
A Pattern Language for Multi-Agent Systems

Danny Weyns
DistriNet Labs, Katholieke Universiteit Leuven, Belgium

Email: danny.weyns@cs.kuleuven.be

Abstract

Developing architectural support for self-adaptive sys-
tems, i.e. systems that are able to autonomously adapt to
changes in their operating conditions, is a key challenge
for software engineers. Multi-agent systems are a class of
decentralized systems that are known for realizing qualities
such as adaptability and scalability. In this paper, we present
a pattern language for multi-agent systems. The pattern
language distills domain-specific architectural knowledge
derived from extensive experiences with developing various
multi-agent systems. The pattern language, consisting of the
five interrelated patterns, supports architects with designing
software architectures for a family of self-adaptive systems.
We illustrate the patters for a case study in the domain of
automated transportation systems.

1. Introduction

Self-adaptivity has been proposed as an effective approach
to tackle the increasing complexity of constructing and
managing modern-day software systems. Self-adaptability
endows a system with the capability to adapt itself to changes
in its environment and user requirements. Several researchers
have argued that software architecture provides the right level
of abstraction and generality to deal with the challenges of
self-adaptability. One of the major challenges in self-adaptive
systems is dealing with distribution and decentralization [1].
Decentralized control is crucial for quality requirements such
as openness and scalability.

Over the past 8 years, we have been studying decentralized
architectures for realizing self-adaptivity based on multi-
agent systems (MAS). A MAS architecture structures the
software in a number of interacting autonomous entities
(agents) that cooperatively realize the system goals. Agents
flexibly adapt their behavior and interactions to dynamics in
the system or its environment. In the course of designing and
building various MAS applications, we derived a number of
architectural patterns that provide generic solution schemes
for recurring design problems. Together, this set of intercon-
nected patterns makes up a pattern language.

To further mature the domain of software architecture,
Shaw and Clements argue for the creation of reference
materials that give engineers access to the field’s system-
atic knowledge [2]. This paper contributes with a pattern
language for MAS. Our objective is document well-proven

design expertise for a family of self-adaptive software sys-
tems. A discussion of a methodology to apply the patterns is
out of scope of this paper. However, we illustrate the patters
with excerpts from an industrial case study in which we have
applied the pattern language.

The paper is structured as follows. In Sect. 2 we explain
the target domain of the pattern language. Sect. 3 gives an
overview of the pattern language and presents the pattern
template we use to document the patterns. Sect. 4 introduces
the case study that we use to illustrate the patterns. In Sect. 5
we present the various patterns of the pattern language, and
we give pointers to related work from the MAS domain.
Sect. 6 draws conclusions.

2. Target Domain

The pattern language embodies the architectural knowl-
edge we gained from the design and development of various
MAS applications. We extensively used the Packet–World, a
simple robotic application, as a study case for investigation
and experimentation. We derived expertise from the design
and development of a distributed peer-to-peer file sharing
system. Our focus in this application was on coordination
mechanisms inspired by principles of social ants. We have
applied MAS in several experimental robotic applications
focussing on the roles agents play to set up collaborations.
We have employed a decentralized MAS architecture in
an industrial transportation system for controlling automatic
guided vehicles. We elaborate on this application in sec-
tion 4. Recently we have been using agents in an intelligent
transportation system for monitoring traffic jams. The focus
here is on agents that set up organizations that dynamically
adapt based on the changing context in which the agents are
situated. For technical descriptions of these applications, we
refer the interested reader to [3].

The key characteristics and requirements shared by these
systems define the target domain for the family of software
systems that are supported by the pattern language for MAS:

1) The software systems are subject to highly dynamic
and changing operating conditions (such as dynami-
cally changing workloads and variations in availability
of resources and services) and are expected to manage
the dynamics and changes autonomously.

2) Activity in the systems is inherently localized,
i.e. global control or access to resources is difficult
to achieve or even infeasible.



3) Important stakeholder requirements are flexibility
(adapt to variable operating conditions) and openness
(cope with parts that come and go during execution).

Typical domains are robotics, mobile and ad-hoc networks,
and automated transportation systems.

3. Overview of the Pattern Language

Fig. 1 shows an overview of the pattern language with the
relationships between the patterns.

Figure 1. Overview of the pattern language

Situated MAS is one family of MAS. The focus of situated
MAS is on modularization of agent behavior, efficient de-
cision making, and indirect coordination. This contrast with
deliberative approaches that emphasize knowledge represen-
tation, rationality, planning, and direct communication [4].

