
A Formal Model for Self-Adaptive and Self-Healing Organizations

Robrecht Haesevoets, Danny Weyns, Tom Holvoet, Wouter Joosen
Department of Computer Science
Katholieke Universiteit Leuven

3001 Heverlee, Belgium
robrecht.haesevoets@cs.kuleuven.be

Abstract

Multi-agent systems typically consist of autonomous en-
tities, capable of adapting their behavior and interaction
patterns in dynamic environments, making them an inter-
esting approach for modeling self-adaptive systems. The
interactions among agents, a key challenge in engineering
multi-agent systems, are often structured and managed by
means of organizations.

In previous work we have built a prototype of an organi-
zation middleware, which encapsulates the management of
dynamic organizations as a reusable service and offers or-
ganizations as first-class programming abstractions to ap-
plication developers. To develop a mature middleware, we
face two key challenges: realizing the integration of the
middleware with the rest of the system in a disciplined way
and assuring properties, such as self-adaptivity and self-
healing, of services offered by the middleware.

This paper presents a formal specification of an organi-
zation and management model for dynamic organizations, a
first step in facing these challenges. Both models contribute
to the integration of the middleware with the rest of the sys-
tem. The organization model rigorously describes the main
programming abstractions to which application developers
have to conform, while the management model can be used
to derive specific monitoring and control points required
by the middleware to realize self-* properties. In addition,
the management model offers a foundation to reason about
self-* properties.

1. Introduction

Self-adaptive systems adapt their structure and behav-
ior to cope with changing environment conditions. Multi-
agent systems, consisting of autonomous entities capable
of adapting their behavior and interaction patterns, are an
interesting approach to model self-adaptive systems. The
dynamic interactions and collaborations among agents are

typically structured and managed by means of roles and or-
ganizations. In most existing approaches, however, agents
have the dual responsibility of managing the organizations
and their dynamics, and providing the functionality in the
organizations by playing roles, making these systems hard
to design and understand. We continue this discussion in
Sect. 6, covering related work.

In previous work [20], we have proposed an organiza-
tion middleware to address this problem. The middleware,
called MACODO1, focuses on context-driven dynamic or-
ganizations [11], and encapsulates the management of these
organizations as a reusable service.

����������	�
 �

������ ���	
 ���

����	� ��	�� ���������
��	
���

Figure 1. Context-driven collaborations in a
decentralized traffic monitoring case.

Context-driven dynamic organizations are a particular
class of dynamic organizations, which can be used in
dynamic and open environments in which distributed re-
sources may fail and degrade. They allow us to group au-
tonomous entities, such as agents, in organizations, which
represent dynamic collaborations that are driven by a dy-
namic context. An example application domain is the de-
centralized traffic monitoring case shown in Fig. 1. A num-
ber of intelligent cameras are distributed over a road net-
work, and responsible for monitoring the traffic. Because
each camera has a limited viewing range, cameras have to
collaborate to monitor phenomena such as traffic jams. The
dynamic nature of the traffic phenomena requires dynamic

1MACODO: Middleware Architecture for Context-driven Dynamic Or-
ganizations.

SEAMS’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3724-5/09/$25.00 © 2009 IEEE ICSE’09 Workshop116

collaborations between the cameras. The traffic monitoring
case is further described in Sect. 2 and is used as a running
example throughout the rest of this paper.

In building and validating a prototype of the MACODO
middleware, we identified two key challenges in develop-
ing a mature organization middleware. A first challenge is
realizing the integration of the middleware with the rest of
the system in a disciplined way. This includes two impor-
tant issues. (1) To achieve self-* properties, the middleware
needs monitoring and control access to other system infras-
tructure. Until now we have relied on ad-hoc interfaces. (2)
Application developers have to conform to the organization
model, offered by the middleware. This model should be
complete and communicated to developers in an unambigu-
ous way. A second challenge is to assure properties of the
behavior and services offered by the middleware, including
self-* properties such as self-adaptive and self-healing or-
ganizations.

This paper presents a formal specification of an organi-
zation and management model for dynamic organizations.
The organization model, Sect. 3, describes the main abstrac-
tions to which application developers have to conform. The
management model, Sect. 4, describes the desired behav-
ior of the middleware and is applied to the traffic moni-
toring case in Sect. 5. The formal specification is an im-
portant step in facing the challenges of developing a ma-
ture middleware. First, it enhances clearness, completeness
and eliminates ambiguity to both application developers and
the developers of the middleware itself. Self-* properties
have to be formally specified. Instead of saying things like
“self-adaptive organizations are organizations which adapt
to changing environment conditions”, we have to precisely
specify what it is that changes in the environment and how
the organizations are adapted. Second, a formal specifica-
tion can be used as a foundation for further development
of the middleware, to derive concrete monitoring and con-
trol interfaces and to check whether the distribution of the
middleware conforms to the specification. Finally, it can
be used to validate the organization and management model
and allows developers to reason about properties and ser-
vices offered by the middleware.

