
changes; (6) translating the actions of the AGV agent to actuator commands
of the AGV vehicle; (7) translating and dispatching messages from and to
other agents.
ObjectPlaces Middleware & E’nsor. The ObjectPlaces middleware enables
communication with software systems on other nodes, providing a means
to synchronize the state of the local virtual environment with the state of
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local virtual environments on neighboring nodes (Schelfthout, 2006). Object-
Places proposes two programming abstractions, views and roles, to support
mobile application development. A view is an automatically up-to-date col-
lection of data objects, that are copies or representations of data objects
available on a set of nodes in the network (Schelfthout et al., 2006). A role
encapsulates the behavior of a component of the application engaging in
a protocol (Schelfthout and Holvoet, 2005). The middleware automates the
setup and maintenance of an interaction session between a number of par-
ticipating roles in the mobile network. ObjectPlaces encapsulates the tedious
management tasks associated with distribution in mobile systems. This signif-
icantly reduced the complexity of tackling distributed coordination problems
in the AGV transportation system, such as collision avoidance, deadlock
detection, and task assignment.

E’nsor is the low-level control software of the AGV that provides an
interface to command the vehicle and to read out its status. The E’nsor in-
terface defines instructions to move the vehicle over a particular distance
and possibly execute an action at the end of the trajectory. E’nsor un-
derstands basic actions such as Move(Segments) that instructs E’nsor
to drive the AGV over the given segment, and Pick(Segments) and
Drop(Segments) that instructs E’nsor to drive the AGV over the given
segment and to pick/drop the load at the end of it. The physical execution of
the commands is managed by E’nsor. As such, the AGV agent can control the
movement and actions of the AGV at a fairly high-level of abstraction.

2.4. ARCHITECTURE OF SIMULATED AGV TRANSPORTATION SYSTEM

Fig. 3 shows the architecture of the simulated AGV transportation system.
For each AGV in the simulated system, an instance of an AGV agent

with a local virtual environment is provided. Transports are represented by
transport agents that share a common local virtual environment. As such,
each node of the physical system is represented by a separate set of soft-
ware components, matching the decentralized control architecture of the real
system. The simulated environment provides a software representation of the
physical elements of the AGV transportation system, including a map of the
warehouse layout, a representation of the vehicles with the low-level control
software (vehicles are located on the map), and a simulation of the wireless
communication network. Besides maintaining the state of the simulated ele-
ments of the physical system, the simulated environment collects and delivers
messages, it provide the means for monitoring the state of elements in the
system, and it determines the outcome of the actuator actions of the agents
taking into account the state of the system.

Assumptions. Simulations are performed on a layout of a real AGV system
that is implemented by Egemin. We also use the standard transport profiles
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Figure 3. Architecture of the simulated AGV transportation system

that Egemin uses for testing purposes. However, the simulation makes also
a number of simplifications. First, physical distribution is simulated. AGV
movements, load manipulations, and message transport via the wireless net-
work are simulated. Next, we do not consider physical errors in the system
such as AGVs that fail, paths that are obstructed, etc. Finally, a number of
non-functional concerns are not considered, such as charging of the batteries
of AGVs, calibration of the vehicles, and persistency of data to recover from
failures. It is common practice when testing specific properties of AGV trans-
portation to make such abstractions. It allows to focus on the concern under
test—in our case task assignment.

3. FiTA and DynCNET

We now introduce the two approaches for task assignment that enable agents
to deal with dynamics during delayed commencement of tasks. We start with
FiTA. First, we explain how fields are spread in the environment and how
agents are guided by the fields toward tasks. Then, we give an overview
of the software architecture that shows the main components of the AGV
agent and the local virtual environment involved in FiTA. Next, we discuss
DynCNET. We start by explaining the default sequence of protocol steps with
an AUML interaction diagram. Then, we use a state chart to zoom in on the
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adaptive properties of DynCNET. We use scenarios of the AGV application
to illustrate the explanation of both approaches.

3.1. FITA

Coordination by means of computational fields is a well-studied domain in
MAS. The basic idea of field-based task assignment is to let each idle agent
follow the gradient of a field that guides it toward a task that has to be ex-
ecuted. The agents continuously reconsider the situation in the environment
and task assignment is delayed until the execution of the task starts, which
benefits the flexibility of the system. To explain FiTA, we use the scenario
shown in Fig. 4.
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Figure 4. Example scenario in the AGV transportation system to illustrate FiTA.
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Figure 5. Two successive scenarios in which AGV A follows the gradient of the combined
fields. For clarity, we have not drawn the fields. We have used the same key as in Fig. 4.
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Fields. Task assignment is achieved by the interaction between AGV agents
and transport agents. An AGV has a position in the warehouse that is repre-
sented in the local virtual environment. In a real AGV transportation system
transport agents execute on the transport base. Conceptually, however, trans-
port agents are situated in the local virtual environment and occupy the
position of the load of its associated transport in the local virtual environ-
ment. The positions of AGVs and transports is shared among the local virtual
environments. In the simulation, the actual positions of AGVs and transports
is represented in the simulated environment. Both AGV and transport agents
emit fields in the local virtual environment, see Fig. 4. Transport fields at-
tract idle AGVs. However, to avoid multiple AGVs driving toward the same
transport, AGVs emit repulsive fields. AGV agents combine perceived fields
and follow the gradient of the combined fields, that guide them toward pick
locations of transports. Fields have a certain range and contain information
about the source agent. AGV fields have a fixed range, while the range of
transport fields is variable and depends on the actual priority of the tasks.
Fields are refreshed at regular times, according to a predefined refresh rate.
AGV agents store perceived fields. When an AGV agent perceives fields, it
stores the data contained in these fields in a field-cache. The field-cache con-
sists of a number of cache-entries. Each cache entry contains the identity of
the perceived field, the most recent data contained in that field and a freshness.
The freshness is a measure of how up-to-date the cached data is. For example,
in Fig. 4 the field-cache of AGV A will consists of three entries, one for
transport u, one for transport w, and one for AGV B.
AGV agents calculate the coordination-fields. Each AGV agent calculates a
coordination-field to decide in which direction to drive. A coordination-field
is a combination of the perceived fields, which are stored in the field-
cache. The lower the freshness of a cache-entry, the lower the influence of
the associated field on the coordination-field. The coordination-field is con-
structed from the next node on the AGV’s path. An AGV agent follows the
coordination-field in the direction of the smallest value. This can be con-
sidered as following the gradient of the coordination-field downhill. The
coordination-field is computed as follows:

Fcalc = min|j ∈ out nodes

(
δ

nT∑

i=1

Fi,j(1 + φi) + (1− δ)
nA∑

k=1

Fk,j(1 + φk)

)

The formula calculates the minimum of a set of combined fields from a par-
ticular node on the warehouse layout. For each possible direction the AGV
can move from this node, the formula computes the sum of the fields (the
first term sums the transport fields sensed by the AGV, the second term sums
the sensed AGV fields) and then selects the minimum. The formula allows
to determine the influence of various parameters such as the freshness of the
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fields, and the balance between attracting and repelling fields. Concretely,
Fcalc is the selected coordination-field from the next node on the AGV’s path.
out nodes is the set of outgoing nodes from the next node. nT is the current
number of entries of transport fields in the field cache, and nA the number en-
tries of AGV fields. δ is a weight coefficient that determines the contribution
of transport fields relative to AGV fields. Fi,j is the field strength of transport
i of the field cache on the next node via node j. φi is the freshness coefficient
of the sensed field of transport i. Fk,j is the field strength of AGV k of the
field cache on the next node via node j, and φk is the freshness coefficient of
the sensed field of AGV k.

Fi,j is computed as follows:

Fi,j =
Router(li, j)

pi

Router(li, j) calculates the shortest path distance from li, the location of
transport i, to the next node on the AGV’s path via node j. pi is the actual
priority of transport i.

Fk,j is computed as follows:

Fk,j = Router(lk, j)

Router(lk, j) determines the shortest path distance from lk, the location of
AGV k, to the next node of the AGV via node j.

As an illustration, in the left part of Fig. 5, AGV A calculates the
coordination-field on the node in front. Although transport w is closer, the
coordination-field will guide AGV A toward transport u. This is the result of
the repulsive effect of AGV B. It would have been ineffective for AGV A to
drive toward transport w, since AGV B is closer and is maneuvering toward
this transport.
Adaptive task assignment. Final task assignment is delayed until an AGV
actually reaches a pick location and picks up the load. This allows agents
to adapt the assignment of tasks while the AGVs drive toward loads. By
delaying task assignment, FiTA can cope with changing circumstances that
arise. An example is shown in the right part of Fig. 5 where a new transport
suddenly pops up. While AGV A is driving toward transport u, a new trans-
port p appears close to AGV A. Since no transport has been assigned to AGV
A yet, it can drive toward transport p.

Software Architecture. Now, we discuss the main components of the AGV
agent and the local virtual environment in FiTA. Fig. 2 shows an architec-
tural view with collaborating components. Transport agents have a similar
but more simple decision making component as AGV agents since these

weyns-boucke-jaamas-2007-revision-11-2007.tex; 22/11/2007; 15:45; p.11



12 D. Weyns, N. Boucké and T. Holvoet
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Figure 6. Software components of AGV agent and local virtual environment involved in FiTA.
The elements in the shaded area of the local virtual environment deal with field management
and the elements of the AGV agent deal with field calculation.

agents only have to deal with emitting fields. First, we discuss the various
components of the AGV agent that deal with field calculation. Then, we zoom
in on the components of the local virtual environment that deal with field
management. In (Weyns et al., 2006), we elaborate on the architecture of the
AGV transportation system.
Field cache: This repository stores the information of fields of other AGV
agents and transport agents in cache-entries.
Router. The router uses a map of the warehouse layout with nodes and seg-
ments to calculate paths and distances from one node to another. For testing,
we have used a static router that uses the A* algorithm (Hart et al., 1968).
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However, the approach is compatible with a dynamic router that would take
into account dynamic runtime information such as traffic distribution.
Field calculator. The field calculator computes the coordination-field from
the last selected target node by combining the perceived fields from the
field-cache. The higher the freshness of a cache-entry, the more influence
the field associated with the cache-entry will have on the construction of
the coordination-field. Thus, although still used, less importance is given to
outdated information. The field calculator makes use of the router to calculate
the values of the coordination-field in different directions. The AGV follows
the gradient of the coordination-field downhill as driving direction.
Field update. The field update component requests perception updates (via
the Perception component) to update the field cache of the AGV agent. Field
update requests are periodically invoked by the action selection component.
Action selection. The action selection component continuously reconsiders
the dynamic conditions in the environment and selects appropriate actions to
perform the agent’s tasks. We illustrate action selection of the AGV agent
with a number of example rules:2

{Action selection rules of AGV agent}
R1: (ready-to-pick) -> {action = pick}
R2: (reserved-path < LookAheadDistance)

-> { compute coordination-field;
action = reserve-node }

R3: (ready-to-move) -> {action = move}

Rule R1 states that the AGV agent selects a pick action when the AGV is
ready to pick a load. Rule R2 states that the AGV agent reserves a next node
on its way to a load if the current length of its reserved path is less than
the predefined path length LookAheadDistance. Locking the path in advance
according to the LockAheadDistance parameter ensures that the AGV moves
smoothly and stops safely. The third rule states that the AGV agent selects a
move action if it is ready to move on.

