
Decentralized Control of Automatic Guided Vehicles
Applying Multi-Agent Systems in Practice

Danny Weyns Tom Holvoet
DistriNet Labs, Katholieke Universiteit Leuven,

Belgium
http://distrinet.cs.kuleuven.be/

{danny.weyns,tom.holvoet}@cs.kuleuven.be

Kurt Schelfthout Jan Wielemans
Egemin International nv
http://www.egemin.com/

{kurt.schelfthout,jan.wielemans}@egemin.be

Abstract
An automatic guided vehicle (AGV) transportation system
is a fully automated system that provides logistic services
in an industrial environment such as a warehouse or a fac-
tory. Traditionally, the AGVs that execute the transportation
tasks are controlled by a central server via wireless com-
munication. In a joint effort between Egemin, an industrial
manufacturer of AGV transportation systems, and DistriNet
Labs research at the Katholieke Universiteit Leuven, we de-
veloped an innovative decentralized architecture for control-
ling AGVs. The driving motivations behind decentralizing
the control of AGVs were new and future quality require-
ments such as flexibility and openness. At the software ar-
chitectural level, the AGV control system is structured as a
multi-agent system; the detailed design and implementation
is object-oriented. In this paper, we report our experiences
with developing the agent-based control system for AGVs.
Starting from system requirements, we give an overview of
the software architecture and we zoom in on a number of
concrete functionalities. We reflect on our experiences and
report lessons learned from applying multi-agent systems for
real-world AGV control.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures; I.2.11 [Distributed Ar-
tificial Intelligence]: Multiagent systems

General Terms design

Keywords decentralized control, software architecture,
multi-agent system, automatic guided vehicle, AGV

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

1. Introduction
An AGV transportation system consists of a number of un-
manned vehicles that need to work together to transport
loads in an industrial environment. Transports are generated
by client systems, typically an enterprise resource planning
system and possibly operators. The main functionalities that
an AGV transport system has to fulfill is assigning incom-
ing transport tasks to appropriate AGVs, routing the AGVs
through the warehouse efficiently while avoiding collisions
and deadlocks, and maintaining the AGVs’ batteries.

An AGV transportation system has to deal with dynamic
and changing operating conditions. The stream of transports
that enter the system is typically irregular and unpredictable,
AGVs can leave and re-enter the system for maintenance,
production machines may have variable waiting times, etc.
All kinds of disturbances can occur, supply of goods can
be delayed, certain areas in the warehouse may temporarily
be closed for maintenance services, loads can block paths,
AGVs can fail, etc. Despite these challenging operating con-
ditions, the system is expected to operate efficiently and ro-
bustly.

Egemin has successfully been providing full life cycle
support for AGV systems used to automate internal logistics
in production, distribution and warehousing environments
since the seventies. Traditionally, the AGVs systems de-
ployed by Egemin are directly controlled by a central server.
The server plans the schedule for the system as a whole, dis-
patches commands to the AGVs and continually polls their
status. This results in reliable and predicable solutions. The
central point of control also enables easy diagnosis of errors.
Driven by a shift in user requirements towards increased
flexibility and openness of the system, Egemin and DistriNet
Labs set up an R&D project to develop a radically new ar-
chitecture based on multi-agent systems. Applying a multi-
agent system opens perspectives to improve flexibility and
openness of the system: the AGVs can adapt themselves to
the current situation in their vicinity, order assignment is dy-
namic, the system can deal autonomously with AGVs leav-
ing and re-entering the system. At the same time, the project



aimed to investigate the tradeoffs implied by a decentral-
ized architecture in this industrial application. In particular,
we were interested in the tradeoff between the performance
of the system and its flexibility to deal with disturbances,
and the impact of local decision making and the overall effi-
ciency of the system (such as bandwidth requirements).

Although multi-agent systems have been applied in man-
ufacturing control, to the best of our knowledge, the appli-
cation reported in this paper is the first account of the use of
multi-agent systems for real world AGV control. The decen-
tralized AGV control system was designed and developed
between 2004 and 2007 by a team of engineers and develop-
ers of Egemin and researchers of DistriNet Labs. The soft-
ware system was implemented on a setup with real AGVs,
and tested in larger, industrially used simulations. The de-
livered code base for the control software consists of about
100K lines of C# code. This system interfaces with a lower-
level AGV steering system that for its real time properties is
written in C. The effort demonstrates the industrial applica-
bility and benefits of multi-agent systems for a medium size
real world application.

In this paper, we report our experiences with develop-
ing the agent-based control system for AGVs. (Weyns et al.
2005) provides an initial report of the project. For in dept
discussions of technical aspects of the system we refer to
(Weyns and Holvoet 2008) that discusses architectural de-
sign, (Boucké et al. 2006) discusses the evaluation of the
software architecture, (Schelfthout et al. 2006) elaborates
on the middleware of the system, and (Weyns et al. 2008)
discusses two approaches for dynamic task assignment that
were developed in the context of the project.

Overview. This paper is structured as follows. Section 2
gives a brief overview of an AGV transportation system and
explains the main system requirements. Before we zoom in
the agent-based approach for decentralized control of AGVs,
we first explain our perspective on software engineering and
multi-agent systems in section 3. In section 4, we give an
overview of the software architecture of the AGV transporta-
tion system and we illustrate a number of specific function-
alities. We conclude the paper with a reflection on our expe-
rience and report lessons learned.