This paper only presents a first step in developing a ma-
ture middleware: the formal specification of an organization
and management model for dynamic organizations. The use
of this specification for the actual development and valida-
tion of the middleware is outside the scope of this paper,
but indications are given in the conclusions, Sect. 7. We
use Z as formal specification language and CZT tools [3] to
edit and type check the specification. Z is a standardized,
highly expressive and accessible formal language, based on
set theory and first order predicate calculus. It is regularly
used for describing and modeling computing systems, in-
cluding multi-agent systems [5].

2. Traffic Monitoring Case

The traffic monitoring case consists of a number of cam-
eras, distributed over a road network. An intelligent agent
is deployed on each camera, responsible for monitoring the
traffic. Because there is no central control and because each
camera has a limited view, camera agents have to collabo-
rate to observe larger phenomena such as traffic jams. The
environment in which the cameras are deployed is very dy-
namic. Traffic state constantly changes, and sensor and
communication hardware may fail at any time.

����

����

��
������ � ��
��

������ ���	
 ����

����	� ��	�� ����	���
��	
���

��	

���

���� ��	
���

���� ����
��	

���� ���	

���

����

� � �������

�����	�
������	�

�����	
������	!
�����	!

�����	�

�����	�

�����	
������	!
�����	!

�����	
�������

������ � ��
�� ������ � ��
��

��""�� #�� ����
�	
$� %���	�

��	�� �" �������
��

���

��""�� #��

������%�� �	
$�
%���	� ��	�� �"

������!
��

�	�

�	

���

�����	�

�������
��

��

������	!
�����	!

������	!
�����	!

������ "����

Figure 2. An example of agents collaborating
in organizations to monitor traffic jams.

A simple example is shown in Fig. 2. The example
shows three cameras along a single-lane highway at four
different time steps. Organizations are used to structure
the collaborations between the agents, and as the context of
the cameras changes, the organizations are adapted accord-
ingly. Most of the dynamics take place at the level of or-
ganizations. Organizations with related context are merged
together and organizations with a differentiated context are
split up. At T0 in the example, there is a traffic jam in the
viewing range of camera2 and camera3, and they are collab-
orating in one organization. But as the traffic jam grows into
the viewing range of camera1, the organization of camera1

is merged with the organization of camera2 and camera3.
After a while, the traffic jam dissolves in the viewing range
of camera3 and the organization is split up. When disas-
ter strikes, camera2 is destroyed, and at T3, camera2 is no
longer part of organization org4.

117

3. Organization Model

This section presents the basic abstractions to group en-
tities with related context in organizations. Application de-
velopers, using the organization middleware, have to con-
form to these abstractions, to allow their agents to collabo-
rate in organizations by playing roles. The management and
dynamics of organizations are described in Sect. 4. The rest
of this section gradually introduces the organization model
and illustrates the core concepts in the traffic monitoring
case. An overview of the organization model is shown in
Fig. 3. A complete description of the model can be found
in [12].

���

����������

�����
�������

���
��������

������ ������

��
�������

�����
�������

�����

&''(&''(

&''(&''(

&''(

&''(&''(

�

� &''(

&''(�

&''(� &''(�

&''�

�
&''(�

��

&''(&''(

��
���
����	�
�

��
���
����	�
�

Figure 3. Conceptual organization model for
context-driven dynamic organizations.

Names, Capabilities and Roles. We start by defining a
number of basic sets representing the names of agents and
organizations, and the capabilities of agents. Capabili-
ties represent the abilities of agents, relevant to performing
functionalities in organizations and are used to support self-
healing in the management model.

[AGENTNAME,ORGNAME, CAPABILITY]

A role describes a coherent set of capabilities, required
to realize a functionality, useful in an organization.

ROLE == P CAPABILITY

It’s important to note, that the concepts of roles and ca-
pabilities are probably not rich enough to model all aspects
of agent interactions. However, as we show in the follow-
ing sections, the concepts are sufficient for describing the
management of dynamic organizations.

Traffic Monitoring Example: In the traffic monitoring
case, there are three relevant capabilities: to monitor traffic,
to aggregate data and to send data. These capabilities can
be combined into two types of roles.

monitor, aggregate, send : CAPABILITY
obsRole, aggrRole : ROLE

obsRole = {monitor, send}
aggrRole = {aggregate, send}

The observation role (obsRole) observes the traffic and
sends its data to an aggregation role (aggrRole). The ag-
gregation role aggregates all data received from observation
roles, and sends the aggregated data to interested clients,
such as traffic controllers or driver assistance systems.

