Endogenous Versus Exogenous Self-Management

Danny Weyns, Robrecht Haesevoets, Bart Van Eylen,
Alexander Helleboogh, Tom Holvoet, Wouter Joosen
DistriNet Labs

Katholieke Universiteit Leuven
3001 Leuven, Belgium

{danny.weyns}@cs.kuleuven.be

ABSTRACT

Self-management is considered as one of the crucial means for soft-
ware systems to deal with changing demands at runtime. Self-
management endows a software systems with the ability to adapt
its structure or behavior without human intervention. Two different
approaches are put forward for self-management: (1) the system
components adapt their structure or behavior to changing require-
ments and cooperatively realize system adaptation—this approach
can be considered as endogenous self-management; (2) the sys-
tem is adapted through a control loop, i.e. the system is monitored
to maintain an explicit representation of the system and based on
a set of high-level objectives, the system structure or its behav-
ior is adapted—this approach can be considered as exogenous self-
management.

In this paper, we introduce a hybrid software architecture that
combines both approaches. A multi-agent system architecture al-
lows agents to flexibly adapt their behavior to changes in their con-
text providing cooperative system adaptation. Then, we extend the
multi-agent system architecture with a decentralized control loop
adding self-healing properties to the system. We use intelligent
monitoring of traffic jams as an illustrative case.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Design, Software Architectures

General Terms
Design

1. INTRODUCTION

Self-management is considered as one of the crucial means for
software systems to deal with changing demands at runtime. The
general idea of self-management is to endow computing systems
with the ability to manage themselves according to high-level ob-
jectives specified by humans. To enable self-management, two dif-
ferent approaches are put forward. In the first approach, the system
components themselves adapt their structure or behavior to chang-
ing requirements and cooperatively realize system adaptation. This
approach can be considered as endogenous self-management. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SEAMS’08, May 12-13, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-037-1/08/05 ...$5.00.

the second appraoch, an additional subsystem monitors the system
at runtime maintaining a representation of the system, and based on
a set of high-level objectives, the subsystem adapts the structure or
behavior of the system. In this approach, a control loop is added
which monitors the system and adapts the system accordingly. This
approach can be considered as exogenous self-management.

The two approaches for self-management are often considered
as two extreme poles. In practice, the line between both is
rather blurred, and compromises will often lead to an engineer-
ing approach incorporating representatives from these two extreme
poles [1]. A major challenge is to accommodate a systematic engi-
neering approach that integrates both approaches.

This paper aims to contribute to a better understanding of the
two approaches for self-management. In particular, we introduce
a hybrid software architecture that combines both approaches. A
multi-agent system architecture allows agents to flexibly adapt their
behavior to changes in their context providing cooperative system
adaptation. Then, we extend the multi-agent system architecture
with a decentralized control loop adding self-healing properties to
the system. We use intelligent monitoring of traffic jams as an il-
lustrative case.

The remainder of the paper is structured as follows. We start
by introducing the traffic case in section 2. In section 3, we ex-
plain the multi-agent architecture that allows agents—supported by
a middleware—to adapt their behavior to changing operating con-
ditions. Section 4 shows how we have extended the multi-agent
system architecture with support for self-healing. We discuss re-
lated work in section 5. Finally, we draw conclusions.

2. INTELLIGENT MONITORING OF
TRAFFIC JAMS

The monitoring application we consider fits in the domain of in-
telligent transportation systems, a worldwide initiative to exploit
information and communication technology to improve traffic [11,
5]. The system consists of a set of intelligent cameras which are
distributed evenly along the highway, as shown in figure 1. Each
camera has a limited viewing range and cameras are placed to get
an optimal coverage of the highway with a minimum in overlap.
A camera is able to measure the traffic conditions within its view-
ing range and determine whether there is a traffic jam or not in its
viewing range. Each camera is equipped with a data processing
unit, capable of processing the monitored data, and a communi-
cation unit to communicate with other cameras. The task of the
cameras is to detect and monitor traffic jams on the highway in a
decentralized way, avoiding the bottleneck of a centralized control
center. Possible clients of the monitoring system are traffic light
controllers, driver assistance systems, etc.

Traffic jams can cover the viewing range of multiple cameras
and can dynamically grow and dissolve. To monitor a traffic jam,

‘ » Car % Camera <7 > Viewing Range

Figure 1: An example of a highway with traffic cameras.

camera

S ~‘ 5 o S
o e B R 0 T - .
e b - S e e e e R e G e By B
= = = e e e e L

|(,_—§| Car =& Obstacle :

- - S
_ Collaboration I Camera

> Viewing Range

Figure 2: An example of collaborations between traffic cameras.

data observed by multiple cameras has to be aggregated. Because
there is no central point of control, cameras have to collaborate and
distribute the aggregated data to the clients.

