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6.1 Introduction

A control system is a software system connected to an underlying environment. The en-
vironment is the part of the external world with which the control system interacts, and
in which the effects of the control system will be observed [Jackson, 1997]. The task of a
control system is to ensure that particular functionalities are achieved in the environment.
A multi-agent control system is a control system of which the software is a multi-agent
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system, i.e. a system that consists of a number of autonomous software components, called
agents, that collaborate to achieve a common goal. Examples of multi-agent control systems
include manufacturing control systems [Verstraete et al., 2006; Brueckner, 2000], collective
robotic systems [Gu and Hu, 2004; P. Varshavskaya and Rus, 2004; Bredenfeld et al., 2006],
traffic control systems [Wang, 2005; Roozemond, 1999; Dresner and Stone, 2005] and sensor
networks [Sinopoli et al., 2003; DeLima et al., 2006].

Simulation can be used to support the development of multi-agent control systems. Sim-
ulation offers a safe and cost-effective way for studying, evaluating and configuring the
behavior of a multi-agent control system in a simulated setting [Himmelspach et al., 2003].
In this chapter, we focus on software-in-the-loop simulations for multi-agent control systems
in dynamic environments. This family of simulations has the following characteristics: (1)
the environment to-be-simulated is dynamic. In a dynamic environment, the operating con-
ditions of a multi-agent control system are continuously changing; (2) the control software
of the real multi-agent control system is embedded in the simulation.

Developing software-in-the-loop simulations of multi-agent control systems in dynamic
environments is complex. The system-to-be-simulated comprises two parts: a dynamic en-
vironment on the one hand and a multi-agent control system embedded in that environment
on the other hand. We illustrate two main challenges when building simulations for such
systems:

• Simulating dynamic environments is complex. In a dynamic environment an
agent cannot determine the outcome of its actions a priori [Ferber and Müller,
1996; Helleboogh et al., 2005]. Other activities that are happening in the environ-
ment can have a significant impact on the outcome of actions. Consider a robot
that was instructed to start driving north. In a dynamic environment, the ac-
tion of the robot can be affected in different ways. For example, another machine
could move into the path of the first robot, blocking it or pushing it aside. Or the
robot’s path could deviate from the intended path due to jitter in the hardware.
Or the robot could run out of energy, causing its movement to stop prematurely.
Even a combination of these phenomena could occur. When simulating dynamic
environments, it is non-trivial to reproduce the variety of possibly cascading in-
teractions that may occur and the precise way these interactions have an impact
on the actions.

• Integrating the software of a real multi-agent control system in a simulation is
complicated. The devices on which the multi-agent control system is deployed
in the real world determine how fast the control software can execute and con-
sequently how much time it takes the software to react to changes in the envi-
ronment. However, the characteristics of the computer platform on which the
simulation is executed, can differ significantly from the devices on which the
control software is deployed in the real world. Moreover, a simulation can be ex-
ecuted faster or slower than real time. It is non-trivial to reproduce the real-world
timing characteristics of a multi-agent control system in a simulation [Uhrmacher
and Kullick, 2000; Anderson, 1997].

Special-purpose modeling constructs and simulation platforms incorporate a large body
of expertise on building software-in-the-loop simulations of multi-agent control system in
dynamic environments. In simulation platforms this expertise is primarily reified in terms
of reusable code libraries and frameworks. In our own research, we have built up knowledge
and best practices in several cases, including simulations of the Packet-World [Weyns et al.,
2005a], Lego Mindstorms robots [Borgers, 2006], traffic control systems [Weyns et al., 2007]
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and Automated Guided Vehicles [Helleboogh et al., 2006]. We experienced that we could
reuse a lot of expertise across these cases. Nevertheless, a substantial part of this expertise
was reused implicitly, as explicit reuse of code libraries and frameworks was rather limited.

In this chapter, we put forward a software architecture for a simulation platform targeted
at software-in-the-loop simulation of multi-agent control systems in dynamic environments.
This software architecture explicitly documents the knowledge and practice incorporated in
a simulation platform in the form of a reusable artifact, clearly distinguished from the code
of the simulation platform. More than reusable code libraries and software frameworks,
a software architecture captures the essence of a complex software system by identifying
key stakeholder concerns and by explicitly specifying how software needs to be structured
and behave to address the concerns. The software architecture integrates the essential
architectural building blocks for such a simulation platform and explicitly documents the
rationale and tradeoffs that underpin its design. Software architecture provides a systematic
way to capture and share expertise that was acquired across several cases in a form that
has proven its value for software development.

This chapter is structured as follows. After presenting some essential background in
Section 6.2, we introduce an industrial case in Section 6.3, i.e. a AGV transportation sys-
tem that comprises a multi-agent control system for controlling automated guided vehicles
(AGVs) that transport loads in a warehouse. This case will be used as an illustration
throughout this chapter. In Section 6.4, we summarize our previous work on special-purpose
modeling constructs for modeling software-in-the-loop simulations of multi-agent control
systems in dynamic environments, and we apply these modeling constructs to describe
a simulation model for the AGV transportation system. In Section 6.5, we describe the
software architecture for a simulation platform that supports these special-purpose model-
ing constructs. We document the architecture and explain how important functional and
quality requirements are achieved. In Section 6.6, we evaluate a simulation platform that
implements this architecture and that was used for conducting simulations of the AGV
transportation system. In Section 6.7 we discuss related work on software-in-the-loop sim-
ulations of multi-agent control systems in dynamic environments. Finally, we point out
directions for future research and we draw conclusions in Section 6.8.

6.2 Background

In this section, we describe the necessary background information. We focus on (1) the
relation between a system and its environment, (2) the characteristics of multi-agent control
systems, and (3) software-in-the-loop simulation.

6.2.1 A System and Its Environment

Software systems are designed to satisfy particular functional and quality requirements.
These requirements are issued by the group of stakeholders involved. For systems that in-
teract with the external world via sensors and actuators, these requirements do not directly
concern the software system [Jackson, 1997]. The requirements primarily concern the envi-
ronment in which the system will be installed [Hayes et al., 2003]. The task of a system is
to ensure that particular functionalities are achieved in the environment.

Jackson defines the environment as the part of the external world with which the system
interacts, and in which the effects of the system will be observed and evaluated [Jackson,
1997]. The distinction between the environment and the system is partly a distinction
between what is given and what is to be constructed.
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Figure 6.1 depicts the relation between a system and its environment. The system inter-
acts with the environment by means of shared phenomena that are directly accessible via
sensors and actuators. However, influencing phenomena that are private to the environment
can only be done in an indirect manner: using sensors and actuators, the system tries to
bring about causal chains to observe and affect private phenomena in the environment.

System

Environment

SA

FIGURE 6.1 The system and its environment [Jackson, 1997]

As an example, consider a car’s cruise control system. The environment of the system
consists of the car, its driver, the atmospheric conditions, the road the car drives on, etc.
The cruise control system interacts with its environment through a sensor that can be used
to observe the car’s speed and an actuator that can be used to adjust the car’s throttle.
The requirements of the cruise control system are expressed in terms of phenomena in its
environment. For example, the cruise control system should ensure that the car drives at
a constant speed across the road. The cruise control system can only affect the car’s speed
indirectly, i.e. by relying on a causal chain between manipulations of the throttle actuator
and alterations in the speed of the car.

Today, the environments in which software systems have to operate are typically dy-
namic [Issarny et al., 2007]. A dynamic environment is an environment that changes fre-
quently. In a dynamic environment, the operating conditions of a system are continuously
changing. For example, the environment of the cruise control system is dynamic: the road
may go uphill or downhill, turbulence or wind may arise that causes additional or reduced
drag. These phenomena affect the causal chains by means of which the cruise control system
affects the environment. For example, in case the road goes uphill, changing the throttle
will affect the car’s speed in a different manner compared to the case that the road goes
downhill.

As a dynamic environment can significantly affect the software system, it is generally
considered good practice to capture properties and assumptions regarding the environment
in an explicit model [Jackson, 1997; Hayes et al., 2003]. Such a model of the environment
includes assumptions about the frequency and nature of the changes in the environment,
the accuracy and latency of sensors and actuators, the assumptions about the causal chain
from activation of an actuator to the changes in the actual environment, etc. Such a model
describes essential characteristics and assumptions about the environment that must be
checked for proper deployment of the system.

6.2.2 Characteristics of Multi-Agent Control Systems

A multi-agent control system is a distributed software application that continuously and
autonomously acts in, and reacts to, an underlying environment. Examples of multi-agent
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control systems include manufacturing control systems [Verstraete et al., 2006; Brueckner,
2000], collective robotic systems [Gu and Hu, 2004; P. Varshavskaya and Rus, 2004; Bre-
denfeld et al., 2006], traffic control systems [Wang, 2005; Roozemond, 1999; Dresner and
Stone, 2005] and sensor networks [Sinopoli et al., 2003; DeLima et al., 2006]. Figure 6.2
gives a schematic overview of a multi-agent control system in an environment.

Device 2 Device 3Device 1

Agent 3Agent 2Agent 1

Key:
Sensor module

Software component

Information flow

Device

Physical area

S A A C S S A C S A C

S

Actuator moduleA

Communication moduleC
External source of dynamism

Source 1 Source 2

FIGURE 6.2 Schematic view of a multi-agent control system in an environment

A multi-agent control system consists of several agents. Agents are autonomous software
components that are distributed in the environment and that cooperate to solve a particular
problem in the environment. In Figure 6.2, three agents are depicted: Agent 1, Agent 2
and Agent 3.

The agents of a multi-agent control system are deployed on particular devices in the en-
vironment. A device consists of a software and a hardware part. The software part is one
of the agents that constitutes the multi-agent control system, whereas the hardware part
comprises sensor, actuator and communication modules. An agent can use the sensor, actu-
ator and communication modules of its device to interact with the environment. Figure 6.2
depicts three devices in the environment: Device 1, Device 2 and Device 3.

The environment of a multi-agent control system is the part of the external world in which
the problem resides and in which the effects of the control system, once installed and set
in operation, will be observed [Hayes et al., 2003]. Typically, a multi-agent control system
operates in a dynamic environment, i.e. an environment where other sources of dynamism
are present, e.g. other systems, processes or even humans. These sources of dynamism
are external to the multi-agent control system. Figure 6.2 depicts two external sources of
dynamism present in the environment: Source 1 and Source 2. The operation of external
sources of dynamism can have a significant impact on a multi-agent control system.

Designing and testing a multi-agent control system is complex as it requires an integrated
approach that takes into account the environment in which the application is situated [Hu
and Zeigler, 2005]. A multi-agent control system should take into account dynamism origi-
nating from other systems, processes or humans in the environment and react appropriately
to their presence.



6-6 Multi-Agent Systems: Simulation and Applications

6.2.3 Software-in-the-loop Simulation Mode

Software-in-the-loop simulation mode denotes simulations in which the software of the real
control system is embedded in the simulation loop. Software-in-the-loop simulation mode
is depicted in Figure 6.3. The simulation contains parts of the real system, i.e. the control
software, together with simulated parts, i.e. the device hardware and the environment.
The executable code of the real control system is directly embedded in the simulation. In
software-in-the-loop simulation mode, the software of the real control system is deployed
on simulated devices that reside within a simulated environment with simulated sources of
dynamism.

Control 
Software

Device 
Hardware

Environment

Control 
Software

Device 
Hardware

Control 
Software

Device 
Hardware

FIGURE 6.3 Schematic view of software-in-the-loop simulation mode. White blocks are simulated parts.
Grey blocks are parts of the real system that are integrated in the simulation loop.