The basic patterns of the pattern language are Situated
Agent and Virtual Environment. A situated agent is an
autonomous problem solving entity that encapsulates its state
and controls its behavior. The responsibility of an agent is to
realize the application specific goals it is assigned. Situated
agents are cooperative entities that are able to flexibly adapt
their behavior and interactions with changing conditions.
Agents are situated in a virtual environment that maintains a
virtualization of the relevant parts of the world and serves as
a coordination medium for the agents, i.e. it mediates both
the interactions among agents and the access to resources.

Selective Perception enables a situated agent to sense
the virtual environment and update its knowledge about
the world. Protocol-based Communication enables situated
agents to exchange messages according to prescribed com-
munication protocols, i.e. well-defined sequences of mes-
sages. Roles & Situated Commitments are social attitudes of
situated agents. A role represents a coherent part of function-
ality of a situated agent in the context of a collaboration. A

situated commitment defines an engagement among agents in
a collaboration. A situated commitment affects the behavior
of the agents involved in the commitment in favor of the
roles the agents play in the collaboration.

Some of the patterns in the pattern language are op-
tional. For example, for the design of agents that do not
communicate by exchanging messages, the Protocol-based
Communication pattern can be omitted. We elaborate on a
number of options in the pattern language in Sect. 5.

Pattern Template. To document the patterns we use the
following template:

1) The name of the pattern.
2) A primary presentation that shows the elements and

their relationships in the pattern. We use component
and connector models to describe the pattern’s units
of execution.

3) A description of the architectural elements with their
specific responsibilities.

4) An element specification that rigorously specifies the
elements and how they are used with one another.
We use π-ADL [5], a formally founded architectural
description language. Due to space constraints, we
only provide fragments of the specification of the
Virtual Environment and Situated Agent patterns. For
a complete specification we refer to [6].

5) A rationale that motivates the design of the pattern.
6) Pointers to related patterns.

This pattern template is inspired by the approach for docu-
menting architectural styles presented in [7].

4. Case Study

The case study we use to illustrate the patterns is an
automated transportation system that we have developed in
collaboration with Egemin1, a producer of automated logistic
systems. An automated transportation system consists of a
number of automatic guided vehicles (AGVs) that transport
loads in an industrial environment. Transports are typically
generated by an enterprise resource planning system. The
main functionalities that an AGV transportation system has
to fulfill are assigning transport tasks to appropriate AGVs,
routing the AGVs efficiently while avoiding collisions and
deadlocks, and maintaining the AGVs’ batteries.

An AGV transportation system has to deal with dynamic
and changing operating conditions. The stream of transports
that enter the system is typically irregular and unpredictable,
AGVs can leave the system for maintenance, production
machines may have variable waiting times, certain areas in
the warehouse may be closed for maintenance services, etc.

Although central control in AGV transportation systems
is feasible, the activity in the system is typically localized.
Vehicles have to avoid collisions on crossroads, AGVs
typically execute tasks in their neighborhood, etc.

1. http://www.egemin.com/



Traditionally, the AGVs systems deployed by Egemin are
directly controlled by a central server. The server plans the
schedule for the system as a whole, dispatches commands to
the AGVs and continually polls their status. This results in
reliable and predicable solutions and enables easy diagnosis
of errors. However, a shift in user requirements challenges
the centralized architecture. Customers increasingly request
self-adapting systems, i.e. systems that are able to adapt
their behavior with changing circumstances autonomously.
Self-adaptation with respect to system dynamics translates to
two specific quality requirements: flexibility and openness.
Flexibility refers to the system’s ability to deal with dynamic
operating conditions autonomously. Openness refers to the
system’s ability to deal with AGVs leaving and entering
the system autonomously. To deal with these new quality
requirements, we developed a radically new architecture
based on situated MAS. Applying a situated MAS opens
perspectives to improve flexibility and openness of the sys-
tem: the AGVs can adapt themselves to the current situation
in their vicinity, order assignment is dynamic, and the system
can deal autonomously with AGVs leaving and entering the
system. Fig. 2 shows a high-level model of the system.

Figure 2. High-level model of a transportation system

Each vehicle is controlled by an AGV agent, and each
transportation task in the system is represented by a transport
agent that is deployed at the transport base. To realize the
system requirements, AGV agents and transport agents have
to coordinate, e.g. for transport assignment, for collision
avoidance, etc. Therefore, the agents exploit a local virtual
environment. The states of neighboring local virtual environ-
ments are synchronized using middleware services.

5. Pattern Language

Now we explain the patterns of the pattern language:
virtual environment, situated agent, selective perception,
roles & situated commitments, and protocol-based commu-
nication.