By default each camera monitors the traffic conditions of the traf-
fic within its viewing range. When a traffic jam occurs, the camera
has to collaborate with other cameras detecting the same traffic jam.
In the collaboration, the data each camera is monitoring is aggre-
gated to get a complete image of the traffic jam. Cameras will enter
or leave the collaboration whenever the traffic jam enters or leaves
their viewing range.

An example of such a collaboration is shown in figure 2. The
traffic jam, situated between C4 and Cs, has entered the viewing
range of camera Cy at to. Camera Cy4 and Cj start to collaborate
because they are now both monitoring the same traffic jam. At ¢4,
the accident is solved but the traffic jam has further grown and en-
tered the viewing range of camera C'3. Therefore, camera C's now
participates in the collaboration between cameras C4 and C5. At
to, the traffic jam has entered the viewing range of camera C> but
has dissolved in the viewing range of cameras Cs and Cs. C4 and
C have stopped collaborating while camera C5 is collaborating
with camera C's. This example scenario illustrates how the collab-
oration between the cameras is driven by the context.

The dynamic nature of the traffic phenomena demands for dy-
namic collaborations between the cameras. Organizations will
evolve dynamically according to the current traffic conditions,
which make up the context of the highway.

3. A MULTI-AGENT SYSTEM ARCHI-
TECTURE FOR SELF-ADAPTATION

A multi-agent system structures the software as a number of in-
teracting autonomous entities (agents) that are situated in an envi-
ronment. Control in multi-agent system is decentralized, the sys-
tem functionalities and qualities result from the local decisions of
the agents, their actions in the environment, and the interactions

among the agents. Multi-agent systems provide a way to model
self-adapting systems. The self-adapting properties of a multi-
agent system are based on the agents’ capabilities to flexibly adapt
their behavior to dynamic and changing circumstances. As such,
the self-managing properties of a multi-agent system are endoge-
nous to the system.

Structuring and managing interactions among agents is a crucial
part of the design of any multi-agent system. A typical way to man-
age these interactions is by means of organizations in which agents
play roles [14]. To deal with the ongoing dynamics and changes,
organizations have to adapt. Most of the existing work on orga-
nizations in multi-agent systems defines roles and organizations at
the level of agents [6, 15, 4]. As such, agents have a dual respon-
sibility: on the one hand agents play roles providing the associated
functionality in the organization, on the other hand agents are re-
sponsible to set up and manage organizations, and deal with the
complexity of organization dynamics.

In our research, we have developed an approach called context-
driven dynamic organizations that considers an organization as a
first-class abstraction which is explicitly supported by dedicated
multi-agent system middleware [10]. The middleware takes the
burden of managing organizations and their dynamics. Driven by
the context, the middleware manages the evolution of organizations
and actively advertises roles to agents, supporting the necessary
collaborations between agents needed in the current context. The
proposed approach separates the management of dynamic evolu-
tion of organizations from the actual functionality provided by the
agents playing roles in the organizations. Separating these concerns
makes it easier to understand, design, and manage organizations in
multi-agent systems.

3.1 Software Architecture

Figure 3 shows a layered view of the software architecture of
the multi-agent system. The main drivers behind the architecture
are scalability and robustness. Each layer is allowed to use ser-

Agent

v

Organization Middleware

v

Agent Middleware

(O Layer

KEY -» s allowed to use

Figure 3: Layered Module View.

vices offered by the layer directly beneath it. The layered style al-
lows for a clean integration of the organization concepts with basic
agent middleware support. The Agent Middleware Layer
provides basic services in multi-agent systems [19], including sup-
port for perception, action, and communication. Perception pro-
vides a service to agents for sensing the context in which they are
situated. Action provides a service to act in the environment. The
communication service supports the exchange of messages in the
distributed setting. On top of the agent middleware layer, we have
the Organization Layer which provides support for dynamic
organizations. The layer encapsulates the management of dynamic
evolution of organizations and it provides role-specific services to
the agents for perception, action, and communication.

3.2 Organization Management

Figure 4 shows the top-level decomposition of the organization
middleware. We briefly explain the responsibilities of the compo-
nents and their relationships.