Software-in-the-loop simulation is typically used during the late stages of application
development, i.e. after the software of the multi-agent control system (or parts thereof) has
been implemented. Software-in-the-loop simulation enables experimenting with the agents
of a multi-agent control system on simulated devices before deployment on real devices.
Software-in-the-loop simulation is extensively used for the development of control systems
for robots. For example, software-in-the-loop simulations enable testing the robustness and
fault-tolerance of control systems for robots [Bräunl et al., 2006; Finkenzeller et al., 2003]
or can facilitate parameter estimation of a control systems for robots [Velez and Agudelo,
2006].

6.3 AGV Transportation System

We introduce a real-world case that will be used as an example throughout this chapter.
The case comprises the development of a multi-agent control system that controls automated
guided vehicles (AGVs) in warehouse environments. An AGV is an unmanned, computer-
controlled transportation vehicle using a battery as its energy source (see Figure 6.4). AGVs
have to perform transports. A transport consists of picking up a load at a particular spot
in the warehouse and bringing it to its destination. A load ranges from raw materials (e.g.
wood, rolls of paper) to completed products (e.g. tyres, cheese).

An AGV control system was developed in the EMC2 (Egemin Modular Controls Concept)
project. Egemin N.V. is a Belgian manufacturer of AGVs, and develops control software
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FIGURE 6.4 An AGV in a cheese factory.

for automating logistics in warehouses and manufactories using AGVs.

6.3.1 Physical Setup of an AGV Transportation System

Figure 6.5 shows a three dimensional view on an AGV transportation system. The hardware
of an AGV comprises the following. An AGV contains engines to move and turn and a lift
to pick and drop loads. An AGV has sensors to observe its position and battery level.
Finally, each AGV has a computer platform on which control software can be deployed.
The computer platform of an AGV uses wireless communication.

The warehouse is a storage or manufacturing facility that contains various loads positioned
at various locations across the warehouse. Loads are typically stored in racks. Racks are
used to hold loads and are positioned across the warehouse, usually according a geometrical
pattern that combines easy accessibility of the loads, as well as efficient use of the available
room for storage purposes. Typically, also one or several battery chargers for the AGVs are
positioned at particular locations across the warehouse.

To support AGVs, the warehouse is usually customized. This typically involves a custom
configuration of the racks. In addition, a complex layout of magnet strips is built into the
warehouse floor to guide the AGVs to move from one spot in the warehouse to another.
This magnet track allows AGVs to maneuver in an accurate manner according to predefined
pathways. Moreover, as magnets are inexpensive and can be installed easily, magnet guided
navigation is relatively cost-effective.

6.3.2 AGV Control System

An AGV control system is a software system that controls a set of AGVs. We discuss the
main functionalities of an AGV control system and elaborate on the AGV steering system
that can be used by an AGV control system to instruct AGVs.

Functionalities of an AGV Control System

The main functionality of an AGV control system is handling transports, i.e. moving loads
from one place to an other. Transports are typically generated by order management
software, but a transport can also be introduced manually by employees or operators. Ab-
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AGVs
Magnet 
TrackLoads

FIGURE 6.5 Three dimensional view on an AGV transportation system.

stracting from the origin of the transports, systems that generate transports for the AGV
control system are called client systems. Client systems input transports to the AGV con-
trol system, and expect a confirmation from the AGV control system when the transport
is done.

In order to handle transports, the AGV control system has to use the AGVs under its
control efficiently. The main functionalities to be performed are the following.

• Transport assignment: transports originating from client systems must be as-
signed to an appropriate AGV. The goal is to assign transports in such a way
that overall, transports are handled in an efficient and timely manner.

• Routing: in order to carry out transports, AGVs need to move to certain places.
For the movement of all AGVs, efficient routes through the warehouse must be
determined. Although the road network determined by the magnet track is static,
the best route for an AGV is in general dynamic, and depends on the current
conditions in the system. For example, the shortest route in distance may take
a long time because there is a “traffic jam”. So, routing in general may need to
be adapted dynamically.

• Collision avoidance: while moving around, AGVs may not collide with each
other. Collisions do not exclusively occur at intersections of paths; AGVs also
need to avoid collisions while passing each other on closely located parallel paths.

• Deadlock avoidance: since AGVs cannot divert from their path, they are rela-
tively constrained in their movement. Therefore, deadlocks can occur when a
number of AGVs are in a situation where no AGV can move anymore without
operator intervention. For example, on a bidirectional path AGVs may be stand-
ing head on toward each other. Since AGVs in general cannot drive in reverse,
none of the two AGVs can move forward or backward. The AGV control system
must ensure that manual intervention for such situations is avoided.
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Besides handling transports efficiently, the AGV control system must also ensure the
continued operation of the AGVs.

• Maintenance: AGVs need regular maintenance, which is typically scheduled in
fixed time intervals. Furthermore, AGVs may need to calibrate their positioning
system regularly.

• Battery charging: when an AGV’s battery runs out, it must drive to a charging
station. Either the AGV must wait until an operator exchanges the old battery
for a full battery, or the battery is charged using contact points in the warehouse
floor.

• Resource saving: AGVs are expensive and must be used as efficiently as possible.
AGVs that are idle must save their resources, and get out of the way of the active
AGVs. Therefore, idle AGVs are parked at park nodes.

AGV Steering System

To control an individual AGV, it is equipped with an AGV steering system developed by
Egemin, called E’nsor∗. E’nsor handles the low-level control of an AGV on the level of
reading out sensors and driving actuators. Main functionalities of E’nsor are keeping the
AGV on a path, turning, determining the AGV’s current position, reading out the battery
level, etc.

E’nsor can handle a number of actions on its own. These actions are called jobs. For
example, picking up a load is a pick job, dropping it is a drop job and moving over a specific
distance is a move job. A transport typically starts with a pick job, followed by a series of
move jobs and ends with a drop job. The AGV control system gives jobs to E’nsor, which
in turn controls the AGV to handle the jobs autonomously.

To be able to indicate to E’nsor where to pick and move, the layout (i.e. all the possible
paths the AGVs can follow in the system) of the warehouse is divided into logical elements:
segments and nodes. Segments determine the path an AGV can follow through the ware-
house, and can be either straight or curved with lengths of typically three to five meters.
A segment can either be unidirectional or bidirectional. In the latter case AGVs can drive
over the segment in both directions. Nodes are at the beginning or end of segments. Nodes
are the places where an AGV can stand still, or do an action like picking up a load. In
normal operation, an AGV can only be at rest when standing on a node. Each segment and
node is given a unique identifier. E’nsor is able to steer an AGV on a segment per segment
basis. An AGV can stop on every node, possibly to change direction. E’nsor can handle
five jobs. None of these jobs route the AGV, so the segment given as argument must be
accessible from the node on which the AGV is currently standing.

• Move(segment): this instructs E’nsor to drive the AGV over the given segment.
• Pick(segment): instructs E’nsor to drive the AGV over the given segment and

pick up the load at the node at the end of the segment.
• Drop(segment): the same as pick, but drops a load the AGV is carrying.
• Park(segment): instructs E’nsor to drive the AGV over the given segment and

park at a park node at the end of the segment.
• Charge(segment): instructs E’nsor to drive the AGV over a given segment to a

∗E’nsor is an acronym for Egemin Navigation System On Robot.
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battery charging node and start charging batteries there.

Furthermore, E’nsor allows the readout of sensor values of the AGV, of which the most
important are battery level; position in coordinates on the floor; position in terms of segment
and node on the layout; orientation; speed.

6.3.3 Requirements of an AGV Simulator

In the context of the EMC2 project, we developed an AGV simulator. The AGV simula-
tor enables (1) safe experimentation and testing of AGV control systems without risk of
damaging the real AGVs, (2) executing experiments faster than real-time, which is essential
when investigating long-term scenarios (3) setting up and monitoring experiments in a less
costly way, e.g. without the cost of buying AGVs or building particular warehouse layouts.

We elaborate on the requirements of an AGV simulator that was developed in the context
of EMC2. The goal of the AGV simulator is to support evaluating new or altered features
of a multi-agent AGV control system by means of software-in-the-loop simulation of AGV
agents in a simulated warehouse environment. Software-in-the-loop simulation enables eval-
uating the actual implementation (or parts thereof) of the AGV agents.

The AGV simulator focuses on evaluating routing, collision avoidance, transport assign-
ment and battery charging.

• Support for routing. To evaluate or compare routing behaviors of AGV agents,
the AGV simulator should simulate the movements of real AGVs and realistic
layouts of the warehouse. This enables monitoring the path followed by an AGV,
its travel time, the appearance of traffic jams, etc.

• Support for collision avoidance. To evaluate the appropriateness of collision
avoidance techniques of AGV agents, the AGV simulator should simulate the
movements of AGVs on a warehouse layout and detect situations in which AGVs
could collide. Moreover, to test the robustness of collision avoidance techniques,
the AGV simulator should simulate unreliable communication between AGVs.
This enables a developer to evaluate the adequacy of collision avoidance tech-
niques under a variety of circumstances.

• Support for transport assignment. To evaluate transport assignment among AGV
agents, the AGV simulator should simulate several transport profiles generated
by client systems.

• Support for battery charging. To evaluate the charging strategy of AGV agents,
the AGV simulator should simulate the energy consumption of an AGV, the
charging of its battery at a charging station and the interruption of an AGV’s
operation in case it runs out of energy.

When building an AGV control system, these functionalities are typically developed iter-
atively. The AGV simulator should enable testing partial AGV control systems in which
some of these functionalities are present and others not yet (fully) operational.

To support evaluating different functionalities of AGV control systems in a variety of set-
tings, modifying core parts of the model of the AGV simulator should be relatively easy and
the impact of such modifications should be as local as possible. Important modifications
that should be supported include altering the AGV agent software; the layout of the ware-
house; the number of AGVs and their characteristics (e.g. characteristics of movements,
energy consumption, etc. ); the quality of service of communication between AGVs; the
accuracy of collision detection; the transport profile of the client systems.
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6.4 Modeling Multi-Agent Control Applications in Dynamic
Environments

In this section, we (1) summarize our previous work on a modeling framework for software-
in-the-loop simulations of multi-agent control systems in dynamic environments, and (2)
apply this modeling framework to formulate a simulation model for the AGV transportation
system.

6.4.1 Overview of Modeling Framework

The modeling framework offers special-purpose modeling constructs for formulating a simu-
lation model for software-in-the-loop simulations of multi-agent control systems in dynamic
environments. The modeling framework captures core characteristics of these simulations
in a first-class manner.

The foundation for the constructs of the modeling framework is twofold. On the one
hand, the modeling framework results from our own experience of building simulations for
multi-agent control systems in dynamic environments. Examples include simulations of the
Packet-World [Weyns et al., 2005a], Lego Mindstorms robots [Borgers, 2006] and Automated
Guided Vehicles [Helleboogh et al., 2006]. On the other hand, the modeling constructs are
underpinned by existing practice on modeling dynamic environments of multi-agent control
systems. For a detailed motivation, discussion and a formal description of all modeling
constructs as well as of the evolution of the model, we refer to [Helleboogh et al., 2007;
Helleboogh, 2007]

The modeling framework comprises two complementary parts: an environment part and
a control software part. We give a brief brief overview of the modeling constructs in each
part of the modeling framework.

Modeling Dynamic Environments

The environment part of the modeling framework comprises modeling constructs that cap-
ture in an explicit manner a number of key characteristics and relations that are pertinent
for modeling dynamic environments of multi-agent control systems.