5.1. Virtual Environment

The primary presentation of the virtual environment pat-
tern is shown in Fig. 3. In the case study, a virtual environ-
ment is deployed on each AGV and on the transport base.

Figure 3. Primary presentation of virtual environment

5.1.1. Architectural Elements.
The State repository contains data that is shared between
the components of the virtual environment. Data typically
includes an abstract representation of external resources and
additional state that is used for coordination purposes. An
example of state related to external resources in the case
study is the map of the warehouse. Examples of additional
state are virtual marks situated on the map. Fig. 4 shows
a fusion view2 of the AGV local virtual environments of
three AGVs. To avoid collisions, an AGV agent projects a
requested operating space of its AGV in the AGV local
virtual environment. This operating space represents the
physical area the AGV intends to occupy. The AGV local
virtual environment marks the operating space as locked
when the conditions for the AGV are safe to move on.
Synchronization is responsible for synchronizing state of
the virtual environment with state of particular external
resources as well as state of the virtual environments on
neighboring nodes. An example of synchronized state in
the case study are the actual positions of AGVs. The
synchronization component may pre-process the collected
information before it updates the state of the virtual environ-
ment. An example is conflict resolution in case the requested
operating spaces of two or more AGVs overlap. To resolve
this conflict, the synchronization components of the involved
nodes execute a distributed mutual exclusion protocol to
decide which AGV gets priority. A typical way to collect

2. The view is generated on a remote machine that collects the state of
the virtual environment of the AGVs via a wireless network and fuses the
information into one image.



Figure 4. Operating space projections in the virtual
environment

data in a distributed setting is by using suitable middleware.
For the AGV transportation system, we used ObjectPlaces
middleware that provides services to collect and maintain
particular data of a set of nodes in a mobile environment
(e.g. the position of all AGVs within a distance of 30 m of
a node).
Dynamics contains processes in the virtual environment
that happen independent of agents and external resources.
The processes maintain the state of the virtual environment
according to their application-specific definitions. In one of
the approaches for transport assignment we developed for
the case study, transport agents emit local computational
fields in the virtual environment from the location of the
transports. These computational fields are distributed data
structures spread in the virtual environments which attract
AGV agents. Each AGV agent of an idle AGV combines the
sensed fields and follows the gradient of the combined field,
guiding its AGV to a load [8]. In this case, the dynamics
components of the local virtual environments are responsible
for maintaining the fields.
The Perception Service provides the functionality to agents
for sensing their neighborhood, resulting in a representation.
A representation is a data structure that represents the sensed
elements in a form that can be interpreted by the agent. The
perception service supports selective perception. Selective
perception enables an agent to direct its perception at the
relevant aspects according to its current task. This facilitates
better situation awareness and helps to keep processing of
perceived data under control. To direct its perception an
agent selects a set of foci. Each focus is characterized by
a particular perceptibility, but may have other characteristics
too, such as an operating range, a resolution, etc. Examples
in the case study are a focus to observe the positions of
nearby vehicles and a focus to observe the status of an
operating space. When an agent invokes a sense request, the

perception service collects the required information from the
state repository of the virtual environment, or from external
resources (via the Observe interface).
Action Service is responsible to deal with agents’ actions.
Actions can be divided in two classes: actions that modify
state of the virtual environment and actions that modify the
state of external resources. An example of the former is an
agent that projects an operating space on the map in the
AGV local virtual environment. An example of the latter is
an AGV agent that commands the vehicle to pick a load.
An action that modifies the state of the virtual environment
may trigger the synchronization component to update the
state of the virtual environment with the state of the virtual
environments on other nodes. Action service can provide
additional functions to translate actions related to external
resources to low-level operations. E.g., a pick action is
translated to low-level control commands that actuate the
corresponding actuators.
The Communication Service is responsible for managing
the communicative interactions among agents. It is respon-
sible for collecting messages; it provides the necessary
infrastructure to buffer messages, and it delivers messages
to the appropriate agents. An agent communication message
typically consists of a header with the message performative
(inform, request, propose, etc.), followed by the subject of
this performative, i.e. the content of the message that is
described in a content language which is based on a shared
ontology. The ontology defines a vocabulary of words that
enables agents to refer unambiguously to concepts and rela-
tionships between concepts in the domain when exchanging
messages. Such message descriptions enable a designer to
express the communicative interactions independently of the
underlying communication technology. To actually transmit
the messages, the communication service makes use of a
distributed communication system provided by underlying
middleware. The communication service may provide spe-
cific services to enable the exchange of messages in a
distributed setting, such as white and yellow page services.

