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Abstract

Delegate MAS has been proposed and investigated as an integrated
coordination technique for so-called self-organising coordination-and-control
applications. Delegate MAS consist of three types of light weight, ant-like
agents that assist domain agents in their coordination tasks - the types are
exploration, intention and feasibility ants. The technique is especially suitable
for distributed applications in large-scale, dynamic systems.

Literature shows that, for various application domains, solution ap-
proaches based on self-organisation have been proposed that have several
similarities to delegate MAS, yet are not identical.

In this paper, we specify three reusable solution patterns for coordination
in distributed, large-scale, dynamic systems. To motivate the patterns, we first
visit several solution approaches from various domains that bear resemblance
with respect to coordination. We then identify common application character-
istics as well as common technical challenges that underlie the approaches. We
describe recurring solution techniques, and consolidate these in three solution
patterns. The patterns are ‘smart messages’, ‘delegate MAS’, and ‘delegate
ant MAS’ which rely on stigmergic ant agents. Identifying the patterns fosters
reuse of particularly useful coordination techniques, and can serve as a
catalyst for new or altered approaches.

1. Introduction

The complexity of large-scale distributed applications has
motivated several researchers and practitioners to study and
develop self-organising systems. A self-organising system is
typically composed of a large number of components that
interact and cooperatively reach the system objectives. The
global behaviour of the system emerges from local interac-
tions. Engineering self-organising systems is, however, known
to be quite a challenge.

Literature is flooded with technical descriptions and ex-
periments of self-organising systems in different application
domains. Networking, middleware, distributed optimisation,
distributed simulation, logistics management, peer-to-peer sys-
tems, ... These systems are more often than not the result of
quite smart engineering that combines clever technical solution
ideas with expert domain knowledge that can be exploited to
obtain performant and flexible systems.

One example is literature that reports on particular coor-
dination mechanisms for large-scale decentralised systems.
Research on ‘delegate MAS’ for manufacturing control and
traffic management [1], [2], Polyagents for military applica-
tions and manufacturing control [3], mobile agents for internet
applications such as e-commerce or tourist assistance [4], [5],
bio-inspired network routing [6], [7] and bio-inspired dis-
tributed middleware management [8]. Several of these works
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are inspired by ant colony optimisation techniques [9]. Some
focus on the integration of coordination in e.g. a BDI-based
agent architecture (Beliefs-Desires-Intentions). Some include
symbiotic simulation. Within their respective application do-
mains, these approaches yield valuable solutions by combining
clever ideas that relate to coordination mechanisms. In our
research, we observe that these approaches bear similarities in
their key solution techniques.

For clever solution techniques to prosper beyond a single
system and become reusable assets for other software engi-
neers in building other applications, they can be described
in a more generic, reusable fashion. Patterns are one of the
most appreciated instruments for reuse in software engineer-
ing. Patterns emerge from frequent use and experience. They
identify a generic problem, a suitable generic solution scheme
including solution quality characteristics. As such, engineers
can reuse proven solutions, and can be inspired by them in
solving similar problems.

In this paper, we visit four approaches, and we identify
common application characteristics in Section 2. Section 3
describes common technical challenges that motivate the ap-
proaches, and lists recurring solution techniques. We consol-
idate the most notable recurring solution techniques in three
solution patterns, described in Section 4. The patterns foster
reuse of particularly useful coordination techniques, and can
server as a catalyst for new or altered approaches. The paper
concludes in Section 5.

2. Related Approaches

Our research studies engineering of large-scale self-
organising systems, with a particular focus on environment-
centric coordination mechanisms and their integration within
local decision components. In [1], we propose ‘delegate MAS’.
Delegate MAS is a coordination mechanism that is inspired by
ant behaviour and the concepts of BDI-based agents. During
our research, we observed approaches for self-organising sys-
tem that have interesting similarities to our work. We present
these approaches below. For each approach, we indicate (1)
the application area for which it has been proposed, (2) key
characteristics of the problem that is addressed, and (3) the
basic elements and philosophy of the approach.