Figure 6.6 gives a graphical overview of the modeling framework for dynamic environ-
ments, depicting all modeling constructs and the relations between the constructs. The
modeling constructs are organized in four groups:

1. Constructs to represent the structure of the environment in the simulation model.
2. Constructs to represent dynamism in the environment in the simulation model.
3. Constructs to represent the manipulation of dynamism in the environment in the

simulation model.
4. Constructs to represent the sources of dynamism in the environment in the sim-

ulation model.

We give an overview of the modeling constructs in each group.

Structure of the environment.

A first group of modeling constructs captures the structure of the environment. To
capture the constituting parts of the environment in a simulation model, we put forward
the modeling constructs Environmental Entity and Environmental Property. Examples
of environmental entities are all sorts of objects in the environment, such as the robots on
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FIGURE 6.6 Overview of the constructs in the environment part of the modeling framework.

which a multi-agent control system is deployed. An example of an environmental property
is the temperature in the environment. To represent a physical or logical structure that
arranges the different environmental entities and environmental properties with respect to
each other, we put forward the modeling construct Environment Layout. An example of
an environment layout is a two-dimensional geometrical arrangement of the entities.

Dynamism in the Environment.

A second group of modeling constructs captures dynamism in the environment in an ex-
plicit manner. To represent dynamism explicitly in the simulation model, we put forward an
Activity as a modeling construct. The association between Activity and Environmental
Entity and the association between Activity and Environmental Property expresses
that an activity describes a particular evolution of a particular environmental entity or
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property over a particular time interval. Examples of activities are the movement of a
robot or the rolling of a ball.

Manipulation of Dynamism.

A third group of modeling constructs captures the way dynamism in the environment
can alter, i.e. the way activities arise, interact and terminate. We put forward the mod-
eling constructs Reaction Law and Interaction Law to capture the way activities in the
environment are manipulated.

A Reaction Law is a modeling construct that specifies what happens in the environment
in reaction to a particular trigger of a source of dynamism. An example is a reaction law
that specifies what happens in the environment in reaction to the trigger of an agent to
start the engines of a robot. The reaction law specifies what kind of activity is created, e.g.
a movement of that robot characterized by a particular velocity in a particular direction.

An Interaction Law is a modeling construct to specify the way dynamism can interact
in the environment. For example, an interaction law can specify what happens in case a
robot involved in a movement activity hits a wall or another robot.

The associations between Reaction Law and Activity on the one hand, and between
Interaction Law and Activity on the other hand, express that reaction laws and inter-
action laws alter the activities present in the environment.

Sources of dynamism.

A fourth group of modeling constructs captures the sources of dynamism in the environ-
ment. We put forward the modeling constructs Controller and Environment Source to
represent the behavior of the various sources of dynamism present in the environment.

The Controller is a source of dynamism that is part of the multi-agent control sys-
tem. An example of a controller is an agent program that controls a particular robot. An
Environment Source is a source of dynamism that resides in the environment and that is
external to the multi-agent control system. An example of an environment source is the
behavior of a machine in the environment that is controlled by a human. Controllers and
environment sources are embedded in some of the environmental entities. For example, a
robot contains a source of dynamism, i.e. its controller, whereas a ball is passive and does
not contain a source of dynamism.

Controllers and environment sources can initiate, terminate or alter dynamism in the
environment. We put forward an Influence as a modeling construct to capture the attempt
of the controller or of an environment source to affect the environment. An example of
an influence is the attempt of an agent to start or stop the movement of a robot. The
association between Environment Source and Influence and between Controller and
Influence represents that dynamism can only be manipulated indirectly, i.e. by means of
performing influences in the environment. Reaction laws determine the actual reaction of
the environment in response to influences. This is represented by the association between
Reaction Law and Influence.

Modeling the Software of a Multi-Agent Control System

In software-in-the-loop simulations, the software of the real controllers of the multi-agent
control system is embedded in a simulated environment. The control software part of the
modeling framework comprises modeling constructs that capture key characteristics of the
software of the multi-agent control system that is embedded in the simulation.

Figure 6.7 is a detailed view on the group of modeling constructs to represent the sources
of dynamism in Figure 6.6, with additional modeling constructs for the controller. We give
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FIGURE 6.7 Overview of the modeling constructs for the control software and their associations.

an overview of the modeling constructs in the controller. The modeling constructs focus on
representing the following characteristics of the control software explicitly in the simulation
model:

• Representing the real-world execution time of the software in the simulation
model. The real-world execution time of a controller is the amount of wallclock
time that elapses until that controller triggers its next action. The execution time
of a controller determines the timing of its actions. In a dynamic environment,
the timing of actions is crucial as opportunities come and go.
To capture the real-world execution time of a controller in the simulation model,
we put forward the modeling constructs Duration Primitive and Duration
Mapping. A duration primitive represents a code segment that takes an amount
of execution time in the real world that is pertinent for the simulation. An
example of a duration primitive is a particular java method foo() in the software
of a particular controller. A duration mapping is a modeling construct that
specifies the execution time for invocations of duration primitives of a controller.
For example, a duration mapping can specify that invoking the method foo()
takes 0.338 seconds.

• Capturing the interaction of the software with the environment. The software of a
controller interacts with its environment. Consequently, the execution of the soft-
ware of a controller will trigger particular things to happen in the environment.
When integrating the software of the controllers with the simulated environment,
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it is crucial to identify the set of software instructions that are used by the con-
troller to interact with the environment, and to specify the precise consequences
in the environment that result from triggering these instructions.
To capture the interaction of the software with the environment in a simulation
model, we put forward the modeling constructs Control Primitive, Control
Name Mapping and Control Parameter Mapping. A control primitive represents
a particular software instruction that can be used by the control software to
interact with its environment. An example of a control primitive is a java method
bar() that triggers the engine of a robot to start running at full power. The
modeling constructs Control Name Mapping and Control Parameter Mapping
specify the name and the parameters of the influence that result from invoking
a control primitive. A control name mapping and control parameter mapping
decouple the signature of control primitives from the specific representation of
influences that is used in the simulated environment. For example, a control
name mapping specifies that an invocation of bar() corresponds to an influence
with name startDriving, whereas a control parameter mapping specifies that the
invocation of bar() results in the value 10 to be associated with the parameter of
the startDriving influence to indicate the speed.

6.4.2 Simulation Model of the AGV Transportation System

We apply the modeling framework to formulate a simulation model for an AGV simulator.
The AGV simulator supports the evaluation of new or altered features of a multi-agent
control system that controls automated guided vehicles in warehouse environments.

The constructs of the modeling framework are used to capture key characteristics of the
AGV system in a first-class manner. This enables a developer to adapt the model of the
AGV simulator to the needs of a particular simulation study by activating, deactivating
and customizing first-class elements of the simulation model.

We start with an overview of the simulation model of the warehouse environment. Af-
terward, we focus on the simulation model for integrating the AGV control system. For a
detailed discussion of the simulation model of the AGV Transportation System, we refer to
[Helleboogh, 2007].

Simulation Model of the Warehouse Environment

Figure 6.8 gives a graphical overview of the environment part of the simulation model of
the AGV simulator. This figure shows specific instantiations of the modeling constructs of
Figure 6.6. The simulation model is organized in four parts, in analogy with Figure 6.6. We
discuss a number of examples for each of the parts of the simulation model for warehouse
environments.

Structure of the Warehouse Environment.

The structure of the simulated warehouse environment is modeled in terms of environmental
entities and an environmental layout that arranges the entities with respect to each
other. We give examples of environmental entities. Stations are locations that connect
adjacent segments. Each station can be used for one or several purposes, i.e. as routing
location, as storage location for loads, as parking location and/or as battery charging lo-
cation; A WiFi access point enables communication between AGVs and transport bases or
among several AGVs. A transport base is a computer that can be used to broadcast new
transport tasks to the AGVs. A transport generator is embedded in a transport base.
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FIGURE 6.8 Overview of the simulation model of the simulated warehouse environment. The grey
parts are specific instantiations of the modeling constructs for the AGV simulator.

We arrange the entities in the simulated warehouse environment according to a continuous
2D-geometric layout. This layout expresses the spatial positioning of all entities with respect
to each other.

Dynamism in the Warehouse Environment.

Dynamism in the simulated warehouse environment is modeled in terms of activities.
For example, driving activities represent the driving of an AGV across a segment on the
warehouse floor until the station at the other end of that segment is reached. Each driving
activity is characterized by the AGV involved in the movement, the segment over which
the AGV moves, the direction of the movement over that segment, the time interval during
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which the movement takes place and the acceleration profile of the AGV during that move-
ment. Sending activities represent that a WiFi access point is used to transmit messages
from a transport base to AGVs or among AGVs.

Sources of Dynamism in the Warehouse Environment.

In the warehouse environment, several sources of dynamism reside. We make a distinction
between controllers and environment sources. AGV agents are the control software
that is embedded in an AGV. AGV agents constitute the AGV control system. Each AGV
agent is responsible for controlling an AGV and for coordinating with other AGVs for rout-
ing, collision avoidance, transport assignment and battery charging. A transport generator
broadcasts transport tasks to the AGVs. A transport generator generates transports ac-
cording to a transport profile that specifies the characteristics of the stream of transport
tasks that should be handled by the AGVs. Transport generators are external to the AGV
control system. Consequently, transport generators are environment sources of dynamism.
A transport generator is deployed on a transport base.

Sources of dynamism can manipulate the environment by means of performing influences.
For example, a drive influence represents that attempt of an AGV agent to start driving
over a given segment in a given direction. A send influence represents the attempt of an
AGV agent or a transport generator to send a message.

Manipulation of Dynamism in the Warehouse Environment.

The way dynamism in the warehouse environment can be manipulated is modeled by
means of reaction laws and interaction laws.

An example of a reaction law is a start driving law. Start driving law defines the reaction
of the environment in response to a drive influence or a park influence. A real AGV does
not always start driving when it is instructed to do so. Therefore, start driving law checks
a number of conditions before adding a new driving activity. These conditions are that the
AGV is not already involved in a driving, picking or dropping activity at the time of the
influence; that the segment is adjacent to the station of the AGV; that the AGV is allowed
to drive over the given segment in the given direction (as segments can be unidirectional).
Start driving law does not define an activity in case one of these conditions does not hold,
to reflect that E’nsor discards the instruction in these cases.

An example of an interaction law is a collision law. A collision law enforces collisions
of AGVs in the warehouse environment. Based on the driving activities, a collision law
determines whether AGVs collide. In case the collision law detects a collision, it transforms
the driving activity/activities involved with driving activity/activities that stop at the time
the collision occurs. A battery law enforces that all activities of an AGV are preempted
in case it runs out of energy. Based on the energy consumption of driving, picking and
dropping activities, a battery law preempts all activities as soon as an AGV runs out of
energy.

Simulation Model for Integrating the AGV Agent Software

Figure 6.9 gives a graphical overview of the control software part of the simulation model of
the AGV simulator. This figure shows specific instantiations of the modeling constructs of
Figure 6.7. We elaborate on the way the AGV agent software interacts with the environment
and the way the execution time of the AGV agent software is captured in the simulation
model.
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The grey parts are specific instantiations of the modeling constructs for the AGV simulator.

Control Interface of AGV Agents.

The interaction of the AGV agent software with the warehouse environment is modeled
in terms of control primitives and a control name mapping and control parameter
mapping.

We discuss two examples of control primitives. Ensor.move(segment) is an E’nsor control
primitive that instructs E’nsor to drive the AGV over the given segment. Com.send(message)
is a control primitive that instructs an AGV’s onboard wireless communication module to
send a message.