Role Positions and Role Contracts. A role that is re-
quired in an organization is represented by a role position.
As for other non-basic concepts we use a schema for its rep-
resentation in Z.

ROLEPOS
role : ROLE
orgName : ORGNAME

role �= ∅

A role position, much like a job opening in a company,
can be open or there can be a contract. In the model, such a
contract is represented by a role contract between an agent
and an organization for a certain role position.

ROLECONT
agentName : AGENTNAME
rolePosition : ROLEPOS

Agents and Agent Context. Agents have a number of
capabilities, allowing them to realize certain roles. In the
model, available capabilities are assumed to be arbitrary re-
sources of the agent. Before agents can enter into a contract
for a role position, they must have the required capabilities,
which is defined in the management model. When an agent
fails or degrades, it loses some of its capabilities.

AGENT
namea : AGENTNAME
contexta : AGENTCONTEXT
capabilitiesa : P CAPABILITY
roleContractsa : P ROLECONT

∀ rc : roleContractsa • rc.agentName = namea

The context of an agent consists of the current state of
the local environment and a location.

[STATE, LOCATION]

118

MACODOSYSTEMtraffic

MACODOSYSTEM

∀ x, y : AGENT • (x, y) ∈ contextRelationsa ⇔
x �= y ∧ ∃ ox, oy : organizations • x activeIn ox ∧ y activeIn oy ∧ x.contexta localTo y.contexta ∧
¬ ∃ z : AGENT • ∃ oz : organizations • z activeIn oz ∧ z.contexta between (x.contexta, y.contexta)

∀ x, y : ORG • (x, y) ∈ contextRelationso ⇔ x ∈ organizations ∧ y ∈ organizations ∧ x �= y ∧
∃ ax, ay : AGENT • ax activeIn x ∧ ay activeIn y ∧ (ax, ay) ∈ contextRelationsa

Schema 1: The MACODO system with context relations for the traffic monitoring case.

The location refers to the locality of the context and can
be physical or logical.

AGENTCONTEXT
state : STATE
location : LOCATION

Traffic Monitoring Example: In the traffic monitoring
case, location refers to the physical position of a camera
and the area covered by its viewing range. The context state
is the traffic state observed in the viewing range, which can
be: free flow, bounded flow or congested.

freeflow, boundedflow, congested : STATE

Organizations and Organization Context. Organiza-
tion context is the aggregation of the context of all agents
active in the organization. An agent is active in an organi-
zation if it has one or more contracts in the organization.

ORGCONTEXT == P AGENTCONTEXT

In addition to the context, organizations consist of the set
of open role positions, available to the agents active in the
organization, and the set of current role contracts.

ORG
nameo : ORGNAME
contexto : ORGCONTEXT
roleContractso : P ROLECONT
rolePositionso : P ROLEPOS

∀ rp : rolePositionso • rp.orgName = nameo

∀ rc : roleContractso •
rc.rolePosition.orgName = nameo

To participate in organization dynamics, agents can start
new organizations in which they get a default role contract.
This is the only way for agents to join a new organization.

The newly started organization can be merged with other
existing organizations. Once an agent has a contract in an
organization, it can apply for other open role positions in
that organization. Agents can leave an organization by end-
ing all contracts it has in that organization. The concrete
mechanics will be explained in the management model.

MACODO System. The state of the complete system in
terms of agents and organizations is represented by the MA-
CODO system. It consists of the set of agents, currently ac-
tive in the system, and the set of organizations, representing
the current collaborations between the agents.

MACODOSYSTEM
agents : P AGENT
organizations : P ORG
contextRelationsa : CONTEXTRELATIONSa

contextRelationso : CONTEXTRELATIONSo

uniquenameso : P ORGNAME

uniquenameso = {n : ORGNAME |
∀ o : organizations • n �= o.nameo}

∀ x, y : agents • x.namea = y.namea ⇔ x = y
∀ x, y : organizations •

x.nameo = y.nameo ⇔ x = y

In a addition, it contains a number of context relations,
which represent a relation between two agents or organiza-
tions, with respect to the locality of their context. A context
relation is explicitly represented in the MACODO system
itself and not in the agents or organizations, because it does
not only depend on the context of the entities involved in the
relation, but on the context of all entities in the MACODO
system. Together with the context, context relations are the
main drivers for the management of organizations.