2.1. Delegate MAS

The coordination mechanism called ‘delegate MAS’ is the
result of research on the application of multi-agent system
(MAS) technology in manufacturing control. In particular,
we investigated self-organising solutions for controlling mo-
bile units - which enable partially fabricated goods to move
through a manufactory - in a graph structured network of
machines and conveyor belts. The approach is based on the
PROSA reference architecture [10], which identifies the core
domain agents that mainly represent the mobile units and the
resources. Our experience in using the approach for manufac-
turing control led us to identify a class of applications which
we call ‘coordination-and-control (C&C) applications’.
C&C applications are applications in which software controls
entities in an underlying physical environment. Entities include
fixed (non-mobile) resources, capable of performing particular
operations, as well as mobile entities which can move in
the environment. The purpose of a C&C application is to
execute “tasks”. Executing a task requires moving through the
environment and performing operations by using resources.
The environment itself is highly dynamic. Resources may
crash, new resources may be added, connections between
resources may be added, lost, or their characteristics (e.g.
throughput, speed) may change. Members of this family of
coordination and control applications include, next to manu-
facturing control, traffic control and web service coordination,
but also supply chain management and multi-modal logistics.

Problem characteristics include the large scale, dynamics,
uncertainty, and going concerns as the system objective. The
approach needs to cope with large scale of the system, both
in terms of number of agents (vehicles, orders, tasks) and
physical distribution. Dynamics are intrinsic to any realistic
control system, hence the software needs to be designed
to cope with uncertainty w.r.t. the perceptions of the world
and the results of actuation. The approach must aim for a
continuous strive for performance in the presence of dynamics.
As such, C&C systems are never single-shot applications but
going concern applications.

In the approach, the domain agents need to coordinate their
behaviour for satisfying the (functional and non-functional)
system requirements. Here we distinguish task agents which
manage and control the mobile units, and resource agents
which manage and control the static resources. Direct com-
munication and negotiation protocols are an obvious approach
for coordination, yet lead to very complex agent behaviour
due to the large number of protocols an agent can be involved
in, and dynamics.

Delegate MAS alleviates this complexity by delegating
part of the coordination behaviour to a dedicated behaviour
module. Delegate MAS is, to some degree, inspired by food
foraging in ant colonies. Ants autonomously explore their
environment, and drop pheromones in their environment to
indicate the presence of food. Pheromones act as stimuli
for other ants. Pheromone trails evaporate over time, and
eventually disappear if not reinforced.

We exploit these principles in our approach and define
three types of light-weight agents (called ‘ant agents’), which
each represent a different delegate MAS. Feasibility ants are
issued regularly by resource agents to autonomously travel
the environment and distribute information about the paths
that they have followed - i.e. leaving road signs towards their
respective resource agents. Exploration ants are sent regularly
by task agents to autonomously explore the environment for
paths that its task agent could follow. On every node, an
exploration ant interrogates the resource agent at that node to
find out about a potential scheduling of its task agent. When a
path is found, the exploration ants report back to their issuing
task agent. The task agent weighs the different alternative
paths, and decides upon one path as its intention. Intention
ants are regularly sent out to disseminate this information
and make reservations at every node on the intended path.
The terminology makes the link to BDI-based agents (Beliefs-
Desires-Intentions, see [11], [12]) obvious. Exploration ants
inform the task agent about possible options, after which a
task agent selects an option as its intention.

A more detailed description of the approach can be found
in [1].

2.2. Bio-Inspired Distributed Middleware Manage-
ment for Stream Processing Systems

In their recent paper [8], Lakshmanan and Strom report
on a decentralised, ant-inspired algorithm for placing (graphs
of) stream processing tasks onto a distributed network of
machines. Stream processing systems support applications
such as processing financial market data or sensor network
data. Stream data sources produce large volumes of data at
high and variable rates. Performance can be enhanced by
dynamically placing stream processing tasks on strategic nodes
in the network.

The management application must aim at placing the stream
processing tasks on network nodes, taking into account diverse
problem characteristics. A first characteristic is dynamics. The
flow graph can change (a new query or consumer of stream
processing results), network topology and quality character-
istics can change, data production rates may vary. Then, the
source and consumer nodes can be geographically dispersed
in a large network. Third, next to finding ‘optimal paths
between producers of streaming data, over processing nodes,
to consumers’, it must be ensured that nodes in the path still
comply to the expectations: nodes in the path must still have
sufficient computational capacity to meet the process operators
of the query without adversely affecting the performance of
queries whose operators are already deployed on these nodes.