Action selection passes the selected action to the Collision & Deadlock
Avoidance component. If applicable, this component locks the required path
to execute the selected action. As soon as the path is locked, the action is
invoked in the local virtual environment. When the AGV has picked up a load,
it will inform the transport agent and execute the transport. The following
two high-level descriptions summarize the behavior of the agents during task
assignment:

{Action selection AGV agent}
while idle

2 The format of the rules is defined as:
(condition) → {optional computation; selected action}
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do repeat with constant frequency {
1. Sense fields and update the field-cache
2. Select action
3. Perform action in local virtual environment

}

{Action selection transport agent}
while not assigned
do repeat with constant frequency {
1. Calculate priority
2. Update status in the local virtual environment

}

Local fields. This repository of the local virtual environment stores the values
of fields of AGVs and transports.
Field maintenance. The local virtual environment is responsible for spreading
the fields. Field maintenance encapsulates a dynamic process that maintains
the local fields. It takes into account the status of the local agent(s) such as
the position of an AGV or the priorities of transports and the information
about AGVs and transports received from other local virtual environments.
This latter information is exchanged among local virtual environments via
synchronization messages.
Dealing with Local Minima. A well known problem with field-based ap-
proaches is the problem of local minima (Koren and Borenstein, 1991). We
explain how FiTA deals with two common causes of local minima: the
topology of the layout and the neutralization of fields.

Since AGV vehicles are restricted to follow predefined paths in the envi-
ronment, the problems with local minima caused by the topology of the layout
could be avoided relatively easily. Consider Fig. 7 with AGV A and two trans-
ports u and v. If the value of the fields would be based on Euclidean distance,
AGV A would drive towards transport u, however, it would be trapped in a
local minimum at node 1.

By making the strength of the field on a particular position proportional
to the shortest path distance between this position and the source of the field,
local minima are avoided. Applied to the example in Fig. 7: since the shortest
path distance from AGV A to transport v is much smaller as to transport u,
the attracting field of transport v will be much smaller than that of transport
u. As such, AGV A will turn right at node 1 (gradient downhill) and drive
towards transport v.

A local minimum can also arise when the attracting fields and the repelling
fields sensed by an AGV neutralize each other. Consider the situation in the
left part of Fig. 8. When AGV A computes its coordination-field from node
2, the attracting fields of transport v and w may be equal and smaller than the
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Figure 7. Avoidance of local minima in FiTA. The attracting fields of transports u and v are
proportional to the shortest path distance between AGV A and the transports. As such, AGV
A will be guided towards transport v.

field of transport u. In such a case, the AGV will select randomly one of the
minimum fields to follow its route. Another situation is shown in the right
part of Fig. 8. In this case, the attracting field of transport x may accidentally
be equal to the sum of the attracting field of transport y and the repelling field
of AGV B. Again, the AGV will select one of the options.
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Figure 8. Left: AGV A selects randomly between task v and w in node 2. Right: Temporal
neutralization of fields in node 3.

3.2. DYNCNET PROTOCOL

DynCNET is an extension of the well-known CNET protocol that enables
the agents to regularly reconsider the situation in the environment and adapt
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the assignment of tasks when circumstances change. We start by explaining
a number of general properties of the DynCNET protocol. Then we give an
overview of the default sequence of the protocol. Next we explain how the
agents involved in a protocol can switch the assignment of tasks. We will use
the AGV transportation scenario depicted in Fig. 10 to illustrate the steps of
the protocol. The DynCNET protocol describes the behavior of AGV agents
and transport agents to realize adaptive task assignment. This behavior is
encapsulated by the agents’ communication module, see Fig. 2.
General Properties. DynCNET is an m × n protocol. An initiator that
offers a task can interact with m participants, i.e. the candidate agents that
can execute the task. On the other hand, each participant can interact with
n initiators that offer tasks. As an example, consider the scenario shown in
Fig. 10. In the AGV transportation system, an initiator corresponds with
a transport agent that represents a task in the system and the participant
corresponds with an AGV agent that can execute tasks. We denote the area
where an initiator (or participant) searches for participants (or initiators) the
area of interest of the initiator (or participant). The dotted circles in Fig. 10
show the current areas of interest of AGV A (top) and task x (bottom). For
task x, there are currently two candidate AGVs to execute the task: F and
G (AGV E is delivering a load). For AGV A on the other hand, there are
three possible tasks to execute: u, v, and w. Because of the dynamics in the
system, the set of candidate tasks (initiators) and agents that can execute a
task (participants) can change over time. For example, in the right part of
Fig. 11, AGV E has just dropped its load and becomes a candidate to execute
task x.
Default Sequence. Fig. 9 shows an AUML interaction dia-
gram (Huget et al., 2006) with the default message sequence of DynCNET.
The default protocol consists of four steps: (1) the initiator sends a call
for proposals; (2) the participants respond with proposals; (3) the initiator
notifies the provisional winner; and finally, (4) the selected participant
informs the initiator that the task is started. These four steps are basically
the same as in the standard CNET protocol. The flexibility of DynCNET is
based on the provisional agreement between initiator and participant, and the
possible revision of the assignment of the task between the third and fourth
step of the protocol.
Switching Initiators and Participants. To explain how agents can switch
tasks when the conditions in the environment change, we use the UML state
diagram of Fig. 12. This state diagram shows a compact representation of
the behavior of the initiator and participant agents in the protocol. When a
task enters the system and it is ready to be executed (task-ready), the
corresponding initiator enters the Active state in which it remains until
the task is completed (task–completed). As soon as a participant is
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Figure 9. High-level diagram of the DynCNET protocol. Shaded zones in the activation boxes
represent periods in the protocol when agents can switch the provisional agreement.
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Figure 10. Scenario to illustrate DynCNET. The dotted circle at the top left demarcates the
current area of interest of AGV A. The circle at the bottom demarcates the current area of
interest of task x.

ready–to–work it enters the Working state in which it remains until the
task is executed (ready). To explain the adaptability of DynCNET, we first
look at the protocol from the perspective of the participant, then we look
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Figure 11. Left: task p provides an opportunity for AGV A to switch tasks. Right: AGV E
becomes available for task x. We have used the same key as in Fig. 4.
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Figure 12. High-level description of the DynCNET protocol. In the shaded states, agents can
switch the provisional agreement.