2. AGV Transportation Systems
AGVs are fully automated, custom made vehicles that are
able to transport goods in a logistic or production environ-
ment, see Fig. 1. AGV transportation systems can be used for
distributing manufactured products to storage locations or
as an inter-process system between various production ma-
chines. AGVs are provided with low-level control software
connected to sensors and actuators to move safely through
the warehouse environment. While moving, the vehicles fol-
low specific paths in the warehouse by means of a navigation
system which uses stationary beacons in the work area, typi-
cally laser reflectors on walls or magnet strips in the floor. To

enable the AGV control software to communicate with soft-
ware systems on other machines, the vehicles are equipped
with infrastructure for wireless communication.

Figure 1. One of the AGVs used in the project

We now give an overview of the functionalities of the
system and the main quality requirements.

2.1 Main Functionalities
In order to execute transports, the main functionalities the
system has to perform are:

1. Transport assignment: transports are generated by client
systems and have to be assigned to AGVs that can exe-
cute them. The stream of transports that enter the system
is typically irregular and unpredictable.

2. Routing: AGVs must route efficiently through the layout
of the warehouse when executing their transports.

3. Gathering traffic information: although the layout of the
system is static, the best route for the AGVs in general
is dynamic, and depends on the actual traffic conditions
and forecasts in the system. Taking into account traffic
dynamics enables the system to route AGVs efficiently
through the warehouse.

4. Collision avoidance: obviously, AGVs must not collide.
AGVs can not cross the same intersection at the same
moment, however, safety measures are also necessary
when AGVs pass each other on closely located paths.

5. Deadlock avoidance: since AGVs are relatively con-
strained in their movements (they cannot divert from
their path), the system must ensure that AGVs do not
find themselves in a deadlock situation.

To perform transport tasks, AGVs are equipped with a bat-
tery as energy source. AGVs have to charge their battery at
the available charging stations. Depending on the applica-



tion characteristics, a vehicle recharges when its available
energy goes down a certain level, or the vehicle follows a
pre-defined battery charge plan, or the vehicle can perform
opportunity charging, i.e. the vehicle charges when it has no
work to do. Finally, when an AGV is idle it can park at a free
park location.

2.2 Quality Requirements
Various stakeholders have an interest in an AGV transporta-
tion system, such as customers, project managers, archi-
tects, simulation engineers, developers, deployment engi-
neers, system testers, and service engineers. Evidently, these
stakeholders have different, sometimes conflicting quality
requirements. Performance is a major quality requirement,
customers expect that transports are handled efficiently by
the transportation system. Configurability is important, it al-
lows installations to be easily tailored to client-specific de-
mands. Obviously, an automated system is expected to be
robust, intervention of service operators is time consuming
and costly.

Besides these “traditional” qualities, evolution of the mar-
ket puts forward new quality requirements. Customers re-
quest systems that are able to adapt their behavior with
changing circumstances autonomously. Dealing with system
dynamics autonomously translates to two specific quality
goals: flexibility and openness.

2.2.1 Flexibility
Flexibiltiy refers to the system’s ability to exploit opportuni-
ties and anticipate possible difficulties. In the traditional cen-
tralized approach, the assignment of transports, the routing
of AGVs and the control of traffic are planned by the central
server. The current planning algorithm applied by Egemin is
based on predefined schedules. Schedules are rules associ-
ated with AGVs and particular locations in the layout, e.g. “if
an AGV has dropped a load on location x, then that AGV
has to move to node y to wait for a transport assignment”. A
plan can be changed, however only under exceptional con-
ditions. E.g., when an AGV becomes defective on the way
to a load, the transport can be re-assigned to another AGV.
A flexible control system allows an AGV that is assigned a
transport and moves toward the load, to switch tasks along
the way if a more interesting transport pops up. Flexibility
also enables AGVs to anticipate possible difficulties. For ex-
ample, when the amount of traffic is high in a certain area,
AGVs should avoid that area; or when the energy level of an
AGV decreases, the AGV should anticipate this and prefer
a zone near to a charge station. Another desired property is
that AGVs should be able to cope with particular situations,
e.g., when a truck with loads arrives at the factory, the system
should be able to reorganize itself autonomously according
to the changing situation.

2.2.2 Openness
Openness of an AGV transportation system refers to the sys-
tem’s ability to deal autonomously with AGVs leaving and
(re-)entering the system. Examples are an AGV that tem-
porarily leaves the system for maintenance, and an AGV that
re-enters the system after its battery is recharged. In some
cases, customers expect to be able to intervene manually dur-
ing execution of the system, e.g., to force an AGV to perform
a particular job. Openness is also important in the start up
phase when the system is gradually deployed and tested.

In summary, flexibility and openness are high-ranking qual-
ity requirements for today and future AGV transportation
systems.

3. Multi-Agent Systems and Software
Engineering

Before we elaborate on how we have applied a multi-agent
system for decentralized control of AGVs, we first explain
our perspective on software engineering and multi-agent sys-
tems.