In this application, a centralised server which has up-to-
date global knowledge and which could calculate an optimal
allocation of tasks to nodes is unfeasible. Therefore, a decen-
tralised solution is proposed and evaluated. In particular, pro-
ducers, nodes and consumers coordinate the task placement,
not by direct communication protocols, but via autonomous,
ant-like entities. Also here, three types of ant agents are



proposed. Routing ants are created by data producer sites,
and explore paths to query consumers. When they reached
their destination, they report back to the producer site, leaving
a pheromone trail along the path they have followed. The
amount of pheromone is proportional to the quality of the
path for the query. This is closely related to ant colony
optimisation techniques [9], [13]. Scouting ants exploit the
pheromone information about routes to the destination and
perform hypothetical placement of tasks along the path. Much
like exploration ants in the delegate MAS approach, scouting
ants explore different solutions for the problem from the point
of view of one domain agent (a producer here, and a task
agent in the delegate MAS approach). A queueing model at
intermediate nodes is used to estimate the effects of task
placement at this node. Scouting ants report back to the
producer node when a path with hypothetical task placement
has been explored. When a producer has reports about several
scouting ants, enforcement ants (somewhat similar to intention
ants) make actual arrangements along one particular path. The
approach also allows to take into account multiple producers
for one query. Join points are then identified - join points
are nodes in the network where data from several producers
is merged. The placement algorithm is recursively executed
from each of he producers to this join point.

A more detailed description of the approach can be found
in [8].

2.3. AntHocNet

AntHocNet [7] addresses the problem of routing in mobile
ad hoc networks (MANETS). In typical MANET applications,
data sources need to send data packages to destinations.
Nodes however are mobile and communicate over wireless
connections.

Routing in MANETS is particularly difficult due to intrinsic
dynamics. Nodes are mobile, therefore the network topology
changes continuously, and therefore paths between nodes have
a limited lifetime. Overall, maximising network performance
is a key objective. Bandwidth usage is limited and variable, as
the wireless communication medium is shared and interference
may occur. Scale is another quality criterion - routing must
support networks that consist of large numbers of physically
distributed nodes. Load balancing should avoid network con-
gestion - information about multiple paths from a source to a
destination is desirable.

Due to the nature of MANETS, centralised control of
routing is obviously not an option. In a MANET there
are no designated routers. Every node is able to execute
routing functionality. AntHocNet aims to combine reactive
and proactive routing. Reactive routing denotes an approach
that corresponds to routing-on-demand. Routing information
is gathered when a new data transfer is initiated or an existing
path fails. Proactive routing ensures that routing is available
at all times. AntHocNet is to a large extent based on the ant
colony optimisation metaheuristic [9], and in particular ex-
tends AntNet [14], a routing algorithm for wired networks. On

demand of a node, reactive forward ants explore the network
for paths to a particular destination. These ants use existing
routing information if available. If not, they perform a local
broadcast. When the destination is reached, the ant becomes a
reactive backward ant which updates pheromone tables along
its path back to its source. Pheromone table entries represent
the quality of a hop to a next node for reaching the destination.
Proactively, nodes diffuse information they have on destination
nodes to their neighbours, called pheromone diffusion. Source
nodes periodically send out proactive forward ants which
follow the diffused pheromone, in order to find other paths
to the destination. This potentially yields multiple path to the
destination, which can be used concurrently for stochastic data
routing.

A more detailed description of the approach can be found
in [7].

2.4. Polyagents

The term polyagent refers to an agent-based design ap-
proach that has been validated in diverse application areas,
including manufacturing control and military applications such
as unmanned vehicle routing and commander control. As one
example, unmanned vehicle control is an application that aims
to find and maintain a suitable path for an unmanned vehicle
towards a destination. A path corresponds to a route in the
environment that evades hostile regions.

A battle field environment contains uncertainty and is
rapidly changing. Efficiency in controlling the vehicles, ro-
bustness with respect to message loss, and adaptability to a
changing environment are the main architectural drivers for
this application.

Polyagents [3] is a decentralised, agent-based approach. It
starts from the basic principle that domain entities can be
represented by multiple agents rather than a single agent. A
polyagent consists of one avatar, that is linked to the entity
itself, and multiple ghost agents that explore alternative be-
haviours of the avatar. Ghost agents are typically computation-
ally simple agents that interact via digital pheromone fields.
Ghosts explore the environment and probabilistically choose
their actions, based on the locally available pheromones.
Ghost agents can optionally drop pheromones themselves. For
the unmanned vehicle routing application, ghosts imitate ant
behaviour by exploring a path to the destination of the vehicle,
avoiding threats. Ghosts drop ‘nest pheromone’ while going
outbound, and ‘target pheromone’ on their way back to the
avatar. As the ghost agents report back to the avatar that sent
them, the avatar can base its own decision on the experience
that the ghosts had in the environment. We note that the
decision of an avatar is not explicitly communicated through
the environment. Besides the fact that this is undesirable in a
battle field environment, polyagents are mainly instruments to
assist an avatar in making its decision based on the current
state of the environment, and not for coordination of future
movements of several avatars. In general, the approach does
not dictate or constrain how and for what purpose ghost