We employ an Ensor-influence name mapping to determine the name of the influences
that result from the control primitive invocations. The mapping between control primitive
invocations and influences is a straightforward one-to-one mapping. For example, invoca-
tions of the control primitive Ensor.charge will be mapped on charge influences.

We employ an Ensor-influence parameter mapping to determine the parameters of the
influences that result from the control primitive invocations. For example, for all control
primitives that take a segment as argument, the corresponding influence requires two pa-
rameters: the segment on the one hand, and one of both end stations of that segment on the
other hand (to indicate the direction in which an AGV will drive over that segment). For
invocations of the control primitive Com.send(message), the corresponding send influence
requires the receiver which is encapsulated in the message as an explicit parameter. The
Ensor-influence parameter mapping takes care of determining all parameters needed for the
influences.
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Execution Time of AGV Agents.

The execution time of AGV agent software is modeled in terms of duration primitives
and a duration mapping.

The duration primitives are typically dependent upon the AGV agent software. There-
fore, the developer should specify custom duration primitives for the AGV control software
that is to be embedded in the simulation. There is one default duration primitive captured
in the simulation model: Thread.sleep(millis). Thread.sleep(millis) suspends the execution
of an AGV agent for the specified number of milliseconds. This control primitive is used ex-
tensively in controllers, as the real environment typically evolves several orders of magnitude
slower than the control system.

We employ an AGV agent duration mapping to specify the duration of invocations of
duration primitives. By default, the AGV agent duration mapping only associates a duration
to invocations of the duration primitive Thread.sleep(millis). That duration corresponds to
the amount of time specified by the argument millis.

6.5 Architecture of the Simulation Platform

In this section, we describe the software architecture of a simulation platform that supports
the modeling constructs of the modeling framework described in Section 6.4.

The software architecture of a system is defined as “the structure or structures of the
system, which comprise software elements, the externally visible properties of those ele-
ments, and the relationships among them” [Bass et al., 2003]. The software architecture
captures the essence of a complex software system by identifying key stakeholder concerns
and by explicitly specifying how software needs to be structured and behave to address the
concerns. As such, a software architecture is a reusable artifact for the creation of such a
simulation platform. We developed a simulation platform that implements this architec-
ture and we applied this simulation platform to support software-in-the-loop simulations
for evaluating, comparing and integrating several functionalities of a multi-agent control
system for steering AGVs.

We use several architectural views to document the architecture of the simulation plat-
form. A view is a representation of a coherent set of architectural elements and the relations
among them [Bass et al., 2003]. Each view presents a particular perspective on the archi-
tecture or a part thereof. For each view, we start with a general explanation of the goal of
the view and the software elements and relations between elements that are considered in
that view. Afterward, we document each view for the simulation platform using a graphical
notation and we explain how important quality requirements are realized.

This section is structured as follows. In Section 6.5.1, we put forward the functional and
quality requirements of the simulation platform. In the following sections, we elaborate on
the different architectural views. We start with a top-level module decomposition view in
Section 6.5.2. We describe a component and connector view of the functionality to support
dynamic environments in Section 6.5.3. We elaborate on a component and connector to ex-
plain the simulation engine that synchronizes all parts of the simulation in Section 6.5.4. In
Section 6.5.5, we put forward an aspect-oriented approach to integrate the control software
in the simulation. We describe a component and connector view of the functionality that
keeps track of the execution time of an agent in Section 6.5.6.
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6.5.1 Requirements

The goal of the simulation platform is to provide run-time support for software-in-the-loop
simulations of multi-agent control systems in dynamic environments, of which the simulation
model is described in terms of the modeling constructs proposed in Section 6.4. We discuss
the functional and quality requirements that are the main drivers for the architecture of
the simulation platform.

The main functional requirements for the simulation platform are the following:

• Support the modeling constructs for dynamic environments. The simulation plat-
form should encapsulate the functionality to support the modeling constructs
for dynamic environments described in Section 6.4.1. This functionality includes
(1) managing the sources of dynamism and the influences that result from their
execution (2) applying the appropriate reaction laws to determine the reaction
of the environment to the various influences (3) handling all activities in the
environment during a simulation run, and (4) applying the interaction laws to
enforce interactions between activities.

• Support the modeling constructs for the control software. The simulation plat-
form should encapsulate the functionality to support the modeling constructs for
embedding the software of real controllers, described in Section 6.4.1. This func-
tionality includes (1) keeping track of the duration primitives invoked by each of
the controllers (2) keeping track of the control primitives invoked of each of the
controllers, (3) deriving the nature and the timing of the influences that result
from executing the controllers.

• Support consistent simulation runs. The simulation platform should encapsulate
the functionality to carry out simulation runs that are consistent with the de-
scribed simulation model. The simulation model specifies the causal relations
between all influences, activities, reaction and interaction laws by means of simu-
lation time, e.g. by means of specifying the duration of the various controllers in
simulation time, specifying the start and duration of each activity in simulation
time, etc. To obtain causal relations in accordance to the specification of the
simulation model, the progress of all parts of the simulation, i.e. the progress of
the various controllers and environment sources of dynamism and of applying the
various reaction and interaction laws, should happen in the order of increasing
simulation time. Given the unpredictable delays introduced by the underlying
execution platform on which the simulation platform runs, an explicit synchro-
nization between all parts of the simulation is necessary to regulate their relative
progress.

We describe the main quality requirements of the simulation platform:

• Flexibility of embedding the software of the control system. The simulation plat-
form should provide support for embedding the software of the control system in
a flexible way, i.e. with minimal effort from the developer. The fact that some
simulation concerns crosscut with the control system’s functionality hampers em-
bedding the real controllers in a flexible way. We rely on state-of-the-art software
engineering technology to modularize crosscutting simulation concerns in order
to insert and remove them in the control system in a plug-and-play manner.

• Modifiability of the simulation platform. Modifying core parts of the simulation
platform should be relatively easy, and the impact of such modifications should be
as local as possible. Core parts of the simulation platform include the simulation
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engine and the functionality to support simulated environment.
• Performance of the simulation platform. The simulation platform should support

as-fast-as-possible simulation, to enable executing simulation runs faster than
real time. Simulation platforms that support software-in-the-loop simulations
are typically limited to real-time simulation, i.e. simulation time advances in
pace with wallclock time during a simulation run.

6.5.2 Top-Level Module Decomposition View of the Simulation Plat-
form

The goal of a module decomposition view is to show how the simulation platform is decom-
posed into manageable software implementation units. A module decomposition view is a
static view on a system’s architecture. The elements depicted in a module decomposition
view are modules. A module is an implementation unit of software that provides a coher-
ent unit of functionality. The relationship between the modules is is-part-of that defines
a part/whole relationship between a submodule and the aggregate module. Modules are
recursively refined, revealing more details in each decomposition step. The basic criteria for
module decomposition is the achievement of quality requirements. For example, parts of
a system that are likely to change, are encapsulated in separate modules to support mod-
ifiability. Another example is the separation of functionality of a system that has higher
performance requirements from other functionality.

The module decomposition view includes a description of the interfaces of each module
that documents how a module is used in combination with other modules. The interface
description distinguishes between provided and required interfaces. A provided interface
specifies what functionality the module offers to other modules. A required interface spec-
ifies what functionality the module needs from other modules; it defines constraints of a
module in terms of the services a module requires to provide its functionality.

The top-level module decomposition view of the simulation platform is depicted in Fig-
ure 6.10. We first discuss the main elements and their properties. Afterward, we describe
their interfaces and explain how important qualities are realized.

Elements and Their Properties

The simulation system is decomposed in two main subsystems: Controller and Simulation
Platform.

• Controller is a software module of the real multi-agent control system that is
embedded in the simulation platform in order to test or configure it. A multi-
agent control system consists of several controllers, i.e. agents, working in parallel
and cooperating to solve a problem in the environment. An controller has well-
defined ways to sense the environment and to act upon it. An example of an
controller is an agent program to controls a particular robot in a manufacturing
plant.

• Simulation Platform is the medium in which controllers of a multi-agent control
system are embedded in order to test or configure them. The main responsibilities
of the simulation platform are:

– To simulate the real dynamic environment of the multi-agent control system.

– To manage the execution of all controllers of the multi-agent control system
according to the specified duration model.
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FIGURE 6.10 Top-level module decomposition view of the simulation platform.

– To execute simulation runs as-fast-as-possible, thus enabling simulations
faster than real time.

The simulation platform is further decomposed in three different modules: Simulated
Environment, Simulation Engine and Execution Tracker.

• Simulated Environment is responsible for managing a simulation model of the
real environment of the multi-agent control system. The Simulated Environment
encapsulates all functionality to support the modeling constructs described in
Section 6.4.1.

• Simulation Engine is responsible for managing the evolution of all parts of
the simulation in correspondence to the specifications of the simulation model.
The simulation engine encapsulates all functionality to synchronize the progress
of the simulated environment with the progress of all execution trackers of the
controllers that are embedded in the simulation. This guarantees correct causal
relations in correspondence to the specifications of the simulation model.

• Execution Tracker is responsible for tracing the execution of a particular con-
troller of the multi-agent control system. This module encapsulates all function-
ality to support the modeling constructs for the control software described in
Section 6.4.1. Tracing the execution of a controller includes (1) determining the
execution time consumed by a particular controller of the multi-agent control
system according to the duration mapping, and (2) synchronizing the execution
of that controller with the simulation engine, which is necessary to enable as-fast-
as-possible simulations. At runtime, there is an instance of the execution tracker
module for each controller.
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Interface Descriptions

The simulation platform module provides two interfaces to the controller: Control API and
Trace.

• Control API supports the application concerns of a controller. Control API is
the control interface required by the controller to interact with its environment.
The Control API provided by the simulation platform is identical to the con-
trol interface the controller uses to interact with its sensors and actuators in the
real environment. By providing the Control API interface, the simulation plat-
form cannot be distinguished from the real environment from point of view of a
controller.

• Trace supports the simulation concerns for a controller. Trace is the interface
provided by the simulation platform to manage the execution of a controller. The
Trace interface enables (1) monitoring the execution time consumed by the con-
troller and (2) intercepting and synchronizing the execution of the controller with
the simulation engine. The Trace interface is further explained in Section 6.5.5.

The simulation platform module delegates the Control API interface to the simulated
environment module, and the Trace interface to the execution tracker module.

The simulation engine governs the progress of the simulation by means of the provided
Notify and required Sync interfaces. We elaborate on Notify and Sync in Section 6.5.3.

Architectural Rationale

Each module in the decomposition encapsulates a particular functionality of the simulation
platform. By minimizing the overlap of functionality among modules, the architect can
focus on one particular part of functionality. Allocating different functionalities of the
simulation platform to separate modules results in a clear design. It helps to accommodate
change and to update one module without affecting the others, and it supports reusability.
We elaborate on the core architectural decisions.

Low coupling between Controller and Simulation Platform.

As we are concerned with software-in-the-loop simulations, one of the main architectural
decisions is a low coupling between the control software on the one hand, i.e. the controllers,
and the simulation platform in which it is embedded on the other hand. The Control API
interface enables all communication, sensing and acting to be directed to the simulation
platform transparently. The Trace interface connects the controller with a dedicated Ex-
ecution Tracker in the Simulation Platform. Section 6.5.5 illustrates an aspect-oriented
approach to provide existing controllers with support for the Trace interface.