5.1.2. Elements Specification. We zoom in on the top-level
specification of Virtual Environment and Communication
Service.

value SituatedMultiagentSystem is abstraction ()
{
type Message is view[

ID : Integer,
sender : String, receiver : String,
performative : String, content : any];

type StateItem is view[
name : String, val : any];

...

value VirtualEnvironment is abstraction ()
{
//external interfaces
Send_Receive : Connection[Message];
Transmit_Deliver : Connection[any];
Sense : ...



//connections among the components
C_Read_Write : Connection[StateItem];

//component composition
compose
{
via CommunicationService send Void where {
C_Read_Write renames Read_Write,
Send_Receive renames Send_Receive,
C_Transmit_Deliver renames Transmit_Deliver};

and
via State send Void where {
C_Read_Write renames Read_Write};

...
}
}

value CommunicationService is abstraction ()
{
Send_Receive : Connection[Message];
Transmit_Deliver : Connection[any];
Read_Write : Connection[StateItem];

message_in, message_out : Message;
state_item : StateItem;
deliver_in, transmit_out : any;

choose
{
//send message
via Send_Receive receive message_out;
unobservable;
...
via Transmit_Deliver send transmit_out;

or
//deliver message
via Transmit_Deliver receive deliver_in;
...
unobservable;
via Send_Receive send message_in;

}
}
...
}

The Send_Receive interface of the virtual environment
provides, among others, operations for agents to exchange
messages (type Message). The Transmit_Deliver in-
terface makes use of underlying communication infrastruc-
ture. The concrete operations provided by this interface are
application specific (type any). The component composi-
tion specifies how the various elements are inter-connected.
CommunicationService provides functionality to send
outgoing messages and deliver incoming messages.

5.1.3. Design Rationale. The two primary principles that
underly the design of the virtual environment pattern are the
use of a shared data style and separation of concerns.

The shared data style results in low coupling among
the components, improving modifiability and reuse. Low
coupled elements do not require detailed knowledge about
the internal structures and operations of the other elements.

By separating the various concerns (communication, per-
ception, synchronization, etc.), the decomposition yields a
flexible modularization that can be tailored to a broad family

of application domains. E.g., for applications in which agents
interact via marks in the virtual environment but do not
communicate via message exchange, the communication
service can be omitted. For applications in which there are no
dynamic processes, the dynamics component can be omitted.

5.1.4. Related Patterns. A variety of approaches have been
developed related to the virtual environment pattern. Digital
pheromones [9] and computational fields[10] are approaches
which provide a virtualization of the underlying environment
in which agents can manipulate marks to coordinate their
behavior (similar to operation spaces in the case study).

Artifacts [11] is another related approach tailored to cog-
nitive agents. An artifact is an abstract architectural building
block that provides services to agents similar as the virtual
environment. Among other approaches, we mention EASI
(Environment as Active Support of Communication) [12],
which proposes an architectural structure, similar to the
virtual environment pattern. The focus of EASI is on com-
municative interactions between agents and the regulation of
the scope of the interactions.

5.2. Situated Agent

The primary presentation of the situated agent pattern is
shown in Fig. 5. In the case study, two types of situated
agents are used: AGV agents which control vehicles and
transport agents which manage tasks in the system.

Figure 5. Primary presentation of situated agent

5.2.1. Architectural Elements.
The Current Knowledge repository contains state that
is shared among the data accessors: Perception, Decision
Making and Communication. State can be either static or
dynamic. Static state refers to the agent’s state of the system
that does not change over time. An example in the case study
is the identity of an agent. Dynamic state refers to the agent’s



current context. Examples are the position of the AGV and
state about a commitment to transport a load.
Perception is responsible for collecting runtime informa-
tion from the virtual environment. Perception requests are
triggered by the communication component or the decision
making component. A perception request includes a set of
selected foci and a set of selected filters. The perception
component uses the foci to sense the virtual environment
for specific types of information. Perception processes the
resulting representation with the selected filters before up-
dating the agent’s current knowledge. An example of a focus
is the location of all transports in an area of 20 meters from
the AGV position and an example of a filter is the location
of the nearest transport. We elaborate on perception when
we discuss the selective perception pattern.
Decision Making is responsible for realizing the agent’s
tasks by invoking actions in the virtual environment. Actions
either intend to manipulate the state of the virtual environ-
ment or manipulate external resources. An example of the
former is an AGV agent that draws an operating space in the
local virtual environment, an example of the latter is an AGV
agent that instructs the vehicle to move over a particular
distance. We elaborate on decision making when we discuss
the roles & situated commitments pattern.
Communication is responsible for communicative interac-
tions with other agents. Message exchange enables agents to
share information and set up collaborations. The communica-
tion component processes incoming messages, and produces
outgoing messages according to well-defined communication
protocols. A communication protocol specifies a set of
possible sequences of messages. Communicative interactions
are based on an communication language that defines the
format of the messages and an ontology that defines a shared
vocabulary of words agents use in messages. We elaborate
on communication and give a concrete example of a protocol
when we explain the protocol-based communication pattern.