Organization Middleware

: Default Role
Position

: Role Position

act/send

start/stop #)\ perceive/

view

: Context
Manager

: Organization : Role

Controller @ @ Mediator

update update

) e
[|

—C Required Interface
KEY

O— Provided Interface Component

Figure 4: Components of Organization Middleware Layer.

The Context Manager is responsible for managing context
information relevant for the organizations. Context information in-
cludes information about the roles agents play in organizations and
additional organization-specific data. On the one hand, the context
information is used to provide specific services to agents playing
particular roles. For example, in the traffic case, for each organiza-
tion there is one agent playing the role of data aggregator. Agents

in this role have the capability to interact with all the other agents
in the organization playing the monitoring role. On the other hand,
context information is used to dynamically adapt organizations. For
example, organizations in the traffic case are adapted based on the
current traffic congestion and the spatial position of cameras. The
context manager keeps the context information up to date using the
services of the agent middleware. Besides, the context manager
exports the view interface to access the context information and
the update interface that allows other components to update the
context information.

The Role Mediator mediates agent activities. Examples of
mediation are sending a message to all agents playing a particu-
lar role in an organization, or enforcing agents to follow particular
interaction patterns, i.e. protocols. To this end the role mediator ac-
cesses the context information using the view and update interfaces
of the context manager.

The Organization Controller is responsible for dy-
namically adapting existing organizations. The organization con-
troller contains a number of application-specific evolution
laws. Evolution laws determine the organization changes in the
system based on the actual context that is maintained by the context
manager. The organization controller uses the view interface of the
context manager to inspect the actual context information. When
the organization controller decides to change an organization, it up-
dates the state of the organization using the update interface of the
context manager.

Interaction with the agents happens via the Role Position
components. A role position provides a role-specific interface for
an agent to act in the environment and interact with other agents.
There is one special instance: the Default Role Position
which offers the necessary primitives to browse open role posi-
tions and close role positions. The Role Position delegates agent
requests, such as the sending of messages to a specific role type, to
the role mediator.

Deployment View. Figure 5 shows a deployment view of the sys-
tem. To make the system scalable and robust, we have chosen for
a decentralized approach. Nodes work together to realize the re-
quired system goals. Nodes can be in two different modes with
respect to a particular organization: master and slave. Each organi-
zation consists of one master and zero or more slaves. The master is
responsible for the correct adaptation of the organization while the
slaves provide the necessary information to the master and perform
local adaptations based on instructions of the master.

On each master, an organization controller is deployed. Slaves
do not provide such a controller. As stated above, the context man-
ager on a master node keeps his context information up to date us-
ing the services of the agent middleware. Local context information
is gathered through local perception of the environment, remote
context is gathered from context managers on the slave nodes. The
context manager on the master in turn keeps the context manager
on the slave nodes updated about changes in organization structure.

To ensure consistency across organizations during organization
adaptations, the organization controllers on different masters syn-
chronize via the services provided by the agent middleware.

3.3 Merging of Organizations

Figure 6 shows a collaborating components view describing how
organizations are merged. Only one of the two involved mas-
ter nodes is shown in the figure. When the organization con-
troller of a master node notices, via the view interface (1. view
context), that its organization should be merged with another
organization according to the evolution laws, the following sce-
nario unfolds. The organization controller uses the agent mid-
dleware services to start a negotiation protocol with the master

Master

Agent Layer

v

Organization Middleware

v

Agent Middleware

v

Host Infrastructure

Network

Slave

Agent Layer

v

Organization Middleware

v

Agent Middleware

:

Host Infrastructure

A

— —» Is allowed to use

oO—

C_

ey 4(Required Interface

Provided Interface

Layer

|:| Component

Node

Figure 5: Deployment View.

node of the organization it wants to merge with (2. start
negotiation). When the organization controllers agree to
merge the organizations, they start a voting protocol to assign
the master of the newly merged organization. The controller that
is elected master, updates the context manager through the up-
date interface. First the agents involved in the old organization
are requested to stop playing their roles (3. stop playing
roles). This request is forwarded to the slave nodes (4.
terminate organization), to the local role positions and
further to the agents (5. stop role position and 6.
stop role). After performing possible cleanup tasks, each
agent informs the role position that it has stopped playing the
role (7. role stopped). The role position notifies the
context manager and the role position is terminated (8. role
position terminated). Slaves inform the master node
about the termination of role positions (9. context data
slave). Notice how the ordering of steps 8 and 9 is not fixed.
It could well be that remote slaves update the context manager on
the master (9) before the local role positions do (8). Only when
the organization controller observes that all role positions in the
old organization are terminated (10. view organization
stopped), it removes the old organization and adds the new
merged organization. This includes opening new local role posi-
tions (11. update organizations). The context manager
sends the necessary information about the new organization to the
slaves involved (12. data new organization). The in-
formation includes configuration info and the set of open role posi-
tions of the new organization. The default role positions notice the
new role positions (13. new role positions) and notify
the agents about the new open role positions (14. new role
position). The scenario shows how a decentralized approach
is used in which only the relevant masters and slaves are involved,
which is crucial for scalability.