Two advantages of a low coupling between Controller and Simulation platform are (1) reuse,
i.e. the simulation platform can be reused for testing various controllers, and (2) modifia-
bility, i.e. the controllers can be modified without affecting the simulation platform.

Low coupling between Simulated Environment and Simulation Engine.

In the simulation platform, we make an explicit distinction between the simulated en-
vironment on the one hand, and the simulation engine on the other hand. The simulated
environment maintains a model of the real environment. The simulation engine manages
the simulation main loop, i.e. advancing simulation time by synchronizing the progress of
all parts of the simulation. Simulated Environment and Simulation Engine are coupled by
means of well-defined interfaces, i.e. Notify and Sync. This enables (1) the Simulated En-
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vironment to make abstraction of how and with whom synchronization is required, and (2)
the Simulation Engine to focus on reliable and efficient synchronization, without knowledge
of the internal working of each party that needs synchronization.

Two advantages of the low coupling between Simulated Environment and Simulation
Engine are (1) reuse, i.e. it facilitates the integration of a different simulation engine into
the simulation platform, and (2) manageability, i.e. the design of the Simulated Environment
is facilitated because abstraction can be made of all synchronization issues.

Explicit support for as-fast-as possible simulations.

In as-fast-as possible simulations, there is no fixed relation between the progress of the
simulation engine and wallclock time. This enables simulation runs faster than real time. To
support as-fast-as-possible simulation, the execution of each controller must be synchronized
explicitly with the simulation engine in the simulation platform. Execution Trackers and
the Trace interface encapsulate the functionality to Trace and synchronize the execution of
the controllers with the simulation engine in an explicit manner.

6.5.3 Component and Connector View of the Simulated Environment

A component and connector view [Clements et al., 2002; Ivers et al., 2004] shows a system
as a set of cooperating units of execution. A component and connector view is a run-time
view on a system’s architecture. The elements of the component and connector view are
run-time elements of computation and data storage, such as repositories and components.
Components are run-time instances that perform calculations that typically require data
from one or more data repositories. Data repositories store data and mediate the inter-
actions among components. A data repository can provide a trigger mechanism to signal
data consumers of the arrival of interesting data. Besides reading and writing data, a data
repository may provide additional support, such as support for concurrency and persistency.
The relationship between elements within a component and connector view are connectors.
A connector is a path for communication that links connecting ports on two or more el-
ements. A port is an interaction point on a run-time element through which data is sent
and received according to a specific interface. A port is similar to an interface in that it
describes how an element interacts with its environment, but is different in that each port
is a distinct interaction point of its element [Ivers et al., 2004].

The component and connector view of the Simulated Environment is depicted in Fig-
ure 6.11. This view gives a detailed perspective on the Simulated Environment module of
Figure 6.10. The Simulated Environment supports the modeling constructs for dynamic
environments described in Section 6.4.1. We first discuss the main elements and their prop-
erties. Afterward, we describe how they are connected and explain how important qualities
are realized.

Elements and Their Properties

The Simulated Environment contains various components that are connected to five pos-
sible repositories: State, Activities, Influences, Reaction Laws and Interaction Laws. We
elaborate on each of the five repositories. Afterward, we describe the components they are
connected to.

• State repository contains values for all variables to describe the state of the
environment. The values of the state describe a snapshot of the environment at
a particular instant of simulation time, i.e. the snapshot time. The state of the
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FIGURE 6.11 Component and connector view of the simulated environment.

environment includes the state of all environmental entities and properties of the
environment. Examples are the position and battery level of each robot in the
environment, the position of various objects in the environment, the temperature
of the environment.

• Activity repository maintains the activities as first-class elements. Activities
describe the evolution of the state of the environment over time. Activities
are always expressed relative to the snapshot of the state stored in the States
repository. Examples of activities are an activity that describes the driving of
a robot and an activity describing the rolling of a ball in a RoboCup Soccer
environment.

• Influence repository contains the influences as first-class elements. Influences
are attempts to start, stop or alter activities. Influences originate from the con-
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trollers of the multi-agent control system on the one hand, and from environment
sources external to the multi-agent control system on the other hand.

• Reaction Law repository maintains the reaction laws of the environment model
as first-class elements. The reaction laws determine the way influences have an
impact on the activities in the simulation.

• Interaction Law repository maintains the interaction laws of the environment
model as first-class elements. The interaction laws determine the way activities
may interact in the environment.

The components are runtime instances of corresponding modules within the Simulated
Environment:

• Environment Inspector acts as the facade that regulates all inspections of both
state and dynamics of the environment. This includes functionality to retrieve
the state of a part of the environment at any particular point in simulation time,
based on the actual content of the State repository and Activity repository.

• State Updater prevents activities from piling up in the Activity repository dur-
ing a simulation run. The State Updater periodically flushes activities from the
Activity repository and updates the corresponding values in the State reposi-
tory such that they represent the state at a later snapshot time.

• Activity Transformer is responsible for applying all laws present in the Reaction
Law repository and Interaction Law repository. The laws are black-box ele-
ments for the Activity Transformer, which only orchestrates applying all laws.
Applying the laws includes (1) checking whether laws are applicable and (2) ma-
nipulating the activities in the Activity repository in correspondence to the ap-
plicable laws. To check whether laws are applicable, the Activity Transformer
verifies for each law whether its conditions are satisfied. For interaction laws,
this involves contacting the Environment Inspector; for reaction laws, this
this also involves contacting the Influence repository besides the Environment
Inspector. To apply a reaction law, the Activity Transformer removes the
respective influences from the Influence repository, and performs the activity
transformation proposed by the reaction law on the activities in the Activity
repository. To apply an interaction law, the Activity Transformer performs
the activity transformation proposed by the interaction law on the activities in
the Activity repository.

• API Translator is responsible for translating a controller’s invocations on the
Control API interface into the concepts of the environment model. More specif-
ically, the API Translator maps all triggering of actuators (e.g. (de-)activating
motors or sending communication messages) into influences that are stored in the
Influence repository, according to the control parameter mapping and control
name mapping (see Section 6.4.1). The API Translator realizes all triggering
of sensors (e.g. readout of sensor values or received communication messages) by
querying the Environment Inspector. In Figure 6.11, two API translators
are depicted. Each API translator is connected to a controller of the multi-
agent control system.

• Environment Source is responsible to mimic the behavior of a source of dy-
namism in the environment that is external to the multi-agent control system.
Environment Sources are capable of performing influences and sensing the en-
vironment. Examples of Environment Sources are other machines or humans
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that reside in the environment of the multi-agent control system. In Figure 6.11,
one instance of an Environment Source is depicted.

Interface Descriptions

Figure 6.11 depicts the interconnections between the repositories and the internal compo-
nents of the simulated environment.

The State repository provides two interfaces:

• SQuery is the interface provided by the State repository to read the current values
of the variables.

• Update is the interface provided by the State repository to enable updating the
state to a new snapshot time.

The Activity repository provides three interfaces:

• AQuery is the interface for inspecting activities. Inspection is based on match-
ing: the requester specifies a condition that must hold for all activities that are
returned.

• Flush is the interface to (partially) empty the Activity repository. The requester
specifies a point in simulation time. Flush returns all activities that finish before
the specified time instant. In contrast to the AQuery interface, the activities
returned by the Flush interface are removed from the Activity repository.

• Transform is the interface to manipulate the activities in the Activity reposi-
tory. The requester specifies an activity transformation to be performed on the
activities.

The Reaction Law repository and Interaction Law repository provide one interface:

• Read is the interface that can be used to access the laws in the corresponding
repository.

The Influence repository provides two interfaces:

• Put is the interface for storing new influences in the Influence repository.
• Get is the interface for returning influences out of the Influence repository. The

requester can specify (1) a condition that must be satisfied by each influence that
is returned, and (2) whether the returned influences should be removed from the
Influence repository.

The Environment Inspector provides the Inspect interface that assembles a snapshot of
the state of the environment at any particular instant of simulation time. The Notify and
Sync interfaces are described in Section 6.5.4, when the simulation engine is discussed.

Architectural Rationale

Low coupling due to data repositories.

The use of data repositories decouples the various components within the simulated envi-
ronment. Low coupling improves modifiability (as the changes in one element do not affect
other elements), and reuse (as elements are not dependent on too many other elements).
Decoupled elements do not require detailed knowledge about the internal structures or op-
erations of other elements. Furthermore, decoupled elements are easier to understand due
to clear and coherent responsibilities.
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For example, the Influence repository gathers all influences, regardless of whether these
influences originate from controller actions that are translated by API translators, or from
Environment Sources external to the multi-agent control system. As such, the Influence
repository decouples the Activity Transformer from the various sources of influences, i.e.
API Translators and various Environment Sources.

Decoupling synchronization from the Simulated Environment.

The elements that need synchronization are Environment Source, Activity Transformer
and State Updater. All synchronization is delegated to the simulation engine by means of
the Notify and Sync interfaces. Synchronization will be discussed in Section 6.5.4.

Customizable presentation of the environment state.

The Environment Inspector acts as a facade to hide the internal representation of the
environment state in terms of state and activities. As such, the internal representation
is decoupled from the way the state is presented toward other components, such as the
API Translators, Environment Sources and the various laws managed by the Activity
Transformer. The Inspect interface enables the use of a custom representation for each
component it is connected to.

Customizable state updating strategy.

The strategy to update the state is encapsulated in the State Updater. This offers
the developer the ability to apply a custom updating strategy. For example, in case the
execution trace should be logged, the State Updater can be deactivated easily, such that
all activities are aggregated in the Activity repository and can be inspected afterward.

Reusable Infrastructure.

Finally, we emphasize the reusability of the architecture of the simulated environment.
The internal components and repositories of the simulated environment comprise the in-
frastructure necessary to handle influences, activities, reaction laws and interaction laws.
This infrastructure can be reused for all simulation studies whose simulation models are
described in terms of these constructs.

6.5.4 Component and Connector View of the Simulation Engine

The Simulation Engine is responsible for advancing simulation time by synchronizing all
parts of the simulation such that everything happens in the order of increasing simulation
time. This guarantees correct causal relations in correspondence with the specifications of
the simulation model.

We focus on the way the Simulation Engine regulates the progress of all parts of the
simulation. The component and connector view of the Simulation Engine is depicted in
Figure 6.12. We first discuss the main elements and their properties. Afterward, we describe
how they are connected and explain how important qualities are realized.

Elements and Their Properties

The Simulation Engine is responsible for executing a simulation run by synchronizing the
progress of various components. Synchronization is necessary to ensure causality, i.e. to
enforce that everything happens in the order of increasing simulation time. The compo-
nents that need synchronization are the following: the various sources of dynamism that act
in parallel, i.e. the Controllers of the multi-agent control system and the Environment
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FIGURE 6.12 Component and connector view of the simulation engine.

Sources external to the multi-agent control system, the Activity Transformer that ap-
plies the reaction and interaction laws and the State Updater that updates the state to a
new snapshot time.

We discuss each component, explain why it needs synchronization and the way it relies
on the Simulation Engine for synchronization.

• Environment Source (see Section 6.5.3). An Environment Source can access
the environment in several ways, i.e. by performing an influence or sensing the
environment. To ensure correct causal relations between its environment access
and other things happening in the simulation, an Environment Source synchro-
nizes its execution with the Simulation Engine: before performing an influence
or sensing the environment, an Environment Source notifies the Simulation
Engine at what moment in simulation time it wants to access the environ-
ment and suspends its execution until it is granted permission to proceed by
the Simulation Engine.