5.2.2. Elements Specification. We limit the discussion to
the specification of the structure of a situated agent and the
way an agent senses the virtual environment.
value SituatedMultiagentSystem is abstraction ()
{
type Focus is view[

focus_name : String,
focus_params : sequence[any]];

type Filter is view[
name : String,
val_min : any, val_max : any];

type Foci is sequence[Focus]];
type Filters is sequence[Filter]];
type PerceptionRequest is view[

agent_id : String,
foci: Foci, filters : Filters];

type SenseRequest is view[
agent_id : String, foci: Foci];

type Representation is any;
...

value SituatedAgent is abstraction ()

{
//external interfaces
Sense_Request : Connection[SenseRequest];
Sense_Result : Connection[Representation];
Act : Connection[Action];
Send_Receive : Connection[Message];

//connections
C_Request : Connection[PerceptionRequest];
C_Read_Write : Connection[KnowledgeItem];
C_Update : Connection[Knowledge];

//component composition
compose
{
via Perception send Void where {
C_Request renames Request,
C_Read_Write renames Read_Write,
C_Update renames Update,
Sense_Request renames Sense_Request,
Sense_Result renames Sense_Result};

and
via CurrentKnowledge send Void where {
C_Read_Write renames Read_Write,
C_Update renames Update};

...
}

}

value Perception is abstraction ()
{
Request : Connection[PerceptionRequest];
Sense_Request : Connection[SenseRequest];
Sense_Result : Connection[Representation];

Read_Write : Connection[KnowledgeItem];
Update : Connection[Knowledge];

perception_request : PerceptionRequest;
sense_request : SenseRequest;
representation : Representation;
knowledge_items : Knowledge;

choose
{
//perception request
via Request receive perception_request;
unobservable;
via Sense_Request send sense_request;

or
//knowledge update
via Sense_Result receive representation;
unobservable;
via Update send knowledge_items;

}
}
...
}

The Communication and DecisionMaking compo-
nents use a PerceptionRequest to request a perception.
The request contains the agent’s identity and a set of Foci
(both are used to generate a SenseRequest) and a set of
Filters. When the agent receives the Representation
it is used to update the agent’s current knowledge.

5.2.3. Design Rationale. In a situated MAS, control is di-
vided among the agents. Situated agents manage the dynamic
and changing operating conditions locally and autonomously.
Both are important properties of the target applications of



the pattern language. However, decentralized control implies
a number of tradeoffs and limitations: (1) Decentralized
control typically requires more communication. The perfor-
mance of the system may be affected by the communication
links between agents. (2) There is a trade-off between the
performance of the system and its flexibility to handle
disturbances. (3) Agents’ decision making is based on local
information only, which may lead to suboptimal system
behavior. These tradeoffs and limitations should be kept in
mind throughout the design and development of a situated
MAS. Special attention should be payed to communication
which could impose a major bottleneck.

The collaboration among the components of a situated
agent contributes to the adaptability of the system. Decision
making is responsible for selecting suitable actions. Commu-
nication is responsible for the communicative interactions
with other agents. The separation of functionality allows
both functions to act in parallel and at a different pace.
In many applications, the time required for performing
actions in the environment differs significantly from the time
for communicating messages. E.g., when an AGV agent
establishes a collaboration with a transport agent, the AGV
agent drives the AGV to the load of that transport. However,
if the transport agent meanwhile notices that another AGV
becomes available that can handle the task more efficiently,
it may abandon the initial collaboration and start a collabo-
ration with the new AGV agent. Similarly, the AGV agent
may switch its collaboration to a new transport agent that is
more suitable. Reconsidering the coordination while agents
perform actions, improves adaptability and efficiency.

5.2.4. Related Patterns. The initial work on architectures
for situated agents mainly focused on agents’ decision mak-
ing, see for example the seminal work of Brooks [13] and
Maes [14]. Ferber [15] extended the basic architecture with
support for perception. The Situated Agent pattern builds
upon this work and extends it with support for communica-
tion.

5.3. Selective Perception

The primary presentation of the selective perception pat-
tern is shown in Fig. 6.