3.4 Example of Merging Organizations

Figure 7 shows an example of merging organizations in the traf-
fic monitoring case. The example retakes the situation described in
figure 2 (with camera Cg omitted). At ¢o the cameras on nodes Cl4

and C’5 are merged in one organization. Being in master mode, the
organization controller on node Cs manages the merged organiza-
tion. All other cameras are in separate organizations, each managed
by their local organization controller in master mode. In the transi-
tion from ¢ to ¢1, the master controllers on node C3 and C's agree
to merge. A voting between the two master controllers, determines
the controller on node C3 to be the new master controller of the
merged organization at ¢;. The organization controller on node C's
is now in slave mode. At t2, the cameras on nodes Cy and C’
are again split in separate organizations and their organization con-
trollers are back in master mode. The organization controller on
node C5 is now the master of the merged organization.

(Naea } (N;ea } (N;ea } N;ea 7N;e€5 }
to ‘ [master] ‘ ‘ [master] ‘ ‘ [master] ‘ ‘ [slave | [master] ‘
(N;ea } (N;ea } (N;ea 7N;ea 7N;ea> }
t ‘ [master| ‘ ‘ [master| ‘ ‘ [master|| |[slave || |[slave] ‘
(N;ea } (N;ea 7N;ea } (N;ea } (N;eai }
t: ‘ [master] ‘ ‘ [master] [slave | ‘ ‘ [master] ‘ ‘ [master] ‘

fh—) e O

KEY [] Organization controller [~] Organization [_] Node

Figure 7: Merging organizations in the traffic monitoring case.

4. ADDING SELF-HEALING

Self-healing is one of the self-* properties that define autonomic
computing [12]. Several definitions of self-healing can be found in
literature [18, 20]. We consider self-healing as a software quality
in addition to other requirements with an emphasis on autonomy in
achieving the quality, reducing the human involvement to no more
than high-level policies. Self-healing allows a system (1) to auto-
matically detect and diagnose errors and failures caused by a prede-

:Agent

4 A
14. notify new role positions

7. role stopped

6. stop role

: Default Role

Position :Role Position

m

A

8. role position terminated

'}
13.new role positions 5.

stop role position

1. view context

:Context Manager

»
3. stop playing roles "
4 . .
:Organization
10. view organization stopped Controller
-
Ll
11. update organizations
ol
-

A
9. context data slave

12. data new organization

2.start negotation

4 terminate organization

:Agent Middleware

KEY —» Dataflow [_| Component

Figure 6: Merge scenario.

fined set of faults, and (2) to restore the software system to a healthy
state according to a set of predefined healing qualities. Most exist-
ing techniques to achieve self-healing properties use some sort of
control loop which monitors the system and adapts the system ac-
cordingly [9]. An example of a self-healing property in the traffic
monitoring case could be the ability the deal with silent node fail-
ures. Whenever a node fails, the system is capable of detecting this
failure an restoring the system to a degraded (one camera sensor is
lost), but functional state.

4.1 Self-Healing and Adaptivity

Self-healing can be considered as a special type of adaptivity in
addition to the adaptivity the system exhibits in normal operating
conditions. Most software systems anticipate a number of changes
or dynamics in the environment, which are part of the normal op-
erating conditions of the system. For example, the multi-agent sys-
tem, introduced in section 3, is capable of coping with changes and
dynamics in traffic conditions. When particular events occur in the
system or its environment, the system may enter a faulty state, out-
side the normal operating conditions, as shown in figure 8. From
these faulty states, the system is no longer capable of operating ac-
cording to its specification. For example, the multi-agent system is
unable to deal with changes such as node failures. These failures
would bring the system to an inconsistent state, in which agents
assume role positions that are no longer available and organization
controllers are lost.

— ~ Normal operating

/ - conditions
\ Aﬁ Possible faulty states
O Faulty states covered
— == by self-healing

Figure 8: System and environment states.

A number of these changes, such as certain errors and failures
or more specific a transition to a certain faulty state can be covered
by self-healing. Self-healing allows the system to adapt itself in a

particular state space outside the normal operating conditions, as
shown in figure 8.