• Execution Tracker (see Section 6.5.5). An Execution Tracker manages the
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execution of a Controller. An Execution Tracker keeps track of the execution
time consumed by a Controller to deduce at what moment in simulation time
a Controller accesses the environment. To determine whether a controller ac-
cesses the environment, an execution tracker keeps track of all control primitive
invocations on the Control API. Synchronization is necessary to ensure correct
causal relations between the access of a controller to the environment and other
things happening in the simulation, Each time a control primitive of the Control
API is invoked, the Execution Tracker notifies the Simulation Engine and sus-
pends that Controller’s execution until it is granted permission to proceed by
the Simulation Engine.

• Activity Transformer (see Section 6.5.3). An Activity Transformer changes
the activities in the Activity repository by applying the reaction and interaction
laws. To ensure correct causal relations between activity transformations and
other things happening in the simulation, the Activity Transformer notifies the
Simulation Engine before applying an activity transformation and suspends its
execution until it is granted permission to proceed by the Simulation Engine.

• State Updater (see Section 6.5.3). A State Updater updates the State reposi-
tory to a new snapshot time by flushing activities. To guarantee correct causal re-
lations with the rest of the simulation, the State Updater notifies the Simulation
Engine of the new snapshot time it wants to update the State repository to and
suspends its execution until permission to proceed is granted by the Simulation
Engine.

Interface Descriptions

Figure 6.12 illustrates how the various components are connected with the Simulation
Engine. The synchronization of all components happens through a uniform interface:

• Notify is the interface provided by the Simulation Engine to enable compo-
nents to publish new events. To notify the Simulation Engine of a new event, a
component specifies (1) the simulation time stamp of the event and (2) a call-
back identifier of the component. The callback identifier is used for granting
permission to that component when it is safe to execute that event.

• Sync is the interface required by the Simulation Engine to grant permission to
a component for executing an event.

Architectural Rationale

The Simulation Engine encapsulates all synchronization.

An important architectural decision is that the main components within the Simulation
Platform can make abstraction of all synchronization with other components. The Simulation
Engine encapsulates the actual synchronization algorithm (in our case a conservative dis-
crete event synchronization algorithm [Chandy and Misra, 1981]) that maintains and man-
ages all synchronization partners. The Simulation Engine uses the Notify and Sync
interfaces to synchronize various components. As such, the Simulation Engine does not
depend upon the internal working and functionality of these components.

6.5.5 An Aspect-Oriented Approach to Embed Control Software

We explain the way the software of the real controllers is embedded in the simulation
platform. Recall that a Controller is connected to the Simulation Platform by means of
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two interfaces: the Control API interface the Trace interface, as is depicted in Figures 6.10
and 6.12. The Trace interface enables monitoring the execution of a controller by tracking
its duration primitive invocations and control primitive invocations (see Section 6.4.1).
However, in contrast to the Control API interface, the Trace interface is not a native
interface of a controller. The Trace interface is solely necessary for simulation purposes,
i.e. to enable synchronizing the execution of a controller with the simulation. Consequently,
embedding a controller in the simulation platform would require the developer to modify
the design of the controller such that it supports the Trace interface. This would be a
time-consuming and error-prone job, which we would like to avoid.

We describe an approach to extend a multi-agent control system transparently, i.e. with-
out requiring the developer to perform changes in the design of the controllers. Our approach
uses aspect-oriented programming to achieve this. We first introduce aspect-oriented pro-
gramming in Section 6.5.5. The way aspect-oriented programming is used in the simulation
platform is described in Section 6.5.5. We emphasize how important qualities are realized
in Section 6.5.5.

Aspect-Oriented Programming

Tracking the execution of a controller is a crosscutting concern, i.e. the functionality to do
this crosscuts a multi-agent control system’s basic functionality. The problem of crosscut-
ting concerns is that they can not be modularized with traditional object oriented tech-
niques. This forces the functionality to monitor the execution of a controller to be scattered
throughout the code of the multi-agent control system, resulting in “tangled code” that
is excessively difficult to develop and maintain. Aspect-oriented programming [Kiczales
et al., 1997, 2001] handles crosscutting concerns by providing aspects for expressing these
concerns in a modularized way. An aspect is a modular unit of crosscutting implementa-
tion. Aspect-oriented programming does not replace existing programming paradigms and
languages, but instead, it can be seen as a co-existing, complementary technique that can
improve the utility and expressiveness of existing languages. It enhances the ability to ex-
press the separation of concerns which is necessary for well-designed, maintainable software
systems.

A language extension to Java which supports aspect-oriented programming, is AspectJ.
In AspectJ, defining an aspect is based on two main concepts: pointcuts and advice. A
pointcut is a language construct in AspectJ that selects particular join points, based on
well-defined criteria. Each join point represents a particular point in the execution flow
of a program where the aspect can interfere, e.g. a point in the flow when a particular
method is called. As such, pointcuts are a means to express the crosscutting nature of an
aspect. Advice on the other hand is a language construct in AspectJ that defines additional
code that runs at join points specified by an associated pointcut. An aspect encapsulates
a particular crosscutting concern and can contain several pointcut and advice definitions.
The process of inserting all crosscutting code of an aspect at the appropriate join points
within the original program code, is called aspect weaving. Aspect weaving is performed at
compile-time in AspectJ.

Providing Support for Tracing a Controller’s Execution through Aspect Weaving

We describe a way to flexibly embed a multi-agent control system in the simulation platform,
i.e. without requiring the developer to alter the design of the controllers. We use aspect-
oriented programming technology to plug and unplug into a multi-agent control system all
functionality required for simulation purposes.

To embed the controller in a simulation platform, the controller must be extended with
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following tracing functionality:

• Tracing duration primitive invocations. The simulation platform tracks the ex-
ecution time consumed by each controller according to the duration mapping,
so it must be able to monitor all duration primitives invocations of a controller.
To support this kind of monitoring, the controller should be extended with func-
tionality that notifies the simulation platform each time the controller executes
a duration primitive.

• Tracing control primitive invocations. The simulation platform synchronizes a
controller’s invocations on the Control API with the rest of the simulation (see
Section 6.5.4). To support such synchronization, the simulation platform must
be capable of intercepting a control primitive invocation and of temporarily sus-
pending a controller’s execution.

Figure 6.13 depicts the way the above tracing functionality is inserted in the controller
software. This figure shows an example Controller that consists of a Decision Taker
module and a Plan Library module.

The left hand side of the figure depicts the original controller. Note that this controller
does not support the Trace interface. The left hand side of the figure also depicts an
Aspect. The Aspect is a separate module that encapsulates all tracing functionality. The
Aspect is generated from the specification of the duration primitives and control primitives.
The pointcut definition of the aspect specifies all duration primitive invocations and control
primitive invocations as join points. The advice of the aspect comprises a call to the Trace
interface to notify the simulation platform.

The black arrow on the figure illustrates the process of aspect weaving. Aspect weav-
ing happens at compile time, and automatically extends the Controller with all tracing
functionality necessary to embed it in the simulation platform.

The right hand side of Figure 6.13 depicts the outcome of the weaving process. Within
the Controller, the Decision Taker and Plan Library modules are now extended with
additional tracing functionality that is the result of weaving the aspect’s advice. The added
tracing functionality crosscuts the modules of a controller, as depicted by the grey blocks.
Note that due to aspect weaving, the controller now supports the Trace interface at the
appropriate locations without requiring the developer to perform manual modifications to
the control software.

Architectural Rationale

Flexibility of embedding a multi-agent control system.

Aspect weaving supports flexibly embedding the multi-agent control system in a simu-
lation: the developer is no longer bothered to modify a multi-agent control system and
manually insert or remove all code necessary for tracing its execution.

Separating simulation from application concerns.

Aspect technology enables modularizing simulation concerns that crosscut the multi-agent
control system’s functionality. This leads to a clean separation between application concerns
and simulation concerns, as both are encapsulated in separate modules (as depicted on the
left hand side of Figure 6.13).
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6.5.6 Component and Connector View of the Execution Tracker

We focus on the Execution Tracker. An Execution Tracker is responsible for tracing the
execution of a particular controller of the multi-agent control system. Tracing the execu-
tion of a controller includes (1) determining the execution time consumed by a particular
controller of the multi-agent control system according to the duration mapping, and (2) syn-
chronizing the execution of that controller with the simulation engine, which is necessary
to enable as-fast-as-possible simulations.

Figure 6.14 depicts a component and connector view of two controllers embedded in the
simulation platform. The focus is on the Execution Trackers and the way they interact with
a controller on the one hand, and with the simulation engine on the other hand. We first
discuss an Execution Tracker’s main elements and their properties. Afterward, we describe
how they are connected and explain how important qualities are realized.

Elements and Their Properties

Figure 6.14 depicts two Execution Trackers, each connected to a Controller. Each
Execution Tracker comprises the following components and repositories:

• Clock Manager is responsible for managing the simulation clock of a particular
Controller. The simulation clock indicates how much execution time that par-
ticular Controller consumed. As a Controller executes, the Clock Manager is
notified of the duration primitives invocations performed by that controller, and
advances the simulation clock with the duration that is specified by the duration
mapping (see Section 6.4.1). As such, the simulation clock of the Clock Manager
is kept up-to-date with the execution time of the Controller.

• Duration Mapping repository is responsible for maintaining the duration map-
ping of a particular controller. For each duration primitive invocation, the
Duration Mapping repository specifies a duration in simulation time.

• Execution Blocker is responsible for synchronizing the execution of a Controller
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FIGURE 6.14 Component and connector view of controllers and execution trackers.

with the Simulation Engine. For each control primitive invocation, the Execution
Blocker can temporarily suspend the execution of a Controller until access is
granted by the Simulation Engine.

Interface Descriptions

Figure 6.14 depicts the interconnections between the various elements of an Execution
Tracker:

• Trace is the interface provided by the Clock Manager to keep track of the ex-
ecution of a Controller. By means of aspect weaving (see Section 6.5.5) a
Controller’s execution is intercepted and redirected to the Clock Manager
each time a duration primitive invocation or control primitive invocation is per-
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formed. The caller of the Trace interface specifies the characteristics of the
duration primitive invocation or control primitive invocation (see Section 6.4.1).

• Read is the interface provided by the Duration Mapping repository to enable re-
trieving the duration in simulation time of various duration primitive invocations.
The caller specifies the characteristics of the duration primitive invocation. Read
returns the associated duration for that duration primitive invocation according
to the duration mapping.

• Block is an interface provided by the Execution Blocker to synchronize the
execution of a Controller with the Simulation Engine. The caller of the Block
interface specifies a simulation time instant until which the execution of the
Controller should be suspended. The Clock Manager calls the Block interface
with the current value of its simulation clock in case it traces a control primitive
invocation. This guarantees synchronization with the Simulation Engine each
time a Controller accesses the environment.

Architectural Rationale

Separating monitoring from synchronization.

The Clock Manager encapsulates all functionality to monitor the execution time of a
Controller. The Execution Blocker encapsulates the functionality to synchronize the
execution of a Controller with the Simulation Engine. Because both components have
low coupling, a Clock Manager can make abstraction of synchronizing the execution of
a Controller, whereas the Execution Blocker can make abstraction of monitoring a
Controller’s execution time.

Reuseable infrastructure.

We emphasize the reusability of the architecture of the Execution Tracker. The internal
components of the Execution Tracker are independent of the specified duration mapping.
The duration mapping is encapsulated in the Duration Mapping repository, where it can
be adapted easily.