5.3.1. Architectural Elements.
Sensing takes a set of foci to produce a perception request
that is passed to the virtual environment. As a result, the
virtual environment produces a representation. We have
explained the concepts of a focus and a representation in
the discussion of the Virtual Environment pattern.
The Descriptions repository contains a set of descriptions to
interpret representations. A description provides a template
that specifies a particular pattern of a representation. E.g.,
consider a representation that represents a number of AGVs
in a certain area. When the interpreting component interprets

Figure 6. Primary presentation of selective perception

this representation it may use a description to interpret the
group of AGVs as a cluster. This information can be useful
to avoid traffic when selecting a path in the warehouse.
The Interpreting component uses the descriptions to extract
a percept from the representation. A percept consists of
data elements that describe elements sensed in the virtual
environment or external resources in a form that can be
used to update the current knowledge of the agent. Each
match between the description template and the examined
representation yields data of a percept.
The Filtering component filters a percept using set of se-
lected filters. Filters allow the agent to select only those data
elements of a percept that match specific selection criteria.
Each filter imposes conditions on a percept that determine
whether the data elements of the percept can pass the filter
or not. We gave an example of a filter in the discussion of
Situated Agent pattern. The Filtering component uses the
filtered percept to update the agent’s current knowledge.

5.3.2. Design Rationale. The components of perception
collaborate in a pipe-and-filter like style. In this collabo-
ration, each component provides a clear-cut functionality,
while the coupling between the component is kept low.
Foci, descriptions, and filters, are considered as first-class
elements in the pattern. This helps to improve modifiability
an reusability. The Interpreting component can be omitted in
case the internal state of the agent and the observable state
of the virtual environment are represented by the same data
types.

Selective perception contributes to the adaptability of the
system. By selecting an appropriate set of foci and filters, the
agent directs its attention to the current aspects of its interest,
and adapts it attention when the operating conditions change,
contributing to the flexibility of the system.

5.3.3. Related Patterns. Explicit support for perception is
often neglected in agent-based systems. One related ap-



proach which provides support for selective monitoring of
the environment is CArtAgO [16]. CArtAgO introduces
the abstraction of a virtual sensor. A virtual sensor allows
an agent to sense the environment selectively based on
particular properties similar to foci and filters. In EASI (see
also section 5.1.4), the notion of a filter is used to regulate
the scope of communicative interactions.

5.4. Roles & Situated Commitments

The primary presentation of the roles & situated commit-
ments pattern is shown in Fig. 7.

Figure 7. Primary presentation of the roles & situated
commitment pattern

5.4.1. Architectural Elements. To select actions, a situated
agent employs a behavior–based action selection mechanism.
The main advantages of behavior–based action selection
mechanisms are efficiency and flexibility to deal with dy-
namism in the environment. A behavior–based action selec-
tion mechanism consists of a set of behavior modules. Each
behavior module is a relatively simple computation module
that tightly couples sensing to action. An arbitration scheme
controls which behavior-producing module has control and
selects the next action of the agent. The roles and situated
commitments pattern provides the means for situated agents
to set up collaborations.
Role. Behavior modules that represent a coherent part of
functionality in the context of an organization are denoted
as a role. An organization consists of a group of agents
that can play one or more roles and that work together.
Roles are the building blocks for social organization of a
MAS [17], provided that collaborations between situated
agents are bounded to the context in which the agents are
situated.

A role has a well-known name that is shared among agents
in the system. stimuli are internal data or externally perceived
data that affect the selection of actions of a role. Based on
the actual stimuli, select determines the relative preferences
for each of the possible actions that can be selected by
the role. An arbitration schema uses the relative preferences
for all actions of all the roles to determine which role has
control and which action is selected for execution. Example
roles of an AGV agent in the case study are work, park,
and charge. Examples of stimuli of the work role are
transporting() and atLoad(). Examples of actions
are drive(segment) and pick(load).
Situated Commitment. Collaborations are explicitly com-
municated cooperations reflected in mutual commitments. A
situated commitment is defined in terms of the roles of the
involved agents and the local context they are placed in.
Agents agree on mutual commitments in a collaboration by
exchanging messages (see the Protocol-Based Communica-
tion pattern). Once a collaboration is established, the mutual
situated commitments will affect the selection of actions in
favor of the agents’ roles in the collaboration.