agents can be sent out. The application of commander control
illustrates the use of ghosts as explorers of possible future
states of the avatar itself. This application is an example of the
use of polyagents in adversarial or purely competitive systems.
In this case, polyagents can only roam local representations
of observed behaviour of other agents, they do not interact
with these other avatars. In this paper, we will focus on the
use of polyagents to roam and interact with other agents in a
cooperative setting.
More details on polyagents can be found in [3], [15].

3. Recurring technical challenges and solutions

The approaches as described above each have shown their
usefulness for particular application instances. Similarities
between the approaches are apparent. We extract two notable
recurring technical challenges that underlie and motivate the
approaches. Next, we identify four recurring solution tech-
niques.

3.1. Recurring technical challenges

The application domains that were addressed by the differ-
ent approaches have in common that they are large scale, both
in number of entities as well as in physical distribution, and
need to operate in quite dynamic environments - both external
causes as well as obstruction between the entities themselves
require an adaptive approach. Operating in such conditions
requires considering two essential technical challenges: (1)
how to bring relevant global information locally, and how to
disseminate local information globally; and (2) how to avoid
instability in the presence of multiple autonomous decision
makers, whose decisions affect each other. We discuss both
challenges below.

Global-to-local / local-to-global dissemination of infor-
mation. The core application entities need to make decisions
in order to successfully perform their own task - a data
producer needs to find a suitable route to a destination, or
a suitable allocation of computational tasks in intermediate
nodes, orders in a manufactory need to decide on what
resources to use, etc. Any application entity needs to make
decisions that will directly affect its own performance. To
make an ‘optimal’ decision, the entity must have all relevant
information. Relevant information includes information about
the environment topology, the current state of the environment
and its resources (network nodes, machines,...), future state
of the environment and its resources, and the state information
that results from intended behaviour of other application
entities. In fact, any core application entity requires gathering
information about a large number of entities. Getting this in-
formation is not a trivial task, since the application entity needs
to find out for itself which other entities it needs information
from. Moreover, the dynamic nature of the applications make
this a complex endeavour.

Stability. Coordination of entities in a large-scale and
complex environment is not easy. Dynamics in the environ-
ment make that decisions need revision. Due to changes,
new opportunities may become available, while decisions that
could have been nearly optimal at some point, may become
useless somewhat later. Adaptability is obviously necessary.
However, some caution is in order. Changing a decision by
one entity may directly effect the quality of potential decisions
by other entities, and a waterfall effect may lead the overall
system into instability. Mechanisms allowing temporal inertia
in behaviour are necessary to keep stability of the system
manageable.

3.2. Recurring technical solutions

In the visited approaches, there are several similarities in
the way that the technical challenges are tackled. We list the
most notable recurring solutions.

Smart messages. In literature, one can find a variety
of approaches for coping with the large-scale of a system.
Hierarchical solutions compensate for the scale by adding
one or more levels of hierarchy. Any entity belongs to a
hierarchical level, and if it requires information from outside
of its own level, a parent node is used to get and possibly filter
this information. Hierarchies can be defined based on physical
location boundaries or organisational boundaries (e.g. [16],
[17]). Although appropriate for some cases, hierarchies tend
to break for very large and very dynamic systems. Complexity
due to dynamically managing the hierarchies is one obvious
burden.

Other approaches rely on pure self-organisation in the sense
that entities will be allowed to observe, communicate and act
only in their direct vicinity - these systems rely on suitable
overall behaviour to emerge from these local interactions.
To improve the overall behaviour, local decision makers can
become local experts and can learn patterns of behaviour and
how to react locally. Although pure self-organisation is suitable
in some application instances, it makes a large compromise
with respect to the optimality of the solution.

Both hierarchical and purely self-organising approaches
recognise the complexity of gathering relevant global infor-
mation, making compromises with regard to complexity of
managing the information gathering, and to optimality.

The approaches described in Section 2 take a different
approach. Rather than taking full responsibility of informa-
tion gathering via direct communication, the core application
entities delegate a substantial part of this process to a separate
mechanism.