6.6 Evaluating the AGV Simulator

We developed a simulation platform that implements this architecture and we applied this
simulation platform to support software-in-the-loop simulations for evaluating, comparing
and integrating several functionalities of a multi-agent control system for steering AGVs.
We now focus on evaluating flexibility and performance of the AGV simulator.

In Section 6.6.1, we discuss the flexibility of the AGV simulator. We demonstrate both
flexibility and performance of the AGV simulator by means of experiments in Section 6.6.2.
Finally, in Section 6.6.3 we discuss research on multi-agent control systems in the EMC2

project that was supported by the AGV simulator.

6.6.1 Flexibility of the AGV simulator

To use the AGV simulator, the developer specifies the characteristics of the AGV control
software and the simulated warehouse environment.

• To embed the AGV control software in the simulation, the developer specifies
the execution time of the control software. This is done by identifying dura-
tion primitives and configuring a duration mapping for these primitives. The
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control primitives and the control mapping are predefined for all E’nsor control
primitives.

• The developer can specify the characteristics of the simulated warehouse envi-
ronment in which the control software is embedded. Besides the physical setup of
the warehouse (i.e. the number and positioning of AGVs, nodes, segments, etc.),
the developer can also select appropriate environment sources of dynamism (e.g.
the transport generator), reaction laws and interaction laws.

Flexibility of the AGV simulator is important to enable experiments with AGV control
software of which the functionality is not yet fully operational. We give a number of
examples of core parts of the AGV simulator that can be customized to suit the needs of a
particular simulation study.

• The battery law can be disabled when performing tests with AGV control software
of which the battery charging functionality is not yet operational. This prevents
AGVs from running out of energy.

• The quality of service of the communication channel can be adjusted by means
of the WiFi QoS law. Disabling this law ensures reliable transmission of all
messages. To simulate degraded quality of service of the communication channel,
the law can be configured with the desired behavior, e.g. reduced communication
range, message loss, message delay, etc.

• Collision detection can be configured by means of the collision law. The collision
law can be configured with the accuracy that is required for detecting collisions.
By deactivating the collision law, AGVs can drive across the warehouse without
affecting each other.

• The activities can be customized to reflect the physical characteristics of the
AGVs. For example, driving activities encapsulate the specific velocity or accel-
eration profile of the AGVs.

• The transport profile of the transport generator can be customized to suit the
needs of a particular simulation study.

6.6.2 Measurements of the AGV Simulator

We measure the performance of the AGV simulator and demonstrate its flexibility. We
focus the collision law, as this law is a dominant factor for the performance of the AGV
simulator.

Setup of the Experiments

The goal of the experiments is to illustrate both flexibility and performance of the AGV
simulator. We performed experiments with 4 different configurations with respect to the
collision law:

1. The collision law deactivated. In this particular configuration, the collision law
is not used in the simulation. This setting is typically used in simulation studies
in which collision avoidance is out of focus.

2. The collision law configured with an accuracy of 10 centimeters. As AGVs drive
at a maximum speed of 1 meter per second, it takes an AGV 0.1 seconds to move
over 10 centimeter. In case two AGVs travel at top speed, their relative position
changes at a maximum rate of 2 meters per second. Consequently, to detect
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collisions with an accuracy of 10 centimeter, the snapshot frequency to detect
collisions is 0.05 seconds.

3. The collision law configured with an accuracy of 25 centimeters. This corresponds
to a snapshot frequency of 0.125 seconds.

4. The collision law configured with an accuracy of 100 centimeters. This corre-
sponds to a snapshot frequency of 0.5 seconds.

The setup of the experiments is the following:

• The warehouse consists of 40 stations connected by 69 segments over an area of
1400 by 900 meters.

• The number of AGVs varies from 2 to 12. These are typical sizes of AGV ware-
house transportation systems.

• We use lightweight AGV agents. This enables us to measure the computation
time consumed by the AGV simulator itself, with minimal bias from the con-
trollers that are embedded in it. Each AGV agent is programmed to poll the
status of its AGV every second. AGVs drive around randomly: as soon an AGV
agent notices it has reached the next station, it randomly selects a next segment
to drive on. AGVs rely on segment locking for avoiding collisions.

The simulations are executed on the following computer platform∗: Intel Pentium 4,
2.8GHz, 512MB of memory, Java 1.5.0.

Measurements

Figure 6.15 shows the measured performance of the AGV simulator for each of the four
configurations of the collision law discussed above. Each configuration of the collision law
was tested in 11 different settings, i.e. from 2 to 12 AGVs. Each point in the graph is the
average of 40 measurements, of which the 99% confidence interval is depicted. We discuss
a number of observations.

From the measurements it is clear that the AGV simulator is not limited to real-time
simulation, but supports as-fast-as-possible simulations. For example, for detecting colli-
sions of 12 AGVs with an accuracy of 10 centimeters, the simulation speedup is about factor
5, i.e. to simulate 100 seconds of (simulation) time in the AGV transportation system, the
computer consumes about 20 seconds of wallclock time.

From the measurements it is clear that the collision law dominates the performance of the
AGV simulator. The configuration in which the collision law is deactivated scales linearly
as the number of AGVs increases, whereas all configurations with the collision law activated
scale quadratically with the number of AGVs. This is within the line of expectations, as
the complexity of the collision law is O(n2), with n the number of AGVs.

6.6.3 Multi-Agent System Development Supported by the AGV Simu-
lator

The AGV simulator was extensively used during the development of a multi-agent control
system in the EMC2 project. The AGV simulator provides the necessary support for a
developer to evaluate different functionalities an AGV control system in isolation, or to

∗SciMark 2.0 benchmark score: 174.5 Mflops
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FIGURE 6.15 Performance (in seconds of wallclock time) for simulating 100 seconds of simulation time
with the AGV simulator. The four lines correspond to four different configurations of the collision law: the
collision law deactivated and the collision law detecting with an accuracy of 10 centimeters, 25 centimeters
and 100 centimeters respectively. Each point in the graph is the average of 40 measurements, of which the
99% confidence interval is depicted.

compare alternative solutions. We give a number of examples.

• Virtual environment based routing [Weyns et al., 2005b]. In this approach, AGV
agents use a middleware, called virtual environment, for routing purposes. The
virtual environment provides a graph-like map of the paths through the ware-
house that the AGV agents use for routing. Signs on the map specify the cost
for the AGVs to drive to a given destination. To warn other AGVs that certain
paths are blocked or have a long waiting time, AGV agents mark segments with
a dynamic cost on the map in the virtual environment. The middleware ensures
consistency of the state of the virtual environment on neighboring AGVs. The
simulated warehouse environment enables AGV agents to drive over the ware-
house layout and it handles the exchange of messages of the middleware.

• Hull-based collision avoidance [Weyns et al., 2005d]. AGV controllers avoid col-
lisions by coordinating with other AGVs using the virtual environment. AGV
agents mark the path they are going to drive using hulls in their virtual envi-
ronment. The hull of an AGV is the physical area the AGV occupies. A series
of hulls then describes the physical area an AGV occupies along a certain path.
If the area is not marked by other hulls (the AGV’s own hulls do not inter-
sect with others), the AGV can move along and actually drive over the reserved
path. Afterward, the AGV removes the markings in the virtual environment. In
case of a conflict, the virtual environments execute a mutual exclusion protocol
to determine which of AGVs involved can move on. The simulated warehouse
environment handles the exchange of messages between virtual environments.

• Field-based transport assignment [Weyns et al., 2006; Schols, 2005]. In this ap-
proach, transport tasks emit fields into the virtual environment that attract idle
AGVs. To avoid multiple AGVs driving toward the same transport, AGVs emit
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repulsive fields. AGVs combine received fields and follow the gradient of the
combined fields that guide them toward locations of transports. The AGVs con-
tinuously reconsider the situation in the environment and task assignment is
delayed until the load is picked, which improves the flexibility of the system.
The simulated warehouse environment provides the infrastructure to add new
tasks in the system and it handles the exchange of messages to spread fields in
the virtual environment.

• Protocol-based transport assignment [Weyns et al., 2008]. Besides field-based
transport assignment, a dynamic version of the Contract Net protocol [Smith,
1980] was developed to assign transports to AGVs. This protocol, called DynC-
NET, allows AGV agents to reconsider the assignment of transports while they
drive toward a transport. An extensive series of simulation tests with real world
warehouse layouts and order profiles show that both approaches have similar
performance characteristics.

The AGV simulator also supports evaluating the integration of different functionalities of an
AGV control system. For example, a modular AGV agent [Delbaere and Lamberigts, 2007]
was developed that manages combinations of functionalities. A combination consists of a
particular approach for routing, a particular approach for collision avoidance, a particular
approach for transport assignment and/or a particular approach for battery charging.

6.7 Related Work

We focus our discussion of related work on two facets. First, in Section 6.7.1, we compare
our approach with existing simulation platforms that are specifically aimed at software-in-
the-loop simulation of multi-agent control systems in dynamic environments. Second, in
Section 6.7.2, we zoom in on integrating the control software in a simulation and compare
our work with existing approaches. For both these facets, we start with an overview of
related approaches, and afterward we compare these approaches with our work.

6.7.1 Special-Purpose Simulation Platforms

Simulation platforms that are specifically aimed at software-in-the-loop simulation of multi-
agent control applications in dynamic environments include:

• XRaptor [Bruns et al.] is a simulation platform that supports two- or three-
dimensional continuous environments to study the behavior of a large number
of agents. XRaptor offers a number of abstractions to support simulations of
mobile devices in an environment: an agent is either a point, a circular area or a
spherical volume that contains a sensor unit for observing the world, an actuator
unit for performing actions and a control kernel for action selection. Ordinary
differential equations are used for modeling movements.

• SPARK [Obst and Rollmann, 2004] is a simulation platform for physical multi-
agent systems in three dimensional environments. Agent programs are external
processes for the SPARK simulator. There are bodies (i.e. mass and a mass
distribution) for the physical simulation. SPARK relies the Open Dynamics En-
gine [Smith, 2006], a free library for simulating rigid body dynamics. Addition-
ally, agents possess perceptors and effectors. Perceptors provide sensory input to
the agent program associated with the representation of the agent in the simu-
lator, and the agent program uses the effectors to act in its environment. Other
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objects in the simulation and the physics of the system can affect the situation
of agents; this is reflected in the respective aspects by changing the positions or
velocities. SPARK relies on SPADES [Riley and Riley, 2003] to track an agent’s
execution time between sense and act events.

• Webots [Michel, 2004] is a commercial agent simulation platform that offers sup-
port for mobile robots. Like Spark, it uses the Open Dynamics Engine for sim-
ulation of physical movements. The focus of Webots is on simulating existing
robot platforms. Webots incorporates fine-grained models of low-level sensors
and actuators that match their real life counterparts.

• Übersim [Browning and Tryzelaar, 2003] is a multi-robot simulation engine for
simulating games of robot soccer for the RoboCup small-size soccer league.
Übersim is a simulator specifically designed as a robot development tool. It
provides a set of predefined robot models. Like SPARK, Übersim is an Open
Source project and uses the Open Dynamics Engine.

• Player/Stage/Gazebo [Gerkey et al., 2003; Koenig and Howard, 2004] is a dis-
tributed multi-robot simulator and can simulate a variety of different robots,
with a range of conventional sensors, interacting in a complex environment. The
Player part of the simulator supports interfaces for the integration of the con-
trol software for a variety of robot hardware models. The Stage part of the
simulator is a 2D environment with low-fidelity dynamics models that are com-
putationally cheap. The Gazebo part of the simulator is a 3D environment with
high-fidelity dynamics based on the Open Dynamics Engine. Stage and Gazebo
devices present a standard Player interface.