Traffic Monitoring Example: An example of a context
relation is the neighbor relation in the traffic monitoring
case (e.g. in Fig. 2, camera1 is neighboring camera2 and so

119

on). Schema 12 shows the MACODO system with context
relations for the traffic monitoring case, defined as functions
on all agents and organizations in the MACODO system.
The context relation only considers agents that are currently
active in an organization, because these are the only cam-
eras engaged in monitoring traffic. Two agents are neigh-
boring if they are local to each other and if there are no other
active agents with a location between them. Two organiza-
tions are neighboring if there exists at least one neighbor
relation between agents of the two organizations. A typical
state of the MACODO system is described in the following
schema, showing the state of the example in Fig. 2 at T0.

MacodoSystemT0

MACODOSYSTEMtraffic

∃ obsCon1, aggrCon1 , obsCon2,

obsCon3, aggrCon3 : ROLECONT •
obsCon1.rolePosition.role = obsRole ∧
obsCon2.rolePosition.role = aggrRole ∧
. . .

∃ agent1 , agent2, agent3 : AGENT •
agents = {agent1, agent2, agent3} ∧
agent1.contexta.state = freeflow ∧
agent2.contexta.state = congested ∧
agent3.contexta.state = congested ∧
agent1.roleContractsa = {obsCon1, aggrCon1} ∧
. . .

∃ org1, org2 : ORG •
organizations = {org1, org2} ∧
org1.contexto = {agent1.contexta} ∧
org2.contexto =

{agent2.contexta, agent3.contexta} ∧
org1.roleContractso = {obsCon1, aggrCon1} ∧
. . .

contextRelationsa = {agent1 �→ agent2,
agent2 �→ agent3, . . . } ∧

contextRelationso = {org1 �→ org2, org2 �→ org1}

4. Management Model for Dynamic Organiza-
tions

An overview of the management model is shown in
Fig. 4. Events, external to the MACODO system, alter the
state of the MACODO system, while a number of reflective
adaptation processes, or laws, reflect over the current state
and adapt it accordingly. The actual management and the
realization of self-adaptive and self-healing organizations,

2localTo and between are application specific functions w.r.t. the local-
ity of agent context. activeIn: true if the agent has a role contract in the
organization.

is the result of an interplay between laws, agents and a dy-
namic environment.

����������

	
��
��
��	���

�����	� �������	�

������ � ���

��
� �
����
�
�

 ��

�����

�	��
�
�
�
���� �
�

��)�����
* +)��
�

,���� -�

.��"/0����	�
-�

���� -� .)��
 -�

���
����	1) -�

������ ������!���

2���	3�	� ���� ��	
���
.
��
 4� ����	���
��	

��"#���!���

��
� ���	�	�
������� ��
��� �����

Figure 4. A management model for dynamic
organizations.

In the domain of context-driven dynamic organizations,
we have identified five types of events and five essential
laws. Events represent the monitoring points, required by
the organization middleware and laws represent the effect
and control of the management on the rest of the system.
Each law has its specific responsibility. The merge law, for
example, merges organizations together but does not ensure
the correct role positions in the merged organization, this is
the responsibility of the role law.

We now describe the different types of events and laws.
The events and laws are formally specified as operation
schemas, which alter the state of the MACODO system. A
complete specification can be found in [12].

Events

Context Updates. A context update 3 represents an up-
date to the context of an agent, active in the MACODO
system. The update also affects the context of the organi-
zations in which the agent is active. In the traffic moni-
toring case, a context update can be a change in observed
traffic state or a change in camera location. The operation

3Context and capability updates may be passed to the middleware
through the agents, but this is not relevant to the model.

120

ContextUpdate
ΔMACODOSYSTEM
agentname? : AGENTNAME
context? : AGENTCONTEXT

∃ oagent : agents • oagent.namea = agentname? ∧
∃ uagent : AGENT • uagent = updateAgentcontext(oagent, context?) ∧
∃ affectedorgs : P ORG • affectedorgs = {o : organizations | oagent activeIn o} ∧
∃ uorgs : P ORG • uorgs = {ao : affectedorgs • updateOrgcontext(ao, ao.contexto \ {oagent.contexta} ∪ {context?})} ∧
organizations′ = organizations \ affectedorgs ∪ uorgs ∧
agents′ = agents \ {oagent} ∪ {uagent}

Schema 2: An operation schema specifying a context update event.

schema specifying a context update is given in schema 24.
The delta symbol indicates the schema alters the state of the
MACODO system. The schema takes an agent name and
a corresponding agent context as input. We use the con-
vention of adding a question mark to the names of input
variables. If the agent name belongs to an agent active in
the MACODO system, the operation schema updates the
agent and the affected organizations. Primed components
(e.g. agents′) denote the changes after the operation. Con-
text relations, defined as functions on the sets of agents and
organizations in the MACODO system, are automatically
adapted as these sets change. An organization with an up-
dated context may trigger the merge, split or role law.