from the point of view of the initiator.
Switching Initiators. Consider the situation in Fig. 10 where we assume
that AGV A has a provisional agreement to execute task w. While AGV A
drives toward the pick location of task w, a new task p enters the system,
see the left part of Fig. 11. This new task is an opportunity for AGV A to
switch tasks. DynCNET enables participants to switch initiators and exploit
such opportunities. When a participant is ready to execute a task, it enters
the Voting state. As long as the participant has not received a provisional
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acceptance (not–provisional–accept), it answers cfp’s with
proposals. When the participant receives a provisional–accept
message (step 3 in Fig. 9), it enters the Intentional state, see Fig. 12. As
soon as the participant starts the task (task–started), it sends a bound
message to the initiator to inform the latter that the execution of the task
is started. The participant is then committed to execute the task.3 However,
if a new opportunity occurs before the task is started, i.e. the participant
receives a better–offer, the participant changes to the Switch
Initiator state. Based on the new–better–offer, the participant
retracts from the earlier provisional task assignment (send(retract)),
and switches (provisional–accept holds) to the more suitable task
(SwitchTask()) entering again the Intentional state.
Switching Participants. Consider the situation in Fig. 10 where we assume
that task x has a provisional agreement with AGV G, and task t with AGV
F. While AGV G drives toward the pick location of task x, AGV E drops
the load it is carrying and becomes available, see the right part of Fig. 11.
This new AGV is an opportunity for transport x to switch AGVs. DynCNET
enables initiators to switch participants and exploit such opportunities.
As long as the initiator has not selected a participant to execute the task
(no–winner), it sends cfp’s to the participants in scope. Based on the
received proposals from the participants, it selects a winner, sends
a provisional–accept message (step 3 in Fig. 9), and enters the
Assigned state, see Fig. 12. As soon as the initiator receives a bound
message from the selected participant (bounded holds), it enters the state
Executing in which the task is effectively started. However, if a new
opportunity occurs before the task is started, i.e. the initiator receives a better
proposal from a participant (better–proposal), the initiator changes to
the Switch Participant state. Based on the condition new–winner
in this state the initiator sends an abort message to the provisionally
assigned participant, and sends a provisional–accept message to
switch to the more suitable participant (new winner).
TaskInScope() and TaskOutScope() are functions that notify
the participant when new tasks enter and leave its area of interest.
Such functionality can be provided by the perception module of the
participant that monitors the area of interest of the agent in the environment,
see Fig. 2. Similarly, the functions ParticipantInScope() and
ParticipantOutOfScope() notify the initiator when new participants
enter and leave its area of interest. In the AGV transportation system,
monitoring of the area of interest of tasks and AGVs is supported by views
provided by the ObjectPlaces middleware (Boucké et al., 2006). In the

3 The condition bounded initiates the initiator’s state transition from Assigned to
Executing when it receives the bound message from the participant.
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simulation, these functionalities are included in the simulated environment.
Convergence. A potential risk of DynCNET is that the assignment of
tasks oscillates between participants and no tasks are executed. To ensure
progress, both temporal and spatial windows are used in the protocol.
Temporal windows refer to the periodicity by which call for proposals and
proposals are sent. In the AGV application, the transport agents use the
same frequency to send call for proposals as the AGV agents use to send
proposals in the Voting state. However, as soon as an AGV agent enters the
Intentional state it increases the frequency with a factor 5, providing the
transport agent of the load it intends to pick with up-to-date information
about the approaching AGV. Spatial windows refer to the size of the areas
of interest for initiators and participants. In the AGV application, the area of
interests of transport agents (initiators) covered up to 1/10th of the total area
of the map (depending on the actual priority of the transports) and the area
of AGV agents (participants) was 4 times smaller as that of transport agents.
As a result of the asymmetry, transport agents select preferable AGVs, while
AGV agents only switch transports when a new transport appears close to
the actual position of the AGV.

The choice for the specific parameter settings was determined before the
simulation tests, see section 4.1. The results of the experiments show that
the protocol converges under the indicated conditions for the studied case.
However, the specific solution for convergence applied in the AGV applica-
tion can not be generalized. A formal proof of convergence for DynCNET
is required which is subject of our future work. A possible starting point to
produce such a proof is described in (Aknine et al., 2004). In that paper, the
authors formally prove the termination of an adapted CNET protocol.
Synchronization messages. To avoid overloaded diagrams, we have made
abstraction of a number of synchronization issues in the high-level descrip-
tion of the DynCNET protocol in Fig. 12. We explain the main synchroniza-
tion problem that is related to a participant that has started executing a task
while an initiator has sent an abort message to that participant.

When an initiator receives a better proposal it switches participants
(better–proposal). Therefore, it sends an abort message to the partic-
ipant that has provisionally accepted, see Fig. 12. However, this participant
may already have started executing the task (task-started) while the
bound message of that participant has not been received by the initiator yet.
Since the participant has started executing the task (e.g., an AGV has started
to pick the load), participants can no longer be switched.

To deal with this synchronization problem, an additional synchronization
message is used, see Fig. 13. When the initiator receives a better proposal,
it enters the Aborting state where it sends an abort message to the par-
ticipant that has provisionally accepted to execute the task. The initiator then
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Figure 13. Synchronization of bound and abort (refined part of the DynCNET protocol
description of Fig. 12).

enters the Waiting to Abort state. In case the participant has not started
to execute the task it accepts (aborted) and replies with an accept– abort
message. However, if it has started executing the task (task–started), it
refuses (abort–refused) and sends a refuse–abort message to the
initiator. When the initiator receives the abort confirmation it switches partic-
ipants (winner) and sends a provisional accept message to the participant
with the better proposal. Otherwise, it waits for the bound message of the
initial participant (bounded). As soon as it receives the confirmation, it
enters the Executing state.

Other synchronization issues are related to participants that leave the
scope of interest of initiators. For details, we refer to (Weyns et al., 2007).

4. FiTA and DynCNET Applied in an AGV Transportation System

This section discusses the test results obtained from applying DynCNET
and FiTA in a simulated AGV transportation system. After introducing
the test setting, we present the results of the various tests and we re-
flect on the test results. For a number of additional test results we refer
to (Weyns et al., 2007).