We make the following observations when comparing these simulation platforms with our
approach.

First, similarly to our approach, the aforementioned simulation platforms rely on special-
purpose modeling constructs that are targeted at software-in-the-loop simulations of multi-
agent control systems in dynamic environments. However, in contrast to our approach, the
semantics of the modeling constructs supported by the aforementioned simulation platforms
is only described in an informal manner. Consequently, formulating a simulation model that
complies with these simulation platforms requires detailed knowledge of the design and
implementation of these simulation platforms. In contrast, our approach relies on modeling
constructs that are formally specified to unambiguously define their meaning and relations,
which is crucial to decouple the simulation model from the simulation platform that is used
to execute the model.

Second, the aforementioned simulation platforms support one particular way to simulate
dynamism in the environment, either customly developed or by reusing an existing physics
library, e.g. the Open Dynamics Engine. Whereas the Open Dynamics Engine simulates
dynamism in an accurate way, its high level of detail entails a trade-off in terms of mod-
eling effort and computational efficiency. By putting forward explicit modeling constructs
for dynamism (activities, reaction and interaction laws, etc.) we support the modeler to
capture dynamism at a level of detail that can be customized to fit the needs of a particular
simulation study.

Third, in contrast to the aforementioned simulation platforms, we take a rigorous, view-
based approach to documenting the software architecture of our simulation platform. We
put forward this software architecture as a reusable artifact, clearly distinguished from the
code. The software architecture explicitly documents the knowledge and practice incorpo-
rated in the simulation platform. In contrast to code libraries and software frameworks, a
software architecture explicitly documents (1) stakeholder concerns, (2) how software needs
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to be structured and behave to address the concerns, and (3) the rationale and tradeoffs that
underpin the design of the system. As such, a software architecture captures the essence of
the simulation platform and provides a systematic way to capture and share expertise in a
form that has proven its value for software development.

6.7.2 Embedding the Control Software

Simulation platforms use various approaches to integrate the software of a (multi-agent)
control system in a simulation [Uhrmacher et al., 2003]. We focus on the way simulation
platforms support the execution time of a control system. We make a distinction between
approaches that incorporate execution time based on direct measurement and approaches
that rely on a specification of execution time.

Measurement of Execution Time

A first group of approaches rely on a direct measurement of the execution time during a
simulation run. Examples include:

• Player/Stage/Gazebo [Gerkey et al., 2003; Koenig and Howard, 2004] supports
software-in-the-loop simulations in which the execution time in taken into account
implicitly. The controllers of the distributed control application run on remote
hosts and interact with the simulated environment over a network connection.
The simulation proceeds in real-time. The execution time is taken into account
implicitly: the timing of the actions of the controllers is determined by their
arrival time at the host that manages simulated environment. This means that
the execution time of a controller is influenced by the performance of the remote
host on which the controller is deployed, but also by the latency of the computer
network.

• DGensim [Anderson, 2000] supports software-in-the-loop simulations in which
wall clock time stamps are used to measure the execution time. Each controller
runs on a remote host and interacts with the simulated environment over a net-
work connection. At fixed time intervals, perceptions are given to the controllers,
and a controller has a fixed window of time to react to the perception. Before
transmitting the actions to the simulated environment, the remote host attaches
a time-stamp with the wall clock time of each action. At the host of the simulated
environment, all actions within a time window are arranged according to their
time stamp in wall clock time. The use of wall clock time stamps reduces the
effect of network latencies on the ordering of actions. However, problems arise
in case network latencies cause actions do not reach the simulated environment
within the time window.

• SPADES [Riley and Riley, 2003] supports software-in-the-loop simulations with a
direct measurement of execution time. Each controller of the distributed control
application runs on a dedicated host together with a SPADES communication
server, which sends the actions of that controller to the simulated environment.
The SPADES communication server supports low-level performance monitoring
by means of perfctr, a linux kernel driver that offers low-level performance mon-
itoring with per-process CPU-cycle counters. The controller operates in a sense-
think-act cycle, and notifies the SPADES communication server of the start and
end of each cycle. The simulation time of the actions corresponds to applying an
linear scale factor to the performance measurement of the perfctr driver.
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Measurement is an easy and intuitive way to incorporate the execution time of controllers
of a distributed control application in a simulation. Nevertheless, compared to an explicit
model of the execution time, measuring the execution time during a simulation has a number
of drawbacks [Anderson, 1997].

First, measurements are platform dependent. The computer platform on which a dis-
tributed control application is deployed for simulation purposes typically differs from the
(heterogeneous) devices on which the controllers are deployed in the real world. Conse-
quently, the measurement of the execution time of a controller is not necessarily a decent
estimate of the execution time of that controller in the real world.

Second, measurements are not selective. A measurement takes into account auxiliary
code for debugging, logging to file, configuration, interfacing with the user, although this
auxiliary code is removed from the distributed control application before it is deployed in
the real environment. Auxiliary code can significantly affect the execution time that is
measured of a particular controller.

Third, measurements jeopardize repeatable simulation runs. The measurements that are
employed are non-deterministic, i.e. small random variations are possible when measuring
the execution time. In simulation, non-determinism must always be supported in a con-
trolled manner, i.e. in a simulation all non-determinism should be based on random numbers
originating from a random number generator with a known seed. Using the same seed for
the random number generator then guarantees the same trace of random numbers during a
simulation run, which is a prerequisite to obtain simulation results that can be repeated over
and over again. However, measuring the execution time of a controller during a simulation
is an example of supporting non-determinism in an uncontrolled manner. As the trace of
measurements of the execution time during a simulation run cannot be controlled, it can
be extremely difficult or even impossible to reproduce the same simulation result twice.

Specification of Execution Time

A second group of approaches specify the execution time of a distributed control application
instead of using measurements. Examples include:

• MESS [Anderson and Cohen, 1996] supports software-in-the-loop simulation of
controllers written in the Common Lisp programming language. To model the
execution time of a controller, individual language instructs of Common Lisp are
associated with a particular duration. MESS relies on TCL (Timed Common
Lisp) to derive the execution time of a controller. TCL is an extended version
of Common Lisp that advances a clock upon execution of each Common Lisp
primitive. The duration for each primitive can be specified by the modeler.
Auxiliary code can be annotated such that its duration is not taken into account.

• EyeSim [Bräunl et al., 2006] supports software-in-the-loop simulations of con-
trollers for robotic systems based on the RoBIOS, a list of library functions for
motor control, sensor feedback and multi-tasking. To incorporate the execution
time of a controller, EyeSim employs a duration for each of the RoBIOS system
calls. The duration of all code besides the function calls to the RoBIOS library
is disregarded.

• The Packet-World [Weyns et al., 2005a] employs a very coarse-grained model to
specify the execution time of a controller. Each controller has a fixed, constant
execution time between consecutive actions, irrespective of the amount of com-
putation it needs to determine its next action. This is a suitable model in case
the execution time of a controller in the real world does not vary a lot, or in case
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only a rough estimate is sufficient.
• In Webots [Michel, 2004], the code that deals with execution time is tangled with

the functionality of the control software. The control software must proceed in a
step-like fashion. After each step, the controller must return the amount of time
consumed during that step of the control loop.

We make the following observation when comparing these approaches with our work.
By relying on aspect-oriented programming, our approach has an increased flexibility com-
pared to the aforementioned approaches. A modeler can declaratively define the duration
primitives of the control software in a single aspect, clearly separated from the rest of the
code. We rely on aspect weaving to automatically enforce the tracing of these duration
primitives during the simulation. Aspect weaving avoids that the code to trace the invoca-
tion of duration primitives needs to be written and inserted by hand each time the control
software is embedded in a simulation and each time the duration primitives are adjusted by
the modeler. The tradeoff of our approach is that the granularity of the duration primitives
that can be defined is constrained by the expressiveness of the pointcut language, i.e. by he
granularity of the join points that can be specified in AspectJ.

6.8 Conclusions and Future Work

In this concluding section, we first put forward concrete suggestions for future research with
respect to our own work in Section 6.8.1. Afterward, we reflect on the way our work could
stimulate future research on multi-agent simulation in a broader setting in Section 6.8.2.

6.8.1 Concrete Directions for Future Research

We suggest two main areas for future research in the context of our own work: extending
the modeling framework and extending the software architecture.

Extending the Modeling Framework.

The modeling framework for dynamic environments could be extended with additional
constructs. We suggest a number of avenues for future research.

• Supporting perception in dynamic environments. Currently, the modeling frame-
work does not provide modeling constructs to capture the way agents sense or
perceive a dynamic environment. In a dynamic environment, perception is not
limited to a static state snapshot of a part of the environment, but closely re-
lated with dynamism. For example, sensors can be capable of registering the
movement of entities in the environment, rather than their momentary position.
Investigating the relation between perception and dynamism is an interesting
challenge.

• Supporting sources of dynamism in the environment. Currently, the modeling
framework does not provide explicit modeling constructs to model the internals
of a source of dynamism in the environment. The internal machinery of a source
of dynamism in the environment is black box, and its behavior is specific for a
particular simulation study. More elaborate support for sources of dynamism
could focus on modeling constructs for various kinds of behaviors, such as re-
active [Brooks, 1991; Weyns and Holvoet, 2006], behavior-based [Maes, 1991;
Weyns et al., 2005c] or cognitive behaviors [Haddadi and Sundermeyer, 1996;
Rao and Georgeff, 1995].
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Extending the Software Architecture.

We indicate a direction for extending the software architecture.

• Distribution of the Simulated Environment. The simulated environment can be-
come a bottleneck in large-scale simulations involving many agents. Currently,
the architecture does not incorporate support for distribution of the simulated
environment. The challenges of distributing the simulated environment are not
of pure technical nature: as the parts of the simulated environment are explicitly
synchronized with the simulation engine, they could technically be distributed
across different hosts. The main challenge is determining which distribution
scheme is most suitable for a particular simulation study. On the one hand,
distribution adds computing power which speeds up a simulation, on the other
hand, distribution requires synchronization to happen over a network, which
slows down a simulation. Distribution of simulations should be supported in
a flexible manner [Ewald et al., 2006], with distribution schemas that can be
adapted or self-adapt to a particular simulation study. The distribution scheme
of the architecture can be documented using deployment views.

6.8.2 Closing Reflection

As demand for multi-agent control applications increases, more and more simulations are
built to support their development. The way such simulations are built becomes common
knowledge. In recent research, we observe two trends to consolidate common knowledge on
developing such simulations.

With respect to building simulation models, research puts forward special-purpose mod-
eling constructs to reify common knowledge. Special-purpose modeling constructs support
the modeler by capturing key characteristics of such systems in a first-class manner.

With respect to building simulation platforms, common knowledge is typically reified in
reusable code libraries and software frameworks. We put forward software architecture in
addition to such code libraries and software frameworks. A software architecture captures
the essence of a simulation platform in an artifact that amplifies reuse beyond traditional
code libraries and software frameworks. The software architecture we propose explicitly
captures (1) functional and quality requirements (2) how software needs to be structured
to address the requirements, and (3) the rationale and tradeoffs that underpin the design of
the software. We developed a simulation platform that implements this architecture and we
applied this simulation platform to support software-in-the-loop simulations for evaluating,
comparing and integrating several functionalities of a multi-agent control system for steering
AGVs.

We strongly believe that multi-agent simulation can benefit from a more systematic ap-
proach to software architecture. Software architecture supports consolidating and sharing
expertise in the domain of multi-agent simulation in a form that has proven its value for
software development.
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