Capability Updates. A capability update 3 represents
the degradation, failure or recovery of an agent and its re-
sources. A failing or degrading agent loses capabilities,
while a recovering agent regains capabilities. In the traf-
fic monitoring case, cameras lose capabilities if their sensor
or communication unit is damaged. An agent which has lost
the capabilities required by its current role contracts triggers
the self-healing law.

CapabilityUpdate
ΔMACODOSYSTEM
agentname? : AGENTNAME
capabilities? : P CAPABILITY

∃ oa : agents • oa.namea = agentname? ∧
∃ ua : AGENT • ua.namea = oa.namea ∧

ua.capabilitiesa = capabilities? ∧
ua.roleContractsa = oa.roleContractsa ∧
ua.contexta = oa.contexta ∧

organizations′ = organizations ∧
agents′ = agents \ {oa} ∪ {ua}

4updateAgentcontext : returns an agent with an updated context.
updateOrgcontext : returns an organization with an updated context.

Agent Addition/Removal. Agents can be added or re-
moved from the MACODO system. The model only allows
the addition or removal of isolated agents, not engaged in
any role contract. The addition or removal of agents can be
the decision of an administrator or an external policy.

Start New Organization. Once an agent is added to the
system, an agent can decide to start a new organization to
participate in the organization dynamics. The agent gets a
default role contract in the new organization, which is ap-
plication specific. In the traffic monitoring case, agents get
a default role contract for the observation role. The new
organization may trigger the merge or the role law.

Begin/End Role Contract. An agent active in an organi-
zation can decide to begin or end a role contract. An agent
can only begin a role contract in an organization, if the agent
is already active in the organization, if there is a correspond-
ing open role position in the organization, and if the agent
has the required capabilities. If an agent ends its last role
contract in an organization, the agent context is removed
from the organization context.

Laws as Reflective Adaptation Processes

Merge Law. The merge law, shown in schema 35, takes
two organizations as input and merges these organizations
if their context is mergeable and related, which is applica-
tion specific. The merging consists of removing the two in-
put organizations from the MACODO system and adding a
merged organization. The merged organization has a unique

5updateOrgPositions: updates a given set of role positions with a new
organization name. updateAgentcontracts : returns an agent with an updated
set of role contracts.

121

MergeLaw
ΔMACODOSYSTEM
org1?, org2? : ORG

(org1?, org2?) ∈ contextRelationso ∧ mergeableStateo (org1?, org2?)

∃morg : ORG • morg.nameo ∈ uniquenameso ∧
morg.rolePositionso = updateOrgPositions(org1?.rolePositionso ∪ org2?.rolePositionso, morg.nameo) ∧
morg.roleContractso = org1?.roleContractso ∪ org2?.roleContractso ∧
morg.contexto = org1?.contexto ∪ org2?.contexto ∧

∃ oagents, uagents : P AGENT • oagents = {a : agents | a activeIn org1? ∨ a activeIn org2?} ∧
uagents = {oa : oagents • updateAgentcontracts(oa, {mrc : morg.roleContractso | mrc.agentName = oa.namea} ∪

{orc : oa.roleContractsa | orc �∈ org1?.roleContractso ∧ orc �∈ org2?.roleContractso})} ∧
organizations′ = organizations \ {org1?, org2?} ∪ {morg} ∧
agents′ = agents \ oagents ∪ uagents

Schema 3: An operation schema specifying the merge law.

name and consists of the union of context, role positions and
role contracts of the two input organizations. In the traf-
fic monitoring case, organizations have to be observing the
same traffic state and there must be a neighbor relation be-
tween two of their cameras. A newly merged organization
may trigger the role law if its role positions or role contracts
are incorrect.

Split Law. The split law splits any organization in the
MACODO system with a differentiated or unrelated con-
text into a set of sub-organizations. The split law ensures
each of the sub-organizations has a uniform and related con-
text. Whether context is differentiated or unrelated is de-
fined in application specific functions. In the traffic moni-
toring case, an organization is split up if its agents are not
observing the same traffic state, or when the agents are dis-
joint with respect to the neighbor relations. The state of the
sub-organizations may trigger the merge or the role law.

Role Law. The role law opens role positions for roles that
are lacking in organizations and closes role positions and
role contracts for roles that are no longer needed in organi-
zations. The role law cannot create new role contracts, this
lies within the decision of the agents. The correct configu-
ration of roles is application specific. In the traffic monitor-
ing case, each agent active in an organization should have a
role contract for the observation role, and each organization
should have exactly one role contract, or at least an open
role position, for the aggregation role.