As for roles, situated commitments have a well-known
name. Explicitly naming roles and commitments enables
agents to set up collaborations, reflected in mutual commit-
ments. The relation-set contains the identities of the related
agents in the situated commitment. The context describes
contextual properties of the situated commitment such as
descriptions of objects in the local environment. activation-
con and deactivation-con are the activation and deactivation
conditions that determine the status of the situated com-
mitment. When the activation condition becomes true, the
situated commitment is activated, and the behavior of the
agent will be biased according to the specification of the
rolemap. The rolemap specifies the relative weight of the
preferences of the actions of different roles. In its simplest
form, the rolemap narrows the agent’s action selection to
actions in one particular role. An advanced example is a
rolemap that biases action selection towards the actions of
one role relative to the preferences of the actions of a number
of other roles of the agent. As soon as the deactivation
condition becomes true, the situated commitment is deac-
tivated and will no longer affect the behavior of the agent.
An example of a situated commitment in the case study is
the working commitment that commits an AGV agent to
handle a particular transport. The relation set of the working
commitment contains the identity of a transport agent. The
context contains information about the transport (id, type,
etc.). The commitment is activated when the vehicle picks
the load, and deactivated when the load is dropped. In the
working commitment, the AGV agent will select actions in
the work role, transporting the load to its destination.

5.4.2. Design Rationale. Behavior–based action selection
enables agents to behave according to the situation in the
environment, and flexibly adapt their behavior with changing



circumstances. The notions of a role and situated commit-
ment enable agents to set up collaborations. Agents may
explicitly communicate when the conditions for a committed
cooperation no longer holds, or the local context in which
the involved agents are placed may regulate the duration of
the commitment. E.g., when an AGV runs out of energy,
the charging commitment will be activated that guides
the vehicle to a charging station. As soon as the battery is
recharged, the commitment will be deactivated and the AGV
will start looking for work. This approach fits the general
principle of situatedness in situated MAS and improves
flexibility and openness. An agent adapts its behavior when
the conditions in the environment change or when agents
enter or leave its scope of interaction. For an extensive
discussion of behavior–based action selection with roles and
situated commitments, we refer to [18].

5.4.3. Related Patterns. Roles and commitments are gener-
ally acknowledged to be valuable abstractions for interaction
design of MAS. However, their use for structuring interac-
tions among situated agents is less well studied. For a recent
overview, we refer the interested reader to [19].

5.5. Protocol-based Communication

The primary presentation of the protocol-based communi-
cation pattern is shown in Fig. 8.

Figure 8. Protocol-based communication pattern

5.5.1. Architectural Elements.
The Conversations repository maintains a set of conversa-
tions. A conversation is an ongoing communicative inter-
action following a well-defined communication protocols.

A communication protocol consists of a series of protocol
steps. Each protocol step is characterized by a condition–
effect pair. The condition determines whether the step is
applicable. Conditions take into account the agent’s current
knowledge and data from ongoing communicative interac-
tions. The effect is the actual result of executing the protocol
step. A conversation is initiated by the initial message of a
communication protocol. At each stage in the conversation
there is a limited set of possible messages that can be
exchanged. Terminal states determine when the conversation
comes to an end.

An example of a communication protocol in the case
study is the DynCNET protocol [8] which extends the well-
known CNET protocol [20]. DynCNET consists of five basic
steps: (1) the transport agent sends a call for proposals; (2)
the AGV agents in a certain area respond with proposals;
(3) the transport agent notifies the provisional winner; (4)
while the AGV of the provisional winner moves towards
the load, both the transport agent and the AGV agent
may abort the provisional commitment if a more suitable
assignment becomes available, and (5) the selected AGV
agent informs the transport agent when it picks the load.
DynCNET enables the agents to reconsider the situation in
the environment and adapt the assignment of tasks when
circumstances change, improving flexibility and openness.
The tradeoff is an increase of required bandwidth.
The Communicating component provides a dual function-
ality: (1) it interprets decoded messages and reacts appro-
priately; (2) it initiates and continues a conversation when
the necessary conditions hold. During the execution of a
protocol step, the communicating component may initiate
a perception request. The execution of a protocol step will
produce the data to encode a new message and update the
corresponding conversation. Furthermore, the agent’s current
knowledge may be modified, possibly affecting the agent’s
selection of actions. A typical example is the activation or
deactivation of a situated commitment.
Outbox and Inbox are messages buffers. They buffer out-
going and incoming message respectively.
Message Encoding encodes a newly composed message.
Message encoding is based on a shared communication
language that defines the format of the messages, i.e. the
subsequent fields the message is composed of. The message
content is based on an ontology that defines a shared
vocabulary of words that agents use to represent domain
concepts and relationships between the concepts.
Message Sending selects a pending message from the out-
box buffer and passes it to the communication service of the
virtual environment. Message Receiving accepts messages
from the communication service.
Message Decoding selects a received message from the
inbox buffer and decodes the message according to the given
communication language and ontology.