The mechanism that is used can be referred to as ‘smart
messages’. Instead of directly communicating with all parties
that may have relevant information for a particular entity,
and manage the complex information gathering process, the
entities create an autonomous, mobile message. The smart
message contains both behaviour and state. The behaviour
of a smart message is executed at every node, determines
how it will interact with entities at a node. It also defines



its mobile behaviour, i.e. it decides on the node(s) to move to
next. A smart message can aggregate state from every node.
Smart messages can autonomously traverse relevant parts of
the environment and interact with nodes.

These light-weight, autonomous mobile entities are used to
autonomously scout for relevant global information, and bring
relevant information along the path back to their initiator. Or
they take local information and disseminate the information
to locations in the environment for which the information is
considered relevant.

Inertia. To avoid thrashing in behaviour and decision
making, mechanisms of inertia need to be adopted. Inertia
mechanisms allow to restrain changes in order to have a more
stable overall system.

Adopting inertia mechanisms is a delicate balance, however.
A system that is too inert will not be able to change its
behaviour when changes in the environment occur, potentially
leading to poor overall performance. Insufficient inertia leads
to unstable systems that may spend more time adapting than
meeting system requirements.

We see three mechanisms of inertia in the approaches as
discussed in Section 2. A first mechanism allows data to get
outdated. A time stamp is associated with data, and if the time
stamp is not renewed, the data are considered to be outdated
and are discarded. The mechanism is quite well-known, among
others in the form of leases in Jini [18]. A second mechanism
allows information to diminish over time. A typical example
can be found in digital pheromones. Pheromones are value
data that periodically diminish in value. Pheromones can be
updated through a pheromone update rule, e.g. as in the
following ACO-inspired update rule.

;=1 —=p)Tij+ AT

7;,; denotes the pheromone value on edge (i, j). A7; ; repre-
sents the new value that denote the latest valuation of the edge.
Typically, a parameter, e.g. p (0 <= p <= 1), determines to
what extent the new, updated value depends on the old value
vis--vis the new value. A low value for p leads to more inertia
in the value, a value for p closer to 1 allows the value to
change faster towards new data values.

A third mechanism ensures inertia in the behaviour of
individual agents. In a BDI-based agent architecture, agents
explore different optional behaviours, and then choose a par-
ticular behaviour as their intention. A suitable commitment
strategy defines the inertia of the agent with respect to the
intended behaviour. A blindly committed agent, for example,
will not reconsider its behaviour. A cautious agent will more
often revise its intention by re-exploring and evaluating differ-
ent options. Although only one approach explicitly refers to
BDI [11], all approaches include an inertia mechanism within
the behaviour description of the main application entities.

Ant colony optimisation. The approaches all found in-
spiration in ant colony optimisation (ACO) techniques to some
extent. While the pheromone mechanism mentioned earlier can

be used in isolation, ant colony optimisation combines this
mechanism with a particular overall policy on how to use and
interpret pheromones. In particular, ACO-inspired pheromone
values that are being dropped in the environment explicitly
represent the quality of a particular part of a solution in an
overall solution. One example is pheromone that is associated
with a particular edge in a graph-structured environment, to
locally represent the quality of the link in an overall solution.
The pheromone update value (i.e. A7; ;) represents the quality
of this edge in one particular solution that has been explored.
The pheromone value will affect the probabilistic choice of
entities exploring solutions.

Symbiotic simulation. A symbiotic simulation is a sim-
ulation that emphasises its relation with the physical sys-
tem [19], [20]. A symbiotic simulation system involves a
feedback to the physical system that is meant to control the
physical system. The simulations perform “what-if” exper-
iments, driven by data collected from the physical system
under control. In turn, the results from the what-if experiments
performed by the simulator can be used to control the dynamic
behaviour of the physical system. The physical system benefits
from its symbiosis with the simulation system from decisions
made in near real-time. Decision making is based on the
outcome of what-if experiments which involve the simulation
of several scenarios, each representing a different decision
alternative. This technique allows to predict future system state
and behaviour.

This technique is used by exploration ants in the delegate
MAS approach, which ask what-if questions to the resource
agents on the nodes that they pass, and by scouting ants in [8],
which query a node’s queueing model to get a prediction, and
by ghost agents in the Polyagents approach which simulate
behaviours.