Self-Healing Law. When an agent loses capabilities
through a capability update, the agent may no longer have
the capabilities required by its current role contracts, mak-

ing the MACODO system inconsistent with the state of the
real world. The self-healing law restores the consistency
by removing all invalid role contracts from the MACODO
system and updating the affected organizations. The opera-
tion schema is given in schema 46 and applies to any agent
in the MACODO system which has one or more invalid role
contracts. The self-healing law does not open new role posi-
tions for removed role contracts, this is the responsibility of
the role law. When an agent or its resources completely fail,
it is not automatically removed from the MACODO system.
Instead, it loses all of its capabilities and remains in the
MACODO system until removed by an external event, or
regains capabilities when its resources have been repaired.

Organization Clean Up Law. The organization clean up
law removes isolated organizations from the MACODO that
no longer have any role contracts. This law is triggered
when an agent ends the last role contract in an organization,
or loses the required capabilities for this contract.

5. Applying the Management Model to the
Traffic Monitoring Case

We now apply the management model to the traffic mon-
itoring case introduced in Sect. 2. Driven by events, gener-
ated by the dynamic traffic environment and a set of camera
agents, the laws adapt the organization structure. At the dif-
ferent time steps of the example in Fig. 5, we show the state
of the MACODO system represented in Z. A more compre-
hensive example can be found in [12].

6invalidroleContracts is an additional help function which returns the
role contracts of a given agent, for which the agent no longer has the re-
quired capabilities.

122

SelfHealingLaw
ΔMACODOSYSTEM
agent? : AGENT

∃ invalidContracts : P ROLECONT • invalidContracts = invalidroleContracts(agent?) ∧ invalidContracts �= ∅ ∧
∃ uagent : AGENT • uagent = updateAgentcontracts(agent?, agent?.roleContractsa \ invalidContracts) ∧
∃ affectedorgs : P ORG • affectedorgs = {o : organizations | ∃ rc : invalidContracts • rc ∈ o.roleContractso} ∧
∃ uorgs : P ORG • uorgs = {uo : ORG | ∃ ao : affectedorgs •

uo.nameo = ao.nameo ∧ uo.contexto = {a : AGENT | a activeIn uo • a.contexta} ∧
uo.roleContractso = ao.roleContractso \ invalidContracts ∧ uo.rolePositionso = ao.rolePositionso} ∧

organizations′ = organizations \ affectedorgs ∪ uorgs ∧
agents′ = agents \ {agent?} ∪ {uagent}

Schema 4: An operation schema specifying the self-healing law.

��
������ � ��
��

������ ���	
 ����

����	� ��	�� ����	���
��	
���

��	

���

���� ��	
���

���� ����
��	

���� ���	

����

����

� � �������

�����	�
������	�

�����	
������	!
�����	!

�����	�

�����	�

�����	
������	!
�����	!

�����	
�������

������ � ��
�� ������ � ��
��

��	
�5
 +)��
� ���
���

,����-� ����� �����

���� -� �������
��

���

��$

��

���
��)�����
* +)��
� ���
���

.��"/0����	� -� ���
���

���� -� �����!���

���

��$

��

�	�

�	

Figure 5. The management model applied to
a traffic monitoring example.

At T0, camera2 and camera3 are observing congested
traffic and grouped in one organization, while camera1, ob-
serving freeflow traffic, is in a separate organization.

MacodoSystemT0

MACODOSYSTEMtraffic

∃ org1, org2 : ORG •
organizations = {org1, org2} ∧

. . .

agent1.contexta.state = freeflow ∧
agent2.contexta.state = congested ∧
agent3.contexta.state = congested ∧
. . .

After T0, the traffic jam grows into the viewing range of
camera1, generating a context update event which changes
the context of agent1.

MacodoSystemT0a

MACODOSYSTEMtraffic

. . .

agent1.contexta.state = congestion ∧
. . .

At T0a, org1 and org2 have a mergeable and related con-
text, triggering the merge law with org1 and org2 as input
organizations. At T0b, the merge law has merged org1 and
org2 in org3. Because org3 has two role contracts for the
observation role the role law closes one. At T1, Agent3 still
has all of its capabilities.

MacodoSystemT1

MACODOSYSTEMtraffic

∃ org3 : ORG • organizations = {org3} ∧
. . .

∃ obsCon1, obsCon2, obsCon3,

aggrCon3 : ROLECONT •
obsCon3.rolePosition.role = {monitor, send} ∧
aggrCon3 .rolePosition.role = {aggregate, send} ∧
. . .

agent3.roleContractsa = {obsCon3, aggrCon3} ∧
agent3.capabilitiesa = {monitor, aggregate, send} ∧
org3.roleContractso =

{cont1A, cont2A, cont3A, cont3B} ∧
org3.rolePositionso = ∅ ∧
. . .

123

After T1, camera3 fails. A capability update event re-
moves all capabilities of agent3.