4.1. TEST SETTING

AGV Transportation System. All simulation tests are performed on the
map of an AGV transportation system that is implemented by Egemin at
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EuroBaltic, a fishing prcocession center in Rugen, Germany, see Fig. 14. The
size of the physical layout is 134 m x 134 m. The map has 56 pick and 50 drop
locations. We used a standard transport profile that Egemin uses for testing

Figure 14. Test map of the AGV transportation system that is implemented by Egemin at
EuroBaltic. The snapshot is taken from a test with FiTA. The part at the bottom left zooms in
on a small part of the map.

purposes. This profile generates 140 transports with a random pick location
and a random drop location per hour real time. Each transport is assigned a
random priority that increases over time. In the simulation, we used 14 AGVs
just as in the real application. The average speed of driving AGVs is 0.7 m/s,
while pick and drop actions take an average amount of time of 5 s. Every
simulation4 was run for 200.000 timesteps, corresponding to approximately
4 hours real time, i.e. one timestep represents 20 ms in real time. All displayed
test results are average values over 30 simulation runs.
Reference Protocol. In the tests, we use standard CNET as a reference proto-
col. In CNET, an initiator calls for proposals and participants offer proposals
to perform the task. When the initiator has received the proposals from all

4 For the tests, we used an AGV simulator (http://www.cs.kuleuven.ac.be/∼distrinet/task-
forces/agentwise/agvsimulator/) that uses a framework for time manage-
ment (Helleboogh et al., 2005) to ensure that the simulation results are independent of
performance characteristics of the execution platform. Tests where executed on a cluster of
40 machines: P4 2Ghz, 512MB RAM, Debian Stable 3.0.
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participants, it evaluates the proposals and assigns the task to the participant
with the best offer. In the tests, a transport that enters the system is assigned
as soon as possible to the most suitable AGV, i.e. an idle AGV for which
the cost to reach the pick location is minimal. When transports can not be
assigned immediately, they enter a waiting status. All waiting transports are
ordered by priority, and this priority determines the order in which transports
are assigned.
Parameter Settings. Preceding to the tests, we determined the most suit-
able set of values for the parameters of the three tested task assignment
approaches. Parameter tuning is a labour-intensive job. For most of the param-
eters, for FiTA as well as for DynCNET, we were able to determine a range
of values from which we could select one without significantly affecting the
performance of the protocol. We presume that the constrained nature of the
problem (in particular the restrictions imposed by the layout) accounts for this
relaxation. A thorough discussion of parameter setting however, would lead
us too far. In (Weyns et al., 2007), parameter setting is discussed in depth.

4.2. TEST RESULTS

We focus on the evaluation of two important properties of the task assign-
ment approaches: performance and robustness to message loss. Performance
evaluation consists of two parts: communication load and completion of tasks
over time. Communication load (number of messages sent per transport) is a
crucial factor in agent systems since decentralization of control requires more
communication and thus additional bandwidth (Ong, 2003). Evaluation of the
completion of tasks over time is important to demonstrate the flexibility of the
task assignment approaches. To evaluate the completion of tasks over time,
we measured reaction time (average waiting time per transport as a function
of simulated timesteps), and throughput (number of finished transports as a
function of simulated timesteps). Besides the test with a standard test profile,
we have performed a stress test in which AGVs have to handle as quickly
as possible a fixed number of transports from a limited number of locations.
Robustness to message loss is another important criterion in decentralized
systems, in particular in mobile systems that communicate via a wireless net-
work. DynCNET is not robust to message loss since the protocol prescribes
a particular sequence of message exchange. When a message get lost, this
sequence is disrupted and the interaction blocks5. Therefore, we have only
tested robustness to message loss of FiTA. To demonstrate the robustness
to message loss, we have measured the reaction time and throughput for
different degrees of message loss. (Weyns et al., 2007) discusses a number
of additional tests.

5 In fact, some of the messages may get lost without blocking the interaction. For example,
the protocol will not fail when a call for proposals message is lost.
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Since tasks are generated randomly and priorities are assigned randomly,
we have verified the the statistical significance by calculating the 95% con-
fidence interval (Weisstein, 2006) for the main test results. The confidence
intervals are denoted with error bars in the figures. The relative small intervals
indicate that the test results are sufficiently reliable.
Communication Load. To compare the communication load, we have mea-
sured the average number of messages sent per finished transport. The left
part of Fig. 15 shows the results of the test. The number of messages of
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Figure 15. Left: amount of messages being sent per finished transport. Right: average waiting
time

DynCNET and FiTA are approximately the same, while the communication
load of CNET is about half of the load of the dynamic mechanisms. However,
an important difference exists between the type of messages sent. Fig. 16
summarizes the number of unicast and broadcast messages sent by the three
mechanisms. For CNET, more than 90 % of the communication are unicast
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Figure 16. Left: number of unicast messages. Right: number of broadcast messages

messages. For DynCNET the balance unicast–broadcast messages is about 75
% – 25 %, yet, for FiTA this balance is about 25 % – 75 %. This difference
is an important factor for selecting appropriate communication infrastructure
for a particular task assignment mechanism and vice versa.