One could argue that these previously unanticipated changes can
now be considered part of the normal operating conditions of the
complete system with self-healing properties. Doing so, however,
could make the system more complex. Certainly, when the same
mechanisms are used, to deal with the normal operating conditions
and the previously unanticipated changes. For example, the mech-
anism of organization controllers could be expanded to deal with
node failures. This, however, would have a negative impact on the
understandability, manageability and adaptability of the system.

The main concerns (functional and quality) refer to normal dy-
namics of the system, such as changing traffic conditions. Special
self-healing concerns refer to more intrusive changes, such as node
failures. Whenever the system enters a faulty state covered by self-
healing, the self-healing subsystem detects this transition and en-
sures a transition of the system back to a state within the normal
operating conditions. Once the system is restored to a state within
the normal operating conditions, the main system can continue its
operation. The complete system with self-healing covers both the
normal operating conditions and the covered faulty states.

4.2 Architectural Approach

In this section, we explain how we have extended the main
system with a self-healing subsystem that adds a number of self-
healing properties to the functionalities and qualities provided by
the main system. Figure 9 shows an abstract representation of the
approach: the main system provides endogenous self-adaptation
properties while the self-healing subsystem provides exogenous
self-healing properties.

The self-healing subsystem uses a set of monitoring interfaces
to monitor the main system and a set of control interfaces to adapt
the main system, forming a closed control loop. The self-healing
subsystem also uses a set of predefined self-healing scenarios or re-
pair plans. These scenarios cover a predefined set of faulty states,
how they can be detected and how the system can be adapted into a
state in which the main system can function according to its speci-
fications. An example of a simplified self-healing scenario in pseu-
docode is given below. The scenario deals with a node failure and

<self-healing scenario>
</self-healing scenario>

KEY

—» Data flow

—(Required interface
— Provided interface
[] Component
() Scenario

Self-Healing Subsystem

@ monitor control @

Main System

Figure 9: Abstracted architecture of a self-healing system.

consists of three phases: monitoring, analyzing and actual healing.

//monitoring phase
while (healthy) {
healthy = monitorAliveSignal (nodes);

}

//analyzing phase
failedNode = retrieveFailedNode (nodes) ;
lostC = retrieveControllerOn (failedNode) ;

lostRPs = retrieveRolepositionsOn(failedNode) ;

//healing phase
removeFromContext (lostC) ;
removeFromContext (lostRPs) ;

4.3 Self-Healing and Context-Driven Dy-
namic Organizations

In our distributed architecture for context-driven dynamic orga-
nizations we consider a limited set of faults. In this paper we focus
on silent node failures. In a silent node failure, a node becomes
unreachable without sending any corrupt messages to other nodes
before or after its failure. When a node fails, the system enters
an inconsistent state, in which agents, role positions and organiza-
tion controllers are no longer capable of working according to their
specification. Our goal is to add a self-healing property to the sys-
tem allowing the system to restore to a consistent state in case of a
node failure.

This self-healing property is achieved by a self-healing subsys-
tem deployed on every node. The self-healing subsystem interacts
with the local agent middleware and organization middleware, and
relies on the functionalities of the main system in order to achieve
its property. Figure 10 shows the integration of the self-healing
subsystem with the rest of the system on one node. Self-healing
subsystems periodically exchange alive signals using the commu-
nication service provided by the agent middleware. Node failures
are detected by monitoring the alive signals. When a failure oc-
curs, two types of inconsistencies may arise: (1) incorrect repre-
sentations of topologies of nodes, and (2) corrupt representations
of organizations. We explain both in more detail.

Incorrect representations of topologies. A first inconsistency that
will arise in case of a node failure is an incorrect representation of
the distribution topology in the context and the agent middleware.
In many application domains, such as the traffic monitoring case,
the topology is used to determine which organizations can merge.
When a node fails, the topology representation in the context and
the agent middleware should be updated to keep it consistent with
the real world. In order to do so, each self-healing subsystem will
monitor the alive signals of all nodes in their local topology, as
shown in figure 11. The local topology is retrieved from the lo-
cal context manager, using the view interface. When a self-healing

monitor

control Organization Middleware

monitor

Self-Healing
Subsystem

control

send Agent Middleware
Ll
receive

KEY —» Datafow [| Component

Figure 10: Integration of the self-healing subsystem with the
organization middleware and agent middleware on one node.