MacodoSystemT1a

MACODOSYSTEMtraffic

. . .

agent3.capabilitiesa = ∅ ∧
. . .

Agent3 now lacks the capabilities required for its role
contracts, triggering the self-healing law which removes the
invalid role contracts of agent3. As a result, agent3 is no
longer active in org3. The role law opens a new role posi-
tion for the aggregation role in Org3.

MacodoSystemT2

MACODOSYSTEMtraffic

∃ aggrPos : ROLEPOS •
. . .

agent3.roleContractsa = ∅ ∧
org3.roleContractso = {obsCon1, obsCon2} ∧
aggrPos.role = {aggregate, send} ∧
org3.rolePositionso = {aggrPos} ∧
. . .

6. Related Work

Roles and organizations are generally acknowledged as
valuable abstractions to build multi-agent systems [13].
A number of approaches exist to support organizational
evolution and dynamics, such as AGRE [6] and TuC-
SoN [17]. These approaches, however, do not support inter-
organization dynamics and put the responsibility of manag-
ing organizations with the agents. The work in this paper
uses an organization middleware, which encapsulated the
management of organizations as a reusable service. Two
particular lines of related research are computational insti-
tutions [8] and Law-Governed Interactions [16] (LGI), both
using laws, norms or policies to govern interactions among
agents. Computational institutions is based on a middleware
structure and LGI explicilty supports self-healing.

A number of formal models for roles and organizations
have been proposed, for example [4, 14], recognizing for-
malization as a foundation for analyzing properties such as
structure and stability of organizations. These models focus
on the behavior and dynamics of agents and organizations.
The purpose of the organization model presented in this pa-
per is to provide a basis for organization management.

Formalization is known as a valuable tool in engineer-
ing software architectures. In the domain of architectural

styles, Abdowd et al. [1] use formalization as a way to
enhance effective communication about concepts, allowing
formal reasoning about properties, and to help them ask the
right questions about architectural concepts. Medvidovic et
al. [15] advocate the formal modeling of software architec-
tures at multiple levels, and argue that formal specification
of component behavior is an important step towards compo-
nents as reusable building blocks. Although organizations
are not yet recognized as an explicit architectural style and
do not directly map to software components, they are a do-
main specific way of structuring software architectures, and
represent reusable abstractions for applications developers.

More recently, formalization has been used as a ba-
sis for architecture-based self-management. Bradbury et
al. [2] give an overview of formal specification approaches
supporting self-management in dynamic software achitec-
tures. In combination with constraint languages, such as
Alloy and DynAlloy [7], architectural descriptions have
been used to develop self-organizing and self-adaptive sys-
tems [10, 9]. Graph grammars and graph transformations
have been used to formally describe architectural reconfig-
urations and change management [18, 19]. The work pre-
sented in this paper focuses on a domain specific way of
structuring a software system with organizations. Formal-
ized laws, enforced by an organization middleware, allow
us to achieve self-adaptivity and self-healing in the domain
of dynamic organizations.

7 Conclusions and Future Work

We discuss three topics: (1) what have we learned with
respect to self-* properties in general, (2) how has the for-
mal specification contributed to the organization and man-
agement model, and (3) how can the formal specification be
used as a foundation for maturing the organization middle-
ware. The latter can be considered as future work.

Self-* Properties in General. This paper formally spec-
ified self-adaptation and self-healing for context-driven dy-
namic organizations. The specification is based on a par-
ticular set of organization dynamics, such as merging and
splitting, which support the dynamics required for context-
driven dynamic organizations. Although this specification
is not applicable to every type of self-* property, it does
show some underlying principles for middleware enabled
self-* properties. It shows how self-* properties can be re-
alized as an interplay between a number of basic reflective
adaptation processes and how there is a great overlap be-
tween different self-* properties. For example, adaptation
processes used to achieve self-adaptive organizations with
respect to changing traffic context, are also used achieve
self-healing with respect to failing agents.

124

Contributions to the Organization and Management
Model. The formal specification has clarified and com-
pleted a number of concepts. Two important issues were
the effects of merging and splitting on context relations, and
the relation between self-healing and other self-* properties.
These issues have been clarified by formally defining con-
text relations as functions on all agents and organizations
in the MACODO system and self-healing and other self-*
properties as a set of basic adaptation processes.

Maturing the Organization Middleware. In terms of
development, there are three main contributions. First of
all, the management model can be used to derive required
monitoring and control points from events and laws. These
points can be translated into concrete interfaces required by
the organization middleware. An example of a monitoring
point is the ability to monitor the capabilities of agents. Sec-
ond, the management model can be used as a basis for dis-
tributing the middleware. It shows which information and
control is required for realizing the laws. For example, the
merging of two organizations, does not require complete
knowledge or control of the MACODO system. Finally,
the organization and management model can be used to de-
termine which facilities agents require and which facilities
agents have to offer to integrate with the organization mid-
dleware. For example, agents require access to open role
positions but have to provide access to end their role con-
tracts. Application developers can use the formal specifica-
tion for building application specific self-* properties that
rely on organization-related self-* properties.