Multi-agent system research is an active research field
that spawned from distributed AI in the 1980s. A multi-agent
system consists of a collection of autonomous agents that in-
teract with each other and their environment (Sycara 1998).
Durfee and Lesser define a multi-agent system as “a loosely
coupled network of problem solvers (agents) that interact to
solve problems that are beyond the individual capabilities
or knowledge of each problem solver” (Durfee and Lesser
1989). Characteristics of multi-agent systems are: (1) each
agent has incomplete information or capabilities for solving
the problem and, thus, has a limited viewpoint; (2) there is
no system global control; (3) data are distributed; and (4)
computation is asynchronous.

Since the mid-1990s the idea that multi-agent systems are
a radically new way of engineering software has dominated
research in agent-oriented software engineering. Wooldridge,
Jennings and Kinny state: There is a fundamental mismatch
between the concepts used by object-oriented developers
and other mainstream software engineering paradigms, and
the agent-oriented view. [...] Existing software development
techniques are unsuitable to realize the potential of agents
as a software engineering paradigm (Wooldridge et al.
2000). This vision has led to the development of numerous
multi-agent system methodologies (Henderson-Sellers and
Giorgini 2005). Studying literature, however, reveals that
very limited results have been obtained in the application of
these methodologies to real world problems. A notable ex-
ception is the DACS methodology (Designing Agent-based
Control Systems) introduced by Bussmann et al. that was
applied in the design of a multi-agent system for manufac-
turing control at DaimlerChrysler (Bussmann et al. 2004).

Our perspective on engineering multi-agent systems
starts from the viewpoint that multi-agent system engineer-



ing fits well within mainstream software engineering. This
vision is based on the observation that multi-agent systems
are essentially a way to structure a software system, making
software architecture (Bass et al. 2003) of paramount impor-
tance in engineering multi-agent systems. Software architec-
ture is a corner stone for ensuring that systems achieve their
quality and functional goals and ultimately serve an organi-
zation’s business and mission goals. It provides the required
level of abstraction and generality to deal with the increas-
ing challenges of adaptation required in distributed software
applications (Kramer and Magee 2007).

Multi-agent systems are characterized by specific intra-
agent and inter-agent structures yielding new architectural
patterns with particular quality attributes and tradeoffs. At
the level of individual agents, many different architectures
have been developed, ranging from simple reactive agents
to complex reasoning agents. At the system level, the multi-
agent system can be structured as an organization of selfish
agents that play different roles in the organization pursuing
their own interests. Other multi-agent systems consist of co-
operative agents that aim to achieve a common goal. Agents
can interact in different ways: via a high-level communica-
tion language and specific interaction protocols, or via ma-
nipulating marks in a shared agent environment. Since spe-
cific multi-agent system structures imbues the software sys-
tems with certain qualities, while making certain trade-offs,
a primary focus of multi-agent system engineering is on the
software architecture of the system. Multi-agent systems are
known for quality attributes such as adaptability, openness,
robustness, and scalability, making multi-agent systems par-
ticularly interesting to deal with the demanding challenges
of complex distributed software applications.

During architectural design, architects apply proven ar-
chitectural approaches to transfer the system requirements
into appropriate software structures. For the architectural
design of the AGV transportation system, the architects
have used a set of architectural patterns for multi-agent sys-
tems (Weyns 2006). These patterns have proven their value
for systems with similar characteristics and requirements as
the AGV transportation system.

4. A Multi-Agent System for Decentralized
AGV Control

In this section, we give an overview of the software architec-
ture of the AGV transportation system. We motivate why we
have used a multi-agent system for decentralized control of
AGVs, and we illustrate a number of aspects of the system.

4.1 Overview of the AGV Transportation System
Fig. 2 shows a general overview of the software of the
AGV transportation system. The software consists of three
layers. Each layer represents a virtual machine with a public
interface that provides a cohesive set of services that other
software can utilize without knowing how those services are

Figure 2. Software layers of the AGV transportation system

implemented. The layers are allowed to interact with each
other according to a strict ordering relation. In particular, a
layer A (such as AGV Application layer in Fig. 2) is allowed
to use1 any of the public facilities of the virtual machine
provided by the nearest lower layer B (the E’pia layer in
Fig. 2). Layers contribute to the modifiability and portability
of a software system.

The AGV application layer is the application-specific
software that accepts transport requests and instructs AGVs
to handle the transports. In the traditional systems deployed
by Egemin, the AGV application software consists of a cen-
tral server that instructs AGVs to perform the transport re-
quests. In the decentralized architecture, the AGV appli-
cation software is structured as a multi-agent system that
handles the transport requests of the clients.