4. Smart messages, Delegate MAS and ant
agents

The literature study revealed recurring solution techniques
for typical technical challenges. In this section, we consoli-
date these observations by describing three (interdependent)
architectural solution patterns. For each pattern, we provide a
detailed description. Then we indicate how the patterns match
the approaches described in Section 2.

By naming and relating the individual patterns, we are able
to provide a clear meaning to the terms. An ant agent is
differentiated from a smart message, and the term delegate
MAS is given a clear definition. We describe the patterns along
a typical template for patterns, including a description of the
context, problem and motivation, forces, solution. Examples
and known uses are listed in Section 4.4.

4.1. Smart message

Context



This problem that is addressed by this pattern arises in
the context of applications in large-scale, dynamic distributed
systems. Application-level software entities need to interact
with other distributed entities for coordination, synchronisa-
tion, information gathering. The underlying, distributed com-
munication environment is a (dynamic) graph topology, where
nodes have connections to neighbouring nodes, possibly with
varying quality of service.

Problem / Motivation

In general, a problem occurs when multiple and complex
interactions are required between one entity (called E) and
other entities. Under various circumstances, it is not possible
or not desirable to have simple direct interactions with entity
E. A situation where this is not possible occurs if the exact
identification or location to other entities is not known, or
a route to other entities is not known due to the dynamics
of the environment. Sending messages back and forth can be
troublesome if a route between the entities is not guaranteed.

A situation where this is not desirable is a sequence of
interactions with various entities that are physically related.
For example the entity E needs to interact with an entity on
node n; first, then with an entity on node ny that is a neighbour
of nq, then with an entity on node n3 that is a neighbour of no,
and so on. In this situation, entity £ would play a centralistic
role if all interactions would occur via direct message passing
between F and entities on nodes n;.

Forces

The dynamic nature of the targeted systems constitutes
a challenge. A solution needs to cope with the dynamic
topological and quality of service characteristics.

Communication between distant nodes should be limited.
The overhead of such communication can be substantial, esp.
in dynamic or unstable network conditions.

An entity that needs to manage all its interactions in
uncertain network conditions is a complex task. A solution
that could support alleviating or managing this complexity.

Solution

The solution identifies a ‘smart message’ as the core build-
ing block - see Figure 1. A smart message is a self-contained
entity that is comprised of state and behaviour, and retains
information about the entity that is responsible for the message
(e.g. the sender). The smart message autonomously moves
in the environment and interacts with nodes. The behaviour
typically includes

e querying context information, and possibly interacting
with locally active agents,

« local computation that complies with the messages’ ob-
jective,

o migratory behaviour that decides which node to move to
next, and

o reproductive behaviour which allows new smart messages
or clones of itself to be created and spawned in the
execution context.

1 sends
ApplicationLevel o
SoftwareEntity -
SmartMessage
State
+new()
o +run() +get()
+getState() +update()
is regi d at 0
1 is deployed in
ExecutionContext ‘
1
Reproductive Computational Migratory
+deploy(SmartMessage s) Behaviour Behaviour Behaviour
+migrate(: s)
+getTopologicallnfo()
+reenactSmartMsg()
+getContextinfo()
+getRegisteredEntities() Behavi
+register(Entity e) ehaviour
+receive(SmartMessage s)
+run()

KEY UML

Fig. 1. Smart message

A smart message is deployed in an execution context, i.e. an
environment in which the message can perform its behaviour
and update its state, and which is statically linked to a node.
The execution context offers services for

e creating new smart messages,

e migrating a smart message to a neighbouring node,

¢ receiving and consequently re-enacting smart messages
(i.e. triggering their behaviour execution), and

e querying for context information, including for topo-
logical information (e.g. providing lists of neighbouring
nodes) and for other registered entities (e.g. providing
references to agents that are active at the node).

4.2. Delegate MAS

A smart message is a single, mobile unit. Smart messages
can effectively be used in a conglomerate of smart messages,
collectively executing a particular task or role. A delegate
MAS represents such a managed conglomerate.

Context

Similarly as for smart messages, the problem that is ad-
dressed by this pattern arises in the context of applications
in large-scale, dynamic distributed systems. Application-level
software entities need to interact repeatedly over a period of
time with other distributed entities, for coordination, synchro-
nisation, information gathering. The underlying, distributed
communication environment is a (dynamic) graph topology,
where nodes have connections to neighbouring nodes, possibly
with varying quality of service.