weyns-boucke-jaamas-2007-revision-11-2007.tex; 22/11/2007; 15:45; p.24



A Field-Based Versus a Protocol-Based Approach for Adaptive Task Assignment 25

Average Waiting Time. The right part of Fig. 15 shows the test results for
average waiting time for transports. Average waiting time is expressed as
the number of timesteps a transport has to wait before an AGV picks up the
load. After a transition period of approximately 20.000 timesteps, DynCNET
and FiTA outperform CNET. The difference increases when time elapses.
FiTA is slightly better than DynCNET over the full test range. A possible
explanation is that idle AGVs in FiTA immediately start moving when they
sense a field of a task, while in DynCNET AGVs only start moving after they
are provisionally committed to execute a task.
Number of Finished Transports. The left part of Fig. 17 shows the number
of transports finished by each of the protocols during the test run. The re-
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Figure 17. Left: number of finished transports. Right: number of finished transports in the
stress test

sults confirm the measures of the average waiting time per finished transport.
DynCNET handles more transports than CNET, but less than FiTA. After four
hours in real-time, on average, CNET has handled 380 transports, DynCNET
has handled 467 transports, and FiTA 515 transports. For the 467 executed
transports of DynCNET, we measured an average of 414 switches of transport
assignments performed by transport agents and AGV agents.
Stress Test. In addition to the standard transport test profile, we have per-
formed a stress test in which 45 transports are created at a limited number of
locations in the beginning of the test. These transports have to be dropped at
a particular set of destinations. The test simulates for example the arrival of
a truck with loads that have to be distributed in a warehouse. The task of the
AGVs is to bring the loads as quickly as possible to the right destinations.
The transport test profiles for the three mechanisms was identical. The right
part of Fig. 17 shows the test results. The slopes of the curves of FiTA and
DynCNET are similar but much steeper than the curve of CNET. The results
demonstrate that CNET requires about 2.5 times more time to complete the
45 transports than the adaptive approaches.
Robustness to Message Loss. DynCNET is not robust to message loss since
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the protocol prescribes a particular sequence of message exchange that can
not be disrupted without blocking the interaction. Therefore, we have only
tested robustness to message loss of FiTA. To demonstrate the robustness,
we have measured the reaction time and throughput for different degrees of
message loss. The left part of Fig. 18 shows the average waiting time per
finished transport for different percentages of message loss. The right part of
the figure shows the corresponding number of finished transports over time.
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Figure 18. Left: average waiting time for different percentages of message loss. Right: the
corresponding number of finished transports

The test results show a graceful degradation of the performance of FiTA
with increasing message loss. The average waiting time of transports system-
atically increases and the number of finished transports over time decrease
with higher message loss rates. In practical AGV transportation system, mes-
sage loss in typical 1–2 % with a maximum of 5 %. The test resuls show that
the impact of message loss of 2 % is fairly limited. Even with 20 % message
loss, FiTA performs still better as CNET without message loss (compare the
left part of Fig. 18 with the right part of Fig. 15, and the right part of Fig. 18
with the left part of Fig. 17.

4.3. TRADEOFF ANALYSIS

We now reflect on the test results and make a tradeoff analysis of the ap-
proaches for task assignment. First we zoom in on a number of important
quality properties. Then we compare a number of engineering aspects.

Quality Attributes. DynCNET and FiTA have similar performance charac-
teristics. Both outperform CNET on all performance measures, the cost is
a doubling of required bandwidth. Since DynCNET explicitly defines the
mechanism for agents to switch tasks, we expected that–when fine tuned
well–DynCNET would be able to outperform FiTA. However, the experi-
ments show that this is not the case, at best DynCNET is able to equal the
performance of FiTA. Fig. 19 compares several additional quality attributes
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Figure 19. Summary of quality attributes of the three approaches.

of the three task assignment approaches.
Flexibility. We consider flexibility as the agents’ ability to adapt their be-
havior to dynamics that happen in the process of task assignment. Both
DynCNET and FiTA support flexible assigning of tasks with delayed com-
mencement. In FiTA, the choices of the participant agents are implicitly
determined by the combination of the sensed fields. DynCNET provides ex-
plicit points of choice for initiators and participants. The points of choice are
abstractly defined in the protocol and need to be instantiated according to the
requirements of an application at hand. In the AGV application, agents use
the priorities of tasks and the distance between AGVs and loads to switch
tasks. More advanced approaches can be considered, e.g., participants may
(to some extent) favour tasks that are located near other tasks increasing the
chance to find a closely located task when the original assignment of tasks
for some reason switches.
Openness. With openness, we refer to the agents’ self-managing abilities to
take into account other agents that enter and leave the system in the process of
task assignment. Both DynCNET and FiTA support openness during delayed
commencement, i.e. both mechanisms allow initiators to take into account
new participants that become available and participants can participate in
the assignment of new tasks that become available. Whereas FiTA inherently
supports openness (the combination of fields adapts when fields disappear or
new fields appear), the DynCNET protocol includes explicit functions (Par-
ticipantInScope, etc.) that notify initiators and participants when other agents
enter or leave their current area of interest. Neither flexibility, nor openness
is supported by CNET.
Robustness. Robustness to message loss is the ability of a task assignment
approach to withstand message loss (i.e., graceful degrade). In FiTA, the
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freshness of the perceived fields is taken into account to determine the at-
traction and repulsion of fields. When an agent misses an update of a field
due to the loss of a message, the previous value of the field is used. Yet, to
determine the combined field that guides the agent, less importance is given
to older field values. As such, FiTA is (to some degree) robust to message
loss. DynCNET (as CNET) on the other hand fails when a message gets lost
and the prescribed sequence of messages is disrupted. As such, DynCNET re-
quires additional support for robustness to message loss. Exception handling
in protocol design is a non-trivial problem (Mallya and Singh, 2005) and may
cause a significant increase of message exchange.

Engineering Aspects. Fig. 20 compares a number of engineering aspects of
the three task assignment approaches.
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Figure 20. Summary of engineering aspects of the three approaches.

Mechanism Engineering. No common engineering approaches are currently
available for designing and developing FiTA. On the other hand, DynCNET
allows to specify the behavior of the agents by means of common engi-
neering diagrams such as interaction diagrams and state charts. We used
UniMod (UNiMod, 2006) to design the DynCNET protocol as a state ma-
chine. UniMod enables to draw the state machine and export the diagram to
an XML file. This XML file was used to interpret the state machine in the
agent program.
Parameter Tuning. Parameter tuning is typically associated with stigmergy-
based solutions such as FiTA. However, parameter tuning of DynCNET
requires similar efforts as in FiTA. Examples are the range of interest of
both types of agents, the growth rate to extend this range when no suitable
candidates are found, the pace to send cfp and proposals, etc. Our experiences
indicate that a flexible agent-interaction protocol that deals with dynamics
and change in the system also requires considerable efforts to tune parame-
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ters.
Type of Communication. A significant difference exists in the ratio unicast–
broadcast messages that are used in the three task assignment mechanisms.
This difference is important for selecting appropriate communication infras-
tructure for a specific task assignment mechanism and vice versa. Further re-
search is needed to investigate the implications of the type of communication
of the different mechanisms.