:Self-Healing | VieW | :Context
Subsystem Manager

A 4
send receive update perceive

(aliveSignal)‘ (aliveSignal) (topology) (topologyUpdate)

:Self-Healing
Subsystem

:Agent

Middleware :Agent Middleware

receive(alivesignal) T

KEY —» Datafow [| Component [| Node Boundary

Figure 11: Self-healing corrupt topology scenario.

subsystem detects the failure of a node in its local topology, it up-
dates the topology representation in the main system.

Corrupt representations of organizations. A second inconsis-
tency that will arise in case of a node failure is a corrupt orga-
nization with lost or missing role positions on the failed node. We
consider two scenarios. In case a slave node (a node with an organi-
zation controller in slave mode) fails, the organization can continue
working after some context updates by the self-healing subsystem.
In case the master node (a node with an organization controller in
master mode) fails, the organization is reset. When an organiza-
tion is reset, every agent in the organization is split up in a separate
organization, and the mechanisms of the main system will ensure
that the organizations are re-merged according to the current con-
text. Each self-healing subsystem will use the view interface on the
local context manager to determine whether its organization con-
troller is in slave mode or in master mode.

Figure 12 shows the scenario of a slave node failure. The self-
healing subsystem on the master mode will monitor the alive sig-
nals of all other self-healing subsystems on slave nodes, active in
the same organization. When the self-healing subsystem detects
the failure of a slave node, it updates the context, using the update
interface of the local context manager. The update consists of re-
moving all role positions from the organization context that were
active on the failed node. Because the local organization controller
itself is in master mode, the main system ensures that this update
will be propagated to all other members of the organization.

Figure 13 shows the scenario of a master node failure. Each
self-healing subsystem on a slave node will monitor the alive sig-
nal of the self-healing subsystem on the master node of the orga-
nization. When a self-healing subsystem detects the failure of the
master node, it updates the context signaling the local agents to
stop their current role positions and that they are split in a separate
organization. The self-healing subsystem then starts up the local

Node with master controller ‘ Node with slave ‘

| |
‘ update ‘ ‘ controller
:Self-Healing |(context) | :Context :Self-Healing
‘ Subsystem Manager ‘ ‘ Subsystem ‘
A
‘ receive ‘ ‘ send
‘ (aliveSignal) ‘ ‘ (aliveSignal)
| ‘Agent Middleware ||| e
L 4 S I FR)
receive(alivesignal)

KEY —» Datafow [] Component [| Node Boundary

Figure 12: Self-healing slave node failure scenario.

organization controller in master mode. Using a consistent con-
text, the main system will now ensure that these organization are
re-merged according to the current context.

mocg with master ‘ Node with slave controller

‘ controller ‘ [update(context) v
‘ :Self-Healing ‘ :Self-Healing :Organization :Context

Subsystem ‘ Subsystem startup' Controller Manager

! Y
| _send receive
‘ ! (allveSIgnal)‘ (aliveSignal)
:Agent . .
‘ Middleware ‘ ‘ :Agent Middleware
e e e N
receive(alivesignal)

KEY —» Dataflow [] Component [] Node Boundary

Figure 13: Self-healing master node failure scenario.

4.4 Self-Healing Example

Figure 14 shows an example of a self-healing scenario in a sim-
plified setting. Att; there are three nodes, the figure only highlights
the most relevant items on each node. Each node has a default
role position and one other active role position. All role positions
belong to the same organization. At t1, however, node; has just
failed. The context known in nodez and nodes is now inconsis-
tent with the current state of the system. Role positions on nodes
and nodes still assume role position RP; on node; and the master
controller on node; is lost.

~1| __ node2 |

g

m RP2 HDefaultHH RP1 || Default]

_ Save Gonvoler]| Save Gontoler

Q.
g | __node2 _ [| _ node3
1 | I |
Master Controller Master Controller
2/ [Vt ool | [Vit cnvtr)
|

self-healing
t

& | node2 1| node3
{ ‘ﬂ RP2 | [Default] | ‘\ RP1 | [Default |
LH Slave Controller H—L‘ Master Controller H

KEY [] Component [] Node [| Role Position [| Organization

main system
i

Figure 14: An example of a self-healing scenario.

As explained in section 4.3, the self-healing subsystem on the

two remaining nodes will detect this failure, because they no longer
receive the necessary alive signals. After the detection, the self-
healing subsystems update the topology in the agent middleware
and reset the organization. They flag the role positions RP> and
RP; on nodez and nodes to be stopped and remove the organiza-
tion from the context. Finally, the self-healing subsystems start up
their local organization controller in master mode.