Problem / Motivation

The repeated interactions with various entities need to
be managed appropriately. This includes the specification
of individual interactions, the frequency of interactions, the
aggregation and processing of results from interactions.
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Fig. 2. Delegate MAS

Forces

A set of related interactions, collectively pursuing an objec-
tive of an application-level entity, needs to be managed in order
to ensure coherence of their behaviour while avoiding un-
necessary overhead. Related interactions should be performed
coherently, according to a shared policy. For example, one
entity that needs to interact with five distant nodes in order to
find out which of the nodes can be reached the fastest, must
ensure that the individual interactions with the nodes rely on
the same objectives and evaluation criteria, and the information
that the interactions produce must be interpreted in a coherent
manner.

Communication between distant nodes should be limited.
The overhead of such communication can be substantial, esp.
in dynamic or unstable network conditions. For example,
interactions to continuously monitor a path between two nodes
should not flood the network.

Individual interactions must account for the dynamic nature
of the targeted systems.

Solution

A delegate MAS (see Figure 2) is a behaviour module [21],
i.e. a well-defined behaviour that an agent can perform to reach
a particular objective or task'. An agent’s behaviour consists
of selecting and executing behaviour modules, possibly in a
concurrent manner. The agent itself manages the activation and
deactivation of behaviour modules, as well as the coordination
between behaviour modules. A behaviour module is monitored
and controlled by an agent, and fulfils a well-defined objective
or task on behalf of the agent.

A delegate MAS is a behaviour module that uses smart mes-
sages to fulfil its objective or task. As such, a delegate MAS
is in charge of the management of the smart messages, and
encapsulates a policy for creating smart messages (including a
policy about timing and frequency of creating messages) with

1. Other terms that are strongly related to behaviour modules are capabili-
ties, skills, or plans.

their own suitable (parameterised) behaviour and initial state,
and spawning the messages through the execution context of
the node. Additionally, the delegate MAS module collects
the results that smart messages report back. The results are
processed to meet the expectations that the agent has of this
behaviour module. Processed results are forwarded to the
coarse grain agent for further interpretation (e.g. via a shared
data space or an event-listener mechanism).

4.3. Delegate ant MAS

A delegate ant MAS is a delegate MAS that is specifically
targeted for implementing distributed, ACO-like behaviour.

Context

The problem that is addressed by this pattern arises in
the context of applications in large-scale, dynamic distributed
systems, where application-level software entities need to find
a solution for reaching their objectives. A solution for one
entity basically consists of finding suitable routes through the
graph-structured network, and task allocation.

Problem / Motivation

Finding a solution includes multiple and complex interac-
tions with typically many entities. The entities with which
to interact are connected sequentially. A solution needs to be
explored, and information about the quality of the explored
solution should be shared. An application-level entity can base
its decision on this shared information about the quality of a
solution.

Forces

A solution needs to cope with the dynamic topological and
quality of service characteristics.

Communication between distant nodes should be limited.
The overhead of such communication can be substantial, esp.
in dynamic or unstable network conditions.

Finding a solution for all entities in the system is complex,
since individual solutions affect one another. Individual solu-
tions should be coordinated.

Solution

Delegate ant MAS is an ACO-inspired refinement of dele-
gate MAS, see Figure 3. A delegate ant MAS manages ant
agents instead of smart messages. We define an ant agent as
a smart message of which the behaviour and state is directly
related to ant colony optimisation techniques. The objective of
an individual ant agent is to traverse the environment in search
for a solution, on behalf of its delegate ant MAS to which
it reports back. The migratory behaviour of an ant agent is
based on a probabilistic rule that takes into account pheromone
values that are associated with connections to neighbouring
nodes. An ant agent influences the pheromone values on nodes
by a valuation of a connection as part of an overall solution.

As such, an ant agent requires the following refinement
compared to smart messages:
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Fig. 3. Delegate ant MAS

e pheromone infrastructure at every node - specific in-
frastructure holds the pheromone data; the infrastructure
updates the pheromone data based on the valuation of ant
agents, and possibly based on an automatic evaporation
function; the pheromone infrastructure is offered to ant
agents as a service that is accessible via the execution
context;

o forward-backward behaviour - the behaviour (incl. com-
putational, migratory and reproductive behaviour) of a
typical ant agent distinguishes between two phases: a
forward behaviour, and a backward behaviour; the for-
ward behaviour aims to explore the environment for a
solution (potentially updating pheromone values already),
the backward behaviour traces back to the responsible
entity, updating pheromone values at the different nodes
in its path; the phase that an ant agent is in, is stored in
the ant agent’s state.