5. Related Work

Task assignment is an extensive domain of research. In this section, we dis-
cuss a number of related field-based approaches and mechanisms for task
assignment that are based on CNET.

5.1. FIELD-BASED APPROACHES

Techniques based on fields have been used extensively for the co-
ordination of software agents in a metric space. Zeghal and Fer-
ber (Zeghal and Ferber, 1993) use vector fields to control the landing and
movements of a large group of aircrafts in a simulation. In this approach, each
agent is guided by a potential field that it constructs based on attracting and
repelling forces resulting from goals and obstacles (including other agents)
respectively. Reynolds demonstrates flocking behavior between a set of
agents (Reynolds, 1996). The aggregate behavior of the agents emerges from
the interaction of multiple agents that each follows a set of simple behav-
ioral rules. Mataric adopted these techniques to real robots (Mataric, 1994),
showing how a set of robots produced pack behavior. Each robot is provided
with a set of simple behaviors from which it selects the most suitable behavior
according to its current environmental context, i.e. its current position relative
to other robots.

More recently, Mamei and colleagues apply the idea of flocking behavior
of birds to guards who have to patrol a museum, keeping a certain distance
between each other to cover more ground (Mamei et al., 2004). The tourists
in the museum are provided with a software agent running on some wireless
handheld device, giving suggestions on how and where to move. A computer
network with a topology that mimics the topology of the museum plan is
embedded in the museum walls. The hosts in the network are associated
to each room and are capable of communicating with each other and the
mobile devices in their proximity. Fields can be injected at a host, after
which they will be diffused hop-by-hop across the network, modulating the
values of the fields as necessary. The latter is achieved by supporting mid-
dleware, such a TOTA (Tuples On The Air) (Mamei and Zambonelli, 2004).
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A related example in which fields are successfully applied is the“Quake 3”
game (Mamei and Zambonelli, 2003). In this application, fields are used to
guide the behavior of non-human characters in a virtual game.

Shehory and colleagues (Shehory et al., 1999) describe a physics oriented
model for cooperative goal-satisfaction with simple agents in a large-scale
cooperative MAS. Different kinds of gradient field approaches have also been
used in the context of RoboCup, a recent example is (Buchman et al., 2005).
Breton and colleagues (Breton et al., 2004) discuss a variation on the field-
based approach where agents construct a field in their direct neighborhood to
achieve routing and deadlock avoidance in a simplified AGV systems. An-
other variation is described in (Paoli and Vizzari, 2002), where the MMASS
(Multilayered Multi Agent Situated System) model for multi-agent coordina-
tion is used. In this model, the environment is represented as a multi-layered
graph in which the agents can spread abstract fields. In the standard field-
based approach, agents combine perceived fields and are constantly guided
by the fields, while in MMASS fields are in principle considered independent
from each other and are exploited only to trigger one shot reactions.

Finally, field-based approaches are an extensively studied field in robotics.
A lot of attention in this research is given to solving particular problems
such as trap situations due to local minima, the problem of passage between
closely spaced obstacles, oscillations in the presence of obstacles and in
narrow passages, the coordinated movement of multiple robots, etc. Because
AGVs are constrained in their movements to a predefined layout, these prob-
lems are not applicable to AGV transportation systems. In contrast, the main
problem we have tackled in this paper is adaptive task assignment among a
set of AGVs. For more details about field-based approaches in robotics, we
refer to a number of reference books (Borenstein et al., 1996, Arkin, 1998,
Donald et al., 2000).

5.2. CNET-BASED APPROACHES

Contract Net (CNET) is a widely known and extensively used protocol that
uses an auction-like mechanism to achieve task assignment. CNET was
originally proposed by Smith and Davis (Smith, 1980) and is included in a
FIPA-standard (FIPA TC Communication, 2002a). The DynCNET protocol
is an extension to CNET with two distinctive characteristics: (1) it enables
m×n negotiations, i.e. a participant can manage concurrently multiple nego-
tiation processes with the initiators and the initiator can manage negotiation
processes with multiple participants; (2) it supports changes on the Initiator
and the Participant side (dynamism) and delays the definitive assignment until
the task is effectively started (i.e. it provides support for delayed commence-
ment of tasks). In this section, we list several variants to CNET and show how
they relate to DynCNET.
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Several extensions of CNET exist that support m×n negotiations. Knabe
and colleagues (Knabe et al., 2002) describe a protocol that allows a bidder to
place bids for multiple unassigned tasks. This is achieved by giving the bidder
the option to refuse the task in step 3 of the original protocol (compare Fig. 9).
The manager will then award the contract to the second best bidder, who can
again accept it or refuse it, etc. This protocol does not support changes at both
sides or delayed commencement.

Fisher and colleagues (Fischer et al., 1995) discuss an integrated multi-
agent based approach for cooperative planning and scheduling of transporta-
tion tasks in a society of shipping companies. The authors introduce ECNP,
the Extended Contract Net Protocol, in which grant and reject are replaced
by temporal grant, definitive grant, temporal reject, and definitive reject. This
allows to temporally assign a set of related bids to a set of agents that can
be evaluated as a whole and then be assigned definitively (e.g., a set of
trucks are assigned parts of a transport task and after the client agrees with
the assignment, the task as a whole is allocated). To allow adaptation after
the tasks are definitely assigned (e.g., trucks that have to deal with traffic
jams), an auction-based mechanism called simulated trading is used. The
approach was implemented at DFKI and it was shown that it was able to
solve complex industrial scheduling problems. ECNP supports the alloca-
tion of composite tasks, something that is not considered for DynCNET in
this paper. Whereas ECNP provides a limited time window during which
the protocol allows to change the allocation of tasks, DynCNET supports
the adaptation of task assignment until a task is actually started to be exe-
cuted. In (Fischer et al., 1995), such dynamics is supported by an additional
auction-based simulation mechanism.