5.5.2. Design Rationale. Direct communication allows sit-
uated agents to exchange information and set up collabora-
tions. Coordination through message exchange is comple-
mentary to indirect coordination via marks in the virtual
environment. The various components in the communica-
tion component are assigned clear-cut responsibilities and
coupling amongst components is kept low.

Communication defined in terms of protocols puts the
focus of communication on the relationship between mes-
sages. In each step of a communicative interaction, con-
ditions determine the agent’s behavior in the conversation.
Conditions not only depend on the status of the ongoing
conversations and the content of received messages, but also
on the actual conditions in the environment reflected in the
agent’s current knowledge, in particular the status of the
agent’s commitments. This contributes to the flexibility of
the agent’s behavior.

5.5.3. Related Patterns. A communication service for mes-
sage transport between agents is generally considered as
a basic service for MAS. The Foundation for Intelligent
Physical Agents has defined a standardized reference model
for an agent message transport service [21]. The Protocol-
Based Communication pattern is compatible with this model.

6. Conclusions

In this paper, we presented a pattern language for MAS
that supports the design of a family of decentralized self-
adaptive systems. The pattern language ties five patterns to-
gether. Situated agent and virtual environment are the central
patterns of the pattern language. Selective perception, roles
& situated commitments, and protocol-based communication
zoom in on the three main concerns of a situated agent.
For each pattern, we provided a primary presentation that
shows the constituent architectural elements of the pattern,
a catalog that explains the responsibilities of the element,
and a design rationale that explains the underlying design
choices and the quality attributes associated with the pattern.
In addition, we provided extracts of a formally founded
specification of the pattern elements and how they are used
with one another. We illustrated the patterns with examples
of a decentralized control architecture for an industrial AGV
transportation system, and referred to related work.

The presented pattern language integrates the design
knowledge we have acquired from developing numerous
MAS. We hope that this systematic knowledge contributes to
a better understanding of MAS architectures and their value
for designing complex self-adaptive systems.

Acknowledgement

This research is supported by the Foundation for Scientific
Research in Flanders (FWO-Vlaanderen), the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science
Policy, and the Research Fund K.U.Leuven.

References

[1] J. Kramer and J. Magee, “Self-managed systems: an architec-
tural challenge,” in FOSE ’07: Future of Software Engineer-
ing. IEEE Computer Society, 2007.

[2] M. Shaw and P. Clements, “The golden age of software
architecture,” IEEE Software, vol. 23, no. 2, pp. 31–39, 2006.

[3] D. Weyns, Homepage: http://www.cs.kuleuven.be/∼danny/.

[4] A. Rao and M. Georgeff, “BDI Agents: From Theory to Prac-
tice,” in 1st International Conference on Multiagent Systems.
The MIT Press, 1995.

[5] F. Oquendo, “Pi-ADL: an Architecture Description Language
based on the higher-order typed pi-calculus for specifying
dynamic and mobile software architectures,” SIGSOFT Softw.
Eng. Notes, vol. 29, no. 3, pp. 1–14, 2004.

[6] D. Weyns, “Formal Specification of a Pattern
Language for Multi-Agent Systems in Pi-ADL,” 2009,
http://www.cs.kuleuven.be/∼danny/pi-adl/.

[7] P. Clements and et al., Documenting Software Architectures:
Views and Beyond. Addison Wesley, 2002.

[8] D. Weyns, N. Boucké, and T. Holvoet, “A field-based versus
a protocol-based approach for adaptive task assignment,”
Autonomous Agents and Multi-Agent Systems, vol. 17, no. 2,
pp. 288–319, 2008.

[9] S. Brueckner, Return from the Ant, Synthetic Ecosystems
for Manufacturing Control. Ph.D Dissertation, Humboldt
University, Berlin, Germany, 2000.

[10] M. Mamei and F. Zambonelli, Field-based Coordination for
Pervasive Multiagent Systems. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2005.

[11] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the a&a
meta-model for multi-agent systems,” Autonomous Agents and
Multi-Agent Systems, vol. 17, no. 3, pp. 432–456, 2008.

[12] J. Saunier and F. Balbo, “Regulated multi-party commu-
nications and context awareness through the environment,”
Multiagent Grid Syst., vol. 5, no. 1, pp. 75–91, 2009.

[13] R. Brooks, “A robust layered control system for a mobile
robot,” Robotics and Automation, vol. 2, no. 1, pp. 14–23,
1986.

[14] P. Maes, “Situated Agents can have