The AGV application layer makes use of E’pia2. E’pia is
a component framework developed by Egemin that provides
common middleware services for logistic systems. E’pia
provides general support for system configuration, commu-
nication, persistency, security, logging, visualization and di-
agnosis. E’pia also handles the interfacing with the low-level
control software of AGVs called E’nsor3. We fully reused
this control software in the project. E’pia translates high-
level actuator commands to a low-level digital format of
the actuator control software of E’nsor, and in the oppo-
site direction, it parses the digital information derived from
the sensors to provide a high-level representation of the ac-
tual status of the AGV. Internally, E’nsor is equipped with a
map of the factory floor that divides the physical layout of
the warehouse into logical segments of a number of meters.
E’nsor is able to steer the AGV per segment. To control the
AGV, E’pia provides basic actions such as Move(segment)

1 The uses relation is defined by Parnas as: a unit of software A is said to
use unit B if A’s correctness depends upon a correct implementation of B
being present (Parnas 1979).
2 E’pia R© is an acronym for Egemin Platform for Integrated Automation.
3 E’nsor R© is an acronym for Egemin Navigation System On Robot.



that instructs E’nsor to drive the AGV over the given seg-
ment, Pick(segment) and Drop(segment) that instructs
E’nsor to drive the AGV over the given segment and to
pick/drop the load at the end of it.

The E’pia layer make use of the Microsoft .NET frame-
work (Richter 2002). The .NET framework provides a large
body of pre-coded solutions to common program require-
ments, including support for user interfacing, database con-
nectivity, network communication, and threading. .NET in-
cludes the Common Language Runtime environment (CLR)
that serves as an application virtual machine shielding pro-
grammers from underlying platform details. The CLR also
provides services such as security mechanisms, memory
management, and exception handling.

4.2 A Multi-Agent System for the AGV Transportation
System

We now zoom in on the AGV Application layer in Fig. 2 and
explain how this layer is set up as a multi-agent system. The
primary building blocks of the multi-agent system are agents
and a virtual environment. First we introduce the two types
of agents that are used in the AGV transportation system.
Then, we explain the structure of the virtual environment and
we show how agents use local instances of the virtual envi-
ronment to coordinate their behavior. We briefly introduce
ObjectPlaces, a middleware for mobile applications, that we
have developed to support mobile application development.
Fig. 3 shows the main building blocks of the AGV trans-
portation system.

4.2.1 AGV Agents and Transport Agents
We have defined two types of agents: AGV agent and trans-
port agent. The choice to let each AGV be controlled by
an AGV agent is obvious. Transports have to be handled in
negotiation with different AGVs, therefore we have defined
transport agents. Both types of agents share a common archi-
tectural structure, yet, they have different internal structures
that provide the agents with different capabilities.

Transport Agent. Each transport in the system is repre-
sented by a transport agent. A transport agent is responsi-
ble for assigning the transport to an AGV and reporting the
status and completion of the transport to the client that has
requested the transport. Transport agents are autonomous en-
tities that interact with AGV agents to find suitable AGVs to
execute the transports. Transport agents reside at the Trans-
port Base, i.e. a dedicated computer located in the ware-
house, see Fig. 3.

AGV Agent. Each AGV in the system is controlled by an
AGV agent. The AGV agent is responsible for obtaining and
handling transports, and ensuring that the AGV gets main-
tenance on time. As such, an AGV becomes an autonomous
entity that can take advantage of opportunities that occur in
its vicinity and that can enter and leave the system without

Figure 4. Example of a free-flow tree

interrupting the rest of the system. AGV agents are deployed
on their associated AGVs.

To select actions, an AGV agent employs a free-flow
tree (Tyrrell 1993). To explain action selection with a free-
flow tree, we use the sample tree shown in Fig. 4. The tree is
composed of a set of linked nodes. The left part of the tree
represents the functionality for the agent to search a charge
station and charge its battery. To select an action, activity
is injected via the root node of the tree. The root node
feeds its activity to the Working node and the Maintaining
node. The Maintaining node combines the received activity
with the activity from the energy need stimulus. The “+”
symbol indicates that the activities are summed up. The
Maintaining node feeds the combined activity down through
the hierarchy until the activity arrives at the action nodes, i.e.
the leaf nodes of the tree. While the activity flows through
the tree, some of the nodes receive additional activity from
stimuli such as at station, connected, and gradient. This
latter is a multi-directional stimulus that provides a value
of the stimulus for four moving direction. These values are
based on the sensed values of a computational field that is
transmitted by the charge station (we elaborate on the use of
fields in section 4.2.2). In a similar way, the Working node
feeds its activity through the hierarchy. Action nodes that
receive activity from different nodes combine that activity
according to a specific function (fm and fc in the sample
tree of Fig. 4) to calculate the final activity levels. When
all action nodes have collected their activity the node with
the highest activity level is selected for execution. In the
example, the activity collected by the moveL node (move
left) is clearly dominant so the agent would select this action.



Figure 3. High-level model of an AGV transportation system

Figure 5. Runtime snapshot of the decision tree of an AGV agent

Fig. 5 shows a runtime snapshot of the decision making
tree of the AGV agent.

To enable agents to set up collaborations, we extended
free-flow trees with the notions of role and commitment
to allow agents to set up collaborations (Steegmans et al.
2006). Roles correspond to particular subtrees; see e.g. the
role working and role parking in Fig. 5. Commitments are
represented by directed connections between top nodes of
roles, see the SC WORKING commitment in Fig. 5. When a

commitment is activated, additional activity is injected in the
role of the commitment. As a result, the behavior of the agent
will give preference to actions in this role. In the snapshot,
the AGV is manoeuvering towards a pick location and the
PICK action is selected.