At 2, the self-healing subsystems have finished the healing sce-
nario. The default role positions on each node are split up in sep-
arate organizations, each managed by the local master controller.
The system is again in a consistent state from which the main sys-
tem (context-driven dynamic organizations) can continue its oper-
ation. The main system will ensure the organizations on the re-
maining nodes to be re-merged, according to the current context. A
possible re-merge is shown at ¢3.

S. RELATED WORK

The literature on self-management is extensive. In this paper, we
limit the discussion of related work to a number of key papers on
architectural approaches for self-managing systems.

Early work of Shaw presents an approach for self-management
based on process control loops [17]. This work provides a founda-
tion for what we call exogenous self-management.

Kramer and Magee [13] advocate a component-based architec-
tural approach for self-management, and propose a high-level lay-
ered software architecture comprising of three layers: component
control as the bottom layer, change management as the middle layer
and goal management as the top layer. Compared to this approach,
our research currently focusses on the change management layer.
However, whereas our work combines an endogenous approach
with an exogenous approach for self-management, Kramer and
Magee describe a reference model for exogenous self-management.

Oreizy and colleagues [16] propose an architecture-based ap-
proach to self-adaptive software. The approach is based on the
idea of two simultaneous processes: system evolution, i.e. the con-
sistent change of the system, and system adaptation, responsible
for planning changes and responsive measures. This approach also
highlights the possibility of an explicit system representation in the
form of an architectural model which can be used by the adaptation
mechanisms. As such, this approach also puts forward an exoge-
nous approach to self-management.

The IBM architectural blueprint [2] proposes a hierarchical ar-
chitectural approach to self-management. Autonomic managers
add self-* properties to resources and these managers are, in turn,
managed by other autonomic managers. At the highest level a
manual manager takes high-level policies from users and delegates
these throughout the hierarchy of autonomic managers. The IBM
blueprint architecture is basically an exogenous approach to self-
management.

Garlan and colleagues [8, 7] focus on the idea of an abstract
system representation by introducing an explicit layer for model
management. This layer can then be used by high-level adaptation
mechanisms. As shown in [3] the idea of an abstract system repre-
sentation idea can be expanded to an integrated approach, in which
an architectural description language (ADL) offers explicit support
for adaptation. In our approach, the context manager maintains a
model—though a basic model—of the organizations in the system.
We have illustrated that this model can offer support adaptation
mechanisms for particular self-healing scenarios.

6. CONCLUSIONS

In this paper, we presented a hybrid approach for self-
management that combines an endogenous self-adaptation ap-
proach with an exogenous self-healing approach. In particular, the

multi-agent system provides self-adaptation to deal with dynamics
in normal operating conditions, while the self-healing subsystem
covers the dynamics involving transitions to faulty states.

We applied the approach to a distributed architecture for context-
driven dynamic organizations. In this architecture, the agents of the
multi-agent system, supported by a middleware for dynamic orga-
nizations, flexibly adapt their behavior to dynamic and changing
circumstances. The self-healing subsystem ensures the transition of
the system from a faulty state to a state within the normal operating
conditions of the system. Mainly by updating context, the self-
healing subsystem ensures a consistent state of the system, from
which the main system itself can continue its operation, possibly
in a degraded but correct mode. The software of the multi-agent
system extended with the self-healing subsystem is available for
download at http://distrinet.cs.kuleuven.be/agentwise/. The soft-
ware includes various test scenarios.

Since, our experiences with the approach is currently limited to
the traffic monitoring application, we can make no claims about the
scope of applicability of the approach. Important properties of the
traffic application that determine the class of systems for which the
approach may be useful are: (1) there is an inherent distribution
of resources and activity in the system, and (2) the speed of cars
and thus the pace at which organizations have to evolve is orders
of magnitude lower than the speed of communication and the exe-
cution of the control software. In addition, the approach assumes
continual communication infrastructure.

Although the self-healing subsystem is structurally disjunct to
the main system, the subsystems requires access to the main sys-
tem and detailed knowledge about its behavior. The case shows
that adding self-healing to a system is invasive. We explain how
we plan to deal with the coupling between the self-healing subsys-
tem and the main system in a disciplined manner. Applying the
approach, showed that the self-healing subsystem uses a number
of existing interfaces in the main system, such as send and receive
interfaces provided by the agent middleware, and the update and
view interfaces of the context manager. The self-healing subsys-
tem also requires specific monitoring and control interfaces such
as an interface to start up organization controllers in master mode.
The integration of the self-healing subsystem with the main system
is currently achieved in an ad-hoc manner, the main system just ex-
poses the necessary interfaces. Currently, we study a component
model that allows a disciplined integration of the self-healing sub-
system with the main system. Our particular interest is on using
aspect-oriented software development to enable such an integra-
tion. The essential challenges here are: (1) to define a suitable joint
point model, and (2) to provide guarantees that no improper inter-
ferences will happen.