4.4. The patterns in action

Although originally, the ‘delegate MAS approach’ was said
to be inspired by ant-like behaviour, the study of other ap-
proaches and the identification of the patterns above revealed
that there is a difference between exploration, intention and
feasibility ants on the one hand side, and the ACO based
approaches on the other hand.

This observation brings two insights. First, the approach as
described in [1] is not ACO-based. This argues for not using
the term ‘ant agent’ to refer to the three types of delegate
MAS. The term ‘smart messages’ is more appropriate. Smart
feasibility messages are sent out to drop information at every
node it comes across. Smart exploration messages perform
a symbiotic simulation on every node it passes. A smart

intention message knows a path, and performs a reservation
at the nodes in this path. Time stamped data is dropped by
various smart messages, which is discarded if not renewed. An
ACO-based mechanism would include a valuation of a solution
to be translated in a pheromone value in the environment, and
a probabilistic path selection rule. This is not present in these
three types of delegate MAS.

Second, the distinction between smart messages and ant
agents brings inspiration. Additional types of delegate MAS
can be defined and assist in the approach, making better use
of ACO-based techniques. We give two examples. A smart
feasibility message drops ‘road signs’ in the environment
- information that smart exploration messages can use to
find a suitable route. A feasibility ant agent, as part of a
delegate ant MAS, could additionally drop a valuation of an
edge, corresponding to the quality of a route to a particular
destination. Similarly, exploration ant agents could, in their
backward phase, drop a valuation of the quality of the explored
path in the form of pheromone on edges. This information
could be used by other exploration ant agents. Both examples
could lead to more performant solutions for coordination and
control applications. This is a matter for future research.

These insights will stimulate the re-engineering of delegate
MAS based applications, and will inspire further developments
of C&C applications (e.g. for pickup-and-delivery problems
(PDPs) or inland shipping management). The systems will
explicitly make use of the patterns in their design.

With respect to the other three related approached, we
briefly indicate the relation between the approaches and the
patterns described above. The bio-inspired distributed mid-
dleware management for stream processing systems combines
two types of smart message delegate MASs with one type of
ant agent delegate MAS. Scouting ants include symbiotic sim-
ulation in their behavior. In AntHocNet, reactive on-demand-
routing uses a delegate MAS of ant agents - routing ant agents
explore a path to a destination, and drop pheromones on their
way back. Proactive routing is achieved by a delegate MAS
of smart messages, diffusing local pheromone information in
the neighbourhood, possibly influencing the reactive routing
ants. Polyagents consist of coarse grain agents (represented
by avatars) that issue ghosts to explore multiple behaviours.
Ghost agents are typically ant agents, managed by the avatar.

5. Conclusion

“Mature engineering disciplines are characterised by refer-
ence materials that give engineers access to the fields system-
atic knowledge. Cataloguing architectural patterns is a first
step in this direction.” (From ‘The golden age of software
architecture’ by Clements and Shaw, [22])

Large-scale and dynamic, decentralised applications are
particularly hard to engineer. Several solutions have been
described in literature, yet it is not easy to consolidate the
solutions into reusable assets. One important reason is that a
solution technique makes only sense in a particular application
if applying the technique is studied in detail and a positive



evaluation results from this study. However, reusable solution
patterns serve as inspiration rather than as instantiatable tem-
plates. In this paper, we have overviewed various approaches
in the area of large-scale and dynamic, decentralised solutions.
We identified recurring technical challenges that each of the
approaches address, as well as recurring solution techniques.
We attempt to consolidate these findings in a limited number
of clearly defined solution patterns: smart messages, delegate
MAS and delegate ant MAS.

Many challenges can be distinguished. On the agenda for
future work is providing an in-depth, formal definition of the
patterns. This allows to more rigourously define the patterns,
which is necessary for unambiguously applying the patterns
in an application.

Another challenge is the engineering or re-engineering
of non-trivial applications, inspired by the solution patterns
presented in this paper. One application that we intend to study
in the near future is decentralised power grid management. De-
centralised power producers and consumers need to coordinate
to avoid peeks in power production and maximising the use
of green energy. Another family of applications is pickup-and-
delivery problems (PDP [23]). The patterns identified in this
paper have been an interesting source of inspiration in our first
experiments in both areas. The patterns stimulate to consider
solutions beyond pure ACO-based techniques, or beyond the
original delegate MAS approach.
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