In the initial phase of the project, the complete deci-
sion making mechanism of the AGV agents was based on
a free-flow tree. However, with the integration of collision
avoidance and deadlock avoidance, it became clear that the



complexity of the tree was no longer manageable. Therefore
we decided to apply an architecture that allows incremental
decision making. At the top level, a free-flow tree is still
used to select an action at a high-level of abstraction; this
preserves the advantage of adaptive action selection with a
free-flow tree. At the following levels, the selected action is
further refined taking into account collision avoidance and
deadlock avoidance. Each decision-making component in
the chain is able to send feedback to the action controller
to revise the decision. This feedback loop helps to improve
flexible decision making.

Agents contribute to the quality attributes flexibility and
openness. Particular motivations are: (1) agents act locally;
this enables agents to exploit opportunities and adjust their
behavior with changing circumstances in the system and its
environment—this is an important property for flexibility;
(2) agents are autonomous entities that interact with one an-
other in their vicinity; agents can enter and exit each others
area of interaction at any time—this is an important property
for openness.

4.2.2 Virtual Environment
To achieve the system requirements, AGV agents and trans-
port agents have to coordinate. Agents have to coordinate
for routing, for transport assignment, for collision avoid-
ance, etc. A typical approach would provide an infrastruc-
ture for communication that enables the agents to exchange
messages to coordinate their behavior. This however, would
put the full complexity of coordination in the agents result-
ing in complex architectures of the agents, in particular for
the AGV agents. We have chosen for a solution that enables
the agents to exploit a virtual environment to exchange infor-
mation and to coordinate their behavior, see Fig. 3. Besides,
the virtual environment serves as a suitable abstraction that
shields the agents from low-level issues, such as the trans-
mission of messages and the low-level interfacing with sen-
sors and actuators of AGVs. This approach separates respon-
sibilities in the system and helps to manage the complexity.

Since AGV agents and transport agents are deployed on
different nodes, the virtual environment is necessarily dis-
tributed over the AGVs and the transport base. AGVs and the
transport base maintain a local virtual environment, which is
a local manifestation of the virtual environment. The states
of the local virtual environments are synchronized oppor-
tunistically, as the need arises. We explain state synchro-
nization of local environments below when we elaborate on
the ObjectPlaces middleware. The instances of the local vir-
tual environment deployed on the nodes in the system are
tailored to the type of agents deployed on the nodes. For ex-
ample, the local virtual environment on the AGVs provides
a high-level interface that enables the AGV agent to read out
the status of the AGV and send commands to the vehicle.
Obviously, this functionality is not available in the local vir-
tual environment on the transport base.

Coordination through the local virtual environment. The
local virtual environment offers high-level primitives to
agents to act in the environment, perceive the environment,
and communicate with other agents. This enables agents
to share information and coordinate their behavior. We il-
lustrate how agents exploit the local virtual environment to
assign tasks and to avoid collisions.

Transport assignment. We have developed two approaches
for adaptive task assignment and used it the AGV trans-
portation system. FiTA (field-based task assignment) is an
approach in which agents emit fields in the local virtual en-
vironment that guide idle AGV agents to loads. DynCNET is
a protocol-based approach that extends standard contract net
(CNET (Smith 1980)). In DynCNET, the agents use explicit
negotiation to assign tasks. Here we illustrate FiTA in which
agents coordinate through the local virtual environment.

The basic idea of FiTA is to let each idle agent follow
the gradient of a field that guides it toward a task that has
to be executed. In FiTA, two types of fields are used: trans-
port fields which are emitted by transports and AGV fields
are emitted by AGVs. Transport fields attract idle AGVs.
However, to avoid multiple AGVs driving toward the same
transport, AGVs emit repulsive fields. AGV agents combine
perceived fields and follow the gradient of the combined
fields that guide them toward pick locations of transports.
Fields have a certain range and contain information about
the source agent. The fields of the AGV agents have a fixed
range and contain the identity of the AGV and its current
location. The range of transport fields is variable and de-
pends on the priority of the tasks. The spreading of the fields
is a responsibility of the local virtual environments. With
FiTA, the agents continuously reconsider the situation and
task assignment is delayed until the execution of the task
starts which benefits the flexibility of the system. When a
task or AGV enters or leaves the system the perceived fields
of local agents will be adapted supporting openness of the
system. Both AGV agents and transport agents emit fields
in the local virtual environment. Fig. 6 shows a snapshot of
a simulation of an implemented system where a number of
agents emit fields.

Fig. 7 compares the performance of FiTA with a static
approach for transport assignment in an industrial test case
with 14 AGVs (Weyns et al. 2008). At the beginning of the
test, 45 transports are simultaneously created at a particular
number of locations in the warehouse. These transports have
to be dropped at a specific set of destinations. The test repre-
sents for example the arrival of a truck with loads that have
to be unloaded and stored in a warehouse as quickly as possi-
ble. The slope of the curve of FiTA is much steeper than the
curve of the static approach for transport assignment. The
results demonstrate that static transport assignment requires
about 2.5 times more time to complete the 45 transports than
FiTA.



Figure 6. Transports emit fields in the virtual environment to attract idle AGVs

Collision avoidance. AGV agents mark the path they are
going to drive in their local virtual environment using hulls.
The hull of an AGV is the physical area the AGV occupies.
A series of hulls describe the physical area an AGV occupies
along a certain path. If the area is not marked by other hulls
(the AGV’s own hulls do not intersect with others), the AGV
can move along and actually drive over the reserved path. In
case of a conflict, the involved local virtual environments use
the priorities of the transported loads and the vehicles to de-
termine which AGV can move on. AGV agents monitor the
local virtual environment and only instruct the AGV to move
on when they are allowed. Afterwards, the AGV agents re-
move the markings in the local virtual environment.

The left parts of Fig. 8 and Fig. 9 show two AGVs coor-
dinate to avoid a collision (we explain the right part of the
figures below). The snapshots show a fusion view of the two
local virtual environments that is collected via remote access
of the two AGVs.

In Fig. 8 two AGVs are coordinating. Both AGVs are
projecting hulls in the virtual environment. At this point

there is an overlap of hulls: the AGV on top (box marked
with X) is ready to move to the left, the smaller AGV at the
bottom is manoeuvring to turn right. The AGV at the bottom
has already reserved the trajectory occupied by its hull, and
thus it has priority to the AGV at the top that must wait. In
Fig. 9, the AGV at the bottom has passed the curve. There
is no longer an overlap of hulls and the AGV at the top has
started driving to the left.

4.2.3 ObjectPlaces: Middleware for Mobile
Applications

The mobility of the AGVs impose highly dynamic opera-
tion conditions and inherent distribution of resources. A typ-
ical approach in mainstream software engineering is to sup-
port distribution with a suitable middleware. We have de-
veloped a middleware for mobile applications called Ob-
jectPlaces (Schelfthout 2006). Mobile applications such as
an AGV transportation system are characterized by (1) their
need to take into account their physical environment (usu-
ally called context) explicitly; and (2) their need to deal with
dynamics and unexpected events originating from their con-



Figure 8. Hulls are overlapping; the AGV on top has to wait

text. ObjectPlaces proposes two programming abstractions,
views and roles, to support mobile application development
with respect to those two needs.

The first abstraction, a view, is an automatically up-to-
date collection of data objects that are copies or representa-
tions of data objects available on a set of nodes in the net-
work. The middleware automates gathering the data objects
from a set of nodes and maintains the view in the face of
dynamically changing availability of the data objects.

The second abstraction, a role, encapsulates the behavior
of a component of the application engaging in a protocol.
The middleware automates the setup and maintenance of an
interaction session between a number of participating com-
ponents in the mobile network in the face of a continuously
changing number of participants.

ObjectPlaces has significantly simplified the development
of the application components of the AGV transportation
system. The middleware encapsulates the tedious manage-
ment tasks associated with distribution in mobile systems.
This significantly reduced the complexity of tackling dis-
tributed coordination problems such as collision avoidance,

deadlock detection, and transport assignment in the AGV
transportation system.

We illustrate the use of the middleware abstractions for
collision avoidance. When an AGV moves on, a view is
maintained that keeps track of AGVs within a certain dis-
tance, i.e. the AGVs in collision range. When an AGV ap-
proaches and enters the collision range, the middleware will
include that AGV in the view. Similarly, when an AGV
leaves the collision range, that AGV will be removed from
the view. As such, the application components have an up to
date view of the AGVs in collision range that they can use to
coordinate the vehicles avoiding collisions. In order to avoid
collisions AGVs need to execute a mutual exclusion protocol
with the group of all vehicles in collision range. The protocol
will determine which AGV can move first. It is important to
note that this group is dynamic, since AGVs may enter and
leave the collision range continuously. The middleware auto-
mates the process of discovering the group of AGVs that are
in collision range, and maintaining the group of interacting
vehicles as they arrive and leave. The state viewer in Fig. 8
on top (right hand side, section LockRequestTrack) shows



Figure 9. The AGV on top can start driving now

the state of the segments reserved by the big AGV (i.e. the
AGV on top in Fig. 8 on the left hand side). Currently, two of
the reserved segments are in the state LOCKED, four other
segments are in the state request. On the other hand, the state
viewer at the bottom shows that all the segments reserved by
the small AGV (i.e. the AGV at the bottom in Fig. 8 on the
left hand side) are in the state LOCKED. As a result the small
AGV at the bottom is allowed to move on while the big AGV
at the top must wait. The state viewers in Fig. 9 show that all
the reserved segments of both AGVs are LOCKED and thus
the AGVs can safely move on.

5. Reflection and Lessons Learned
We conclude the paper with a reflection on our experiences
and lessons learned.

Dealing with stakeholders’ requirements. The general
motivation to apply a multi-agent system in the AGV con-
trol system were new and future quality requirements, in
particular flexibility (deal autonomously with dynamic op-
erating conditions) and openness (deal autonomously with
AGVs entering and leaving the system). However, as we

have explained, for a complex system such as the AGV con-
trol system the stakeholders have various, often conflicting
requirements. During a four day Quality Attribute Work-
shop (Barbacci et al. 2003) with the key stakeholders of the
system, we identified and prioritized important quality at-
tributes in terms of concrete scenarios. The highest ranked
quality scenarios were the main drivers for architectural de-
sign. The workshop enabled us (1) to precisely specify the
qualities addressed by adopting a multi-agent system, and
(2) to determine their importance relative to other qualities.
This was important for preventing the industrial partner from
overestimating or underestimating agent technology.

Managing complexity. AGV control systems are very com-
plex software systems. The design and implementation of
the agent-based AGV transportation system needed 8+ man-
years of effort. The delivered code base consists of about
100K lines of C# code. Such complexity can only be man-
aged through abstraction. Software architecture is centered
on the idea of reducing complexity through abstraction and
separation of concerns. In the AGV control system, soft-
ware architecture allowed us to manage the complexity



Figure 7. Number of finished transports in a stress test.
With Static, each transport that enters the system is immedi-
ately assigned to the best AGV at that moment. With FiTA—
the new approach for transport assignment—the AGV agents
follow fields in the local virtual environment that guide them
to the loads. The agents continuously reconsider the situation
and transport assignment is delayed until the execution of a
transportation task starts.

of the multi-agent system at different levels of abstraction
(intra-agent and inter-agent structures, behavior, and hard-
ware/software allocation).

Integrating a multi-agent system with its software envi-
ronment. In an industrial setting, systems are not built in
isolation. When introducing a multi-agent system, it must
be integrated with its environment (common frameworks,
legacy systems, etc.). In Egemin, .NET is the standard envi-
ronment and the company uses the in-house developed E’pia
framework that provides common middleware services. Ex-
amples of legacy systems with which the multi-agent system
needed to be integrated are the enterprise resource planning
system that generates the transport tasks and the low-level
control software of the AGVs. Software architecture was
the key to accommodate the integration of the multi-agent
system with its environment. We integrated E’pia as a basic
layer that provides the required services to deal with various
crucial requirements. With respect to legacy systems, we
were able to develop proper mediator components/agents to
integrate legacy systems with the multi-agent system.

Architectural design and evaluation. Preceding experi-
ences with developing multi-agent system applications with
characteristics and requirements similar as the AGV control
system yielded a set of architectural patterns for multi-agent
systems and a supporting middleware for mobile applica-
tions. Initially, we faced the problem of how we could ex-
ploit these reusable assets and integrate them in the design
of the AGV control system. The solution was the Attribute-
Driven Design method (ADD (Buchmann and Bass 2001)).
ADD is a well-established method for architectural design

that is based on understanding how to achieve quality goals
through proven architectural approaches. During the archi-
tectural design we employed the patterns for multi-agent
systems together with a number of common architectural
patterns to decompose and structure the system and realize
the required functionalities and qualities. To pinpoint the
qualities and tradeoffs implied by the decentralized multi-
agent system architecture, a disciplined evaluation of the
software architecture was necessary. Therefore, we orga-
nized a one day ATAM (Architectural Tradeoff Analysis
Method (Clements et al. 2002)). During the ATAM an exter-
nal evaluation team and the main stakeholders determined
the trade-offs and risks with respect to satisfying important
quality attribute scenarios, particularly scenarios related to
flexibility, openness, performance, and robustness. One im-
portant outcome of the ATAM was an improved insight on
the tradeoff between flexibility and communication load.

Agents and objects. By considering multi-agents systems
from a software architecture perspective, agents and the vir-
tual environment provide a specific architectural style that
imposes particular constraints on the system while yielding
particular qualities and tradeoffs. The agent-based software
architecture served as a blueprint for system development.
The software architecture defines constraints on detailed de-
sign and implementation, it describes how the implementa-
tion must be divided into elements and how these elements
must interact with one another to fulfill the system goals.
On the other hand, the software architecture did not de-
fine the implementation, many fine-grained design decisions
were left open by the architects and must be resolved by
designers and developers. Examples are internal data struc-
tures of modules, specific algorithms, the use of specific
object-oriented design patterns, detailed exception handling,
etc. Whereas the multi-agent system determined the course-
grained structure of the software, the final implementation
of the system was realized in C#. This project demonstrates
that agents and objects can be complementary paradigms.

Impact of a multi-agent system on the company’s or-
ganization. From our experience, a crucial issue with re-
spect to industrial adoption of multi-agent systems is the
impact of introducing a multi-agent system on the organi-
zation of the developing company. At Egemin, the exist-
ing AGV control system has a centralized server-oriented
architecture. The agent-based approach on the other hand
has a decentralized architecture. Switching from a central-
ized toward a decentralized agent-based architecture is a
big step with far reaching effects for a company, not only
for the software but for the whole organization. To give
one example: in the centralized architecture transport as-
signment to AVGs is based on application-specific rules
that are associated with particular locations in the environ-
ment. A team of specialized layout engineers is responsi-
ble for defining these rules. In the decentralized architec-
ture, however, one approach for transport assignment is



using a dynamic protocol between AGV agents and trans-
port agents (Weyns et al. 2008). This protocol must be
tuned per project, but this requires completely different
skills. Our experience indicates that the introduction of an
agent-based approach should be done in a controlled way,
step-by-step. Software architecture is the indispensable ve-
hicle for stepwise integration of a multi-agent system. It
provides the required level of abstraction to reason about
and deal with gradual integration of multi-agent systems.

6. Conclusion
In this paper, we reported our experiences with applying
a decentralized architecture for AGV control. We gave an
overview of the agent-based architecture of the system and
reflected on lessons learned. By linking multi-agent systems
to software architecture, we were able to convince the indus-
trial partner of the benefits of multi-agent system in the AGV
control system.

Self-adaptability, scalability, and local autonomy are gen-
erally considered as key properties to tackle the growing
complexity of software. These are exactly properties that
characterize multi-agent systems. The project we reported
in this paper demonstrates that by putting multi-agent sys-
tems it in a broader setting of mainstream software engi-
neering, especially software architecture, multi-agent sys-
tems can contribute to tackle the challenges of future soft-
ware systems.

Acknowledgments
Danny Weyns is supported by the Funding for Scientific Re-
search in Flanders (FWO). We are grateful to the employees
of Egemin, in particular Jan Vercammen, Wim Van Bets-
brugge, Rudi Vanhoutte, Walter De Feyter, and the former
employee Tom Lefever. Thanks to Alexander Helleboogh,
Nelis Boucké, Wannes Schols and Bart Demarsin for the
collaboration in the EMC2 project. We recognize the anony-
mous reviewers for the valuable feedback on earlier versions
of this paper. Finally, we thank Harald Wesenberg for his
support with the finalization of the paper.

References
M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C. Weinstock,

and W. Wood. Quality Attribute Workshops. Technical Re-
port CMU/SEI-2003-TR-016, Software Engineering Institute,
Carnegie Mellon University, PA, USA, 2003.

L. Bass, P. Clements, and R. Kazman. Software Architecture in
Practice. Addison Wesley Publishing Comp., 2003.

Nelis Boucké, Danny Weyns, Kurt Schelfthout, and Tom Holvoet.
Applying the ATAM to an architecture for decentralized control
of a transportation system. In Second International Conference
on Quality of Software Architectures, volume 4214 of Lecture
Notes in Computer Science, Springer, 2006.

F. Buchmann and L. Bass. Introduction to the Attribute Driven
Design Method. In 23rd International Conference on Software
Engineering, Toronto, Canada, 2001. IEEE Computer Society.

S. Bussmann, N. Jennings, and M. Wooldridge. Multiagent Systems
for Manufactoring Control: A Design Methodology. Springer
Series on Agent Trchnology, 2004.

P. Clements, R. Kazman, and M. Klein. Evaluating Software
Architectures: Methods & Case Studies. Addison Wesley, 2002.

E. Durfee and V. Lesser. Negotiating Task Decomposition and
Allocation Using Partial Global Planning. Distributed Artificial
Intelligence, 2:229–244, 1989.

B. Henderson-Sellers and P. Giorgini. Agent-oriented Methodolo-
gies. Idea Group Inc., 2005.

J. Kramer and J. Magee. Self-managed systems: an architectural
challenge. In FOSE ’07: 2007 Future of Software Engineering,
Washington, DC, USA, 2007. IEEE Computer Society.

D. Parnas. Designing Software for Ease of Extension and Contrac-
tion. IEEE Transactions on Software Engineering, 5(2):128–
137, 1979.

J. Richter. Applied Microsoft .NET Framework Programming.
Microsoft Press, Redmond, USA, 2002.

K. Schelfthout. Supporting Coordination in Mobile Networks: A
Middleware Approach. Ph.D, Katholieke Universiteit Leuven,
2006.

K. Schelfthout, D. Weyns, and T. Holvoet. Middleware that Enables
Protocol-Based Coordination Applied in Automatic Guided Ve-
hicle Control. IEEE Distributed Systems Online, 7(8), 2006.

R. Smith. The Contract Net Protocol: High Level Communication
and Control in a Distributed Problem Solver. In IEEE Transac-
tions on Computers, C-29(12), 1980.

E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. A Design
Process for Adaptive Behavior of Situated Agents. In Agent-
Oriented Software Engineering V, volume 3382 of Lecture Notes
in Computer Science, Springer, 2005.

K. Sycara. Multiagent Systems. Artificial Intelligence, 10(2):79–
93, 1998.

T. Tyrrell. Computational Mechanisms for Action Selection. PhD
Dissertation, University of Edinburgh, 1993.

D. Weyns. An Architecture-Centric Approach for Software En-
gineering with Situated Multiagent Systems. Ph.D, Katholieke
Universiteit Leuven, 2006.

D. Weyns and T. Holvoet. Architectural design of a situated mul-
tiagent system for controlling automatic guided vehicles. Inter-
national Journal on Agent Oriented Software Engineering, 2(1):
90–128, 2008.

D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. Decentral-
ized control of E’GV transportation systems. In 4th Joint Con-
ference on Autonomous Agents and Multiagent Systems, Industry
Track, Utrecht, The Netherlands, 2005. ACM, New York, USA.

D. Weyns, N. Boucke, and T. Holvoet. A field-based versus
a protocol-based approach for adaptive task assignment. Au-
tonomous Agents and Multi-Agent Systems, 2008. in press.

M. Wooldridge, N. Jennings, and D. Kinny. The Gaia Methodology
for Agent-Oriented Analysis and Design. Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.