In terms of validation, the formal specification can be
used to evaluate the completeness of the laws and the valid-
ity of self-* properties.

References

[1] G. Abowd, R. Allen, and D. Garlan. Formalizing style
to understand descriptions of software architecture. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 4(4):319–364, 1995.

[2] J. Bradbury, J. Cordy, J. Dingel, and M. Wermelinger. A
survey of self-management in dynamic software architec-
ture specifications. In Proceedings of the 1st ACM SIG-
SOFT workshop on Self-managed systems, pages 28–33.
ACM New York, NY, USA, 2004.

[3] CZT, 2008. Community Z Tools. http://czt.
sourceforge.net/.

[4] V. Dignum, J. Meyer, F. Dignum, and H. Weigand. Formal
Specification of Interaction in Agent Societies. LECTURE
NOTES IN COMPUTER SCIENCE, pages 37–52, 2003.

[5] M. d’Inverno and M. Luck. Understanding Agent Systems.
SpringerVerlag, 2004.

[6] J. Ferber, F. Michel, and J. Baez. AGRE: Integrating envi-
ronments with organizations. In First International Work-
shop on Environments for Multi-Agent Systems, volume

3374 of Lecture Notes in Computer Science, pages 48–56,
New York, NY, USA, 2005. Springer-Verlag.

[7] M. Frias, J. Galeotti, C. Pombo, and N. Aguirre. DynAl-
loy: upgrading alloy with actions. In International Confer-
ence on Software Engineering: Proceedings of the 27 th in-
ternational conference on Software engineering, volume 15,
pages 442–451, 2005.

[8] A. Garcia-Camino, P. Noriega, and J. .Rodríguez-Aguilar.
Implementing norms in electronic institutions. In AAMAS
’05: Proceedings of the 4th international joint conference
on Autonomous agents and multiagent systems, pages 667–
673, New York, NY, USA, 2005. ACM Press.

[9] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. COMPUTER,
pages 46–54, 2004.

[10] I. Georgiadis, J. Magee, and J. Kramer. Self-organising soft-
ware architectures for distributed systems. In Proceedings
of the first workshop on Self-healing systems, pages 33–38.
ACM Press New York, NY, USA, 2002.

[11] R. Haesevoets, B. Eylen, D. Weyns, A. Helleboogh,
T. Holvoet, and W. Joosen. Managing Agent Interactions
with Context-Driven Dynamic Organizations. Engineering
Environment-Mediated Multiagent Systems, Lecture Notes
in Computer Science. Springer-Verlag, 2008.

[12] R. Haesevoets, D. Weyns, and T. Holvoet. A for-
mal specification of an organization model and man-
agement model for context-driven dynamic organiza-
tions. Technical Report CW535, Katholieke Univer-
siteit Leuven, 2009. http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW535.abs.html.

[13] N. R. Jennings. On agent-based software engineering. Arti-
ficial Intelligence, 177(2):277–296, 2000.

[14] M. McCallum, W. Vasconcelos, and T. Norman. Organisa-
tional change through influence. Autonomous Agents and
Multi-Agent Systems, 17(2):1–33, 2008.

[15] N. Medvidovic, R. Taylor, and E. Whitehead Jr. Formal
Modeling of Software Architectures at Multiple Levels of
Abstraction. ejw, 714:824–2776.

[16] N. Minsky. On conditions for self-healing in distributed soft-
ware systems. Autonomic Computing Workshop, pages 86–
92, 2003.

[17] A. Omicini and A. Ricci. Reasoning about organisation:
Shaping the infrastructure. AI* IA Notizie, 16(2):7–16,
2003.

[18] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic
Change Management by Distributed Graph Transforma-
tion: Towards Configurable Distributed Systems. LECTURE
NOTES IN COMPUTER SCIENCE, pages 179–193, 2000.

[19] M. Wermelinger and J. Fiadeiro. A graph transformation
approach to software architecture reconfiguration. Science
of Computer Programming, 44(2):133–155, 2002.

[20] D. Weyns, R. Haesevoets, B. Van Eylen, A. Helleboogh,
T. Holvoet, and W. Joosen. Endogenous versus exoge-
nous self-management. In Proceedings of the 2008 interna-
tional workshop on Software engineering for adaptive and
self-managing systems, pages 41–48. ACM New York, NY,
USA, 2008.

125

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Danny Weyns