Finally, our approach currently uses a predefined set of self-
healing scenarios. Several researchers have proposed more com-
plete self-healing approaches, covering repair plan generation and
goal management. Our approach currently focuses on how to
clearly separate the self-healing concern from the rest of the sys-
tem. We hope, by focusing on a specific class of self-healing re-
quirements in a specific application domain, to uncover a lot of
the nuances and problems related with self-healing. The long term
objective of our research is to develop a disciplined engineering
approach to deal with self-healing in decentralized architectures.

7. ACKNOWLEDGMENTS

This research is supported by the DiCoMAS project that is
funded by Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT). Danny Weyns is funded
by the Research Foundation Flanders (FWO).

8. REFERENCES

[1] Software Engineering for Self-Adaptive Systems, Dagstuhl
Seminar 08031. http://www.dagstuhl.de/en/programm
/kalender/semhp/?semnr=08031, 2008.

[2] IBM. Computing. An Architectural Blueprint for Autonomic

Computing, http://www-03.ibm.com/autonomic/ (3/2008).

E. Dashofy, A. van der Hoek, and R. Taylor. Towards

architecture-based self-healing systems. Proceedings of the

first workshop on Self-healing systems, pages 21-26, 2002.

[4] V.Dignum, F. Dignum, and L. Sonenberg. Towards Dynamic

Reorganization of Agent Societies. Proceedings of Workshop

on Coordination in Emergent Agent Societies at ECAI, 2004.

ERTICO: Intelligent Transportation Systems for Europe.

http://www.ertico.com/.

J. Ferber and O. Gutknecht. A meta-model for the analysis

and design of organizations in MAS. 3rd International

Conference on Multi Agent Systems, ICMAS, 1998.

D. Garlan, S. Cheng, A. Huang, B. Schmerl, and

P. Steenkiste. Rainbow: architecture-based self-adaptation

with reusable infrastructure. Computer, 37(10):46-54, 2004.

D. Garlan and B. Schmerl. Model-based adaptation for

self-healing systems. Proceedings of the first workshop on

Self-healing systems, pages 27-32, 2002.

D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya.

Self-healing systemsUsurvey and synthesis. Decision

Support Systems, 42(4):2164-2185, 2007.

[10] R. Haesevoets, B. V. Eylen, D. Weyns, A. Helleboogh,

T. Holvoet, and W. Joosen. Managing Agent Interactions
with Context-Driven Dynamic Organizations. In Engineering
Environment-Mediated Multiagent Systems, Lecture Notes in
Computer Science. Springer-Verlag, 2008.

[11] ITS America: Intelligent Transportation Society of America.
http://www.itsa.org/.

[12] J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36(1):41-50, 2003.

[13] J. Kramer and J. Magee. Self-Managed Systems: an
Architectural Challenge. International Conference on
Software Engineering, pages 259-268, 2007.

[14] J. Odell, H. V. D. Parunak, and M. Fleischer. The Role of
Roles. Journal of Object Technology, 2(1):39-51, 2003.

[15] A. Omicini and A. Ricci. Reasoning about organisation:
Shaping the infrastructure. AI* IA Notizie, 16(2):7-16, 2003.

[16] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf. An
architecture-based approach to self-adaptive software. IEEE
Intelligent Systems, 14(3):54-62, 1999.

[17] M. Shaw. Beyond objects: a software design paradigm based
on process control. SIGSOFT Softw. Eng. Notes,
20(1):27-38, 1995.

[18] R. Sterritt and D. Bustard. Autonomic Computing-a means
of achieving dependability? Engineering of Computer-Based
Systems, 2003. Proceedings. 10th IEEE International
Conference and Workshop on the, pages 247-251, 2003.

[19] D. Weyns, A. Helleboogh, T.Holvoet, and M.Schumacher.
The Agent Environment in Multi-Agent System: A
Middleware Perspective. International Journal on
Multiagent and Grid Systems, Special Issue on Engineering
Environments for Multiagent Systems, 2008.

[20] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart.
An architectural approach to autonomic computing.
Autonomic Computing, 2004. Proceedings. International
Conference on, pages 2-9, 2004.

3

—

[5

—

[6

—

[7

—

[8

—_—

[9

—