In (Schillo et al., 2002), Schillo and colleagues consider the problem how
agents participating in a contract net should allocate their resources if a large
number of contract net protocols is performed concurrently. Agents should
find a good strategy to allocate resources. The authors present several strate-
gies for solving this problem and give criteria for the decision which of the
strategies is best selected for a given problem domain. DynCNET allows
agents to apply complex strategies to select tasks. However, in this paper, we
only have considered simple strategies in which agents consider the assign-
ment of one task at a time. A more advanced strategy could take into account
the assignment of multiple tasks over time. On the other hand, in a highly
dynamic setting as an AGV transportation system, defining such a strategy is
a complex task.

FIPA proposes the Iterated CNET protocol, allowing multi-round itera-
tive bidding (FIPA TC Communication, 2002b). The protocol is multi-round
in the sense that the initiator can decide to issue a new call for proposals
(and thus start a new round) after the bidding phase instead of accept-
ing a proposal. There is no partial commitment during the iterations and
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the protocol does not allow to reconsider the situation ones a proposal is
accepted. Related to the Iterated CNET protocol are leveled-commitment
contracts (Sandholm and Lesser, 2002). The idea of a leveled-commitment
contract is that any of the agents in a contract can de-commit by paying an
agreed penalty to the other agent(s) in the contract. A leveled-commitment
contract is not a protocol on itself, but this type of contracts can used in
negotiation protocols between self-interesting agents. De-comitting penalties
could be added in the DynCNET protocol in the switching phase.

The protocol in (Aknine et al., 2004) focusses on self-interested agents
supporting several negotiation processes in parallel. The approach introduces
two levels of bidding, i.e. a pre-bidding phase in which the participants can
still change their commitment and a definitive bidding phase in which the
task is effectively assigned to a single participant. The protocol allows to
reconsider commitments during the pre-bidding phase, but the window in
which commitments can be changed is small. As soon as all agents answered
in the pre-bidding phase, the definitive bidding phase starts and the partic-
ipants can no longer change their commitment. An interesting contribution
of (Aknine et al., 2004) is that the authors formally prove the converge of the
protocol.

Finally, several researchers combine the original CNET protocol with
other strategies to provide support for dynamism. In (Maturana et al., 1999),
a mediator architecture is presented for dynamic scheduling that combines
mediation and sub-tasking using CNET to produce a robust schedule. Me-
diator agents are used to coordinate the resource agents using the CNET
protocol. In case of breakdowns, the system is rescheduled by re-running the
CNET protocol for the task to find and available slots in the schedule. Other
work that combines a mediator architecture and the CNET protocol is de-
scribed in (Shen and Norrie, 1998) and (Ouelhadj et al., 2003). In this work,
different re-schedule techniques for different real-time events are proposed.
For example, the re-scheduling technique for rush orders (try to replace a
task by another task) differs from a machine breakdowns (find the nearest
free slot in the schedule). These mechanisms allow for some flexibility, but
task rescheduling is time consuming making the approaches more suitable for
systems with limited dynamics.

6. Conclusions

Task assignment in decentralized systems is a complex coordination problem.
In this paper, we presented DynCNET and FiTA as two alternative approaches
for adaptive task assignment. Our focus was on homogeneous tasks that can
be executed by individual agents. In FiTA, agents follow fields in the en-
vironment that guide them toward tasks providing an emergent solution for
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task assignment. DynCNET is an extension of the Contract Net protocol that
allow agents to reconsider provisionally agreed assignments of tasks when
circumstances in the environment change. Contrary to other Contract Net
extensions that typically provide a specific time window in which tasks can be
reassigned, DynCNET allows agents to adapt task assignment from the mo-
ment the task enters the system until its execution is started. We have applied
DynCNET and FiTA in a simulation of an implemented AGV transportation
system. Our experiences yield the following conclusions:

− DynCNET and FiTA have similar performance characteristics and out-
perform CNET. Contrary to our expectations, DynCNET was not able
to outperform FiTA.

− Whereas FiTA is inherently robust to message loss, DynCNET is not
and requires substantial additional support to deal with message loss.

− Parameter tuning for DynCNET has similar complexity as for FiTA.

− DynCNET explicitly defines the task assignment process among the
agents while in FiTA task assignment is implicitly enclosed in the fields.

The tradeoff between support for robustness and engineering comfort–in
particular the fact that DynCNET allows engineers to reason on the as-
signment of tasks–is an important criteria for selecting a task assignment
approach in practice. Egemin, our partner in the AGV transportation project,
currently considers to incorporate an adaptive agent-based task assignment
approach in there basic architecture for AGV control. The engineers tend to
give preference to engineering comfort and therefore prefer DynCNET over
FiTA. Still, extensive tests are necessary before an eventual decision can be
made.

DynCNET and FiTA are suitable for domains that are characterized by
delayed commencement of tasks, i.e. an agent that has to execute a task has
to perform a significant effort before it can effectively execute that task.
The approaches assume continual communication access. We believe that
DynCNET is applicable in other domains that share these properties. DynC-
NET requires that no messages get lost. In domains where this condition can
not be met, additional support to deal with message loss must be provided.
FiTA requires that the strength of the fields can be expressed proportional
to the shortest path distance between tasks and agents rather than to the
Euclidean distance. This constraint ensures that agents that use FiTA do
not get stuck in local minima. As such, the approach may be less suitable
for domains where agents are less restricted in their movements in space.
Currently, we only have considered domains with homogeneous participants
and tasks with different priorities. Further research is needed to study how
DynCNET and FiTA are useful in domains with more complex tasks, for
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example an AGV transportation system in which AGVs can carry multiple
loads simultaneously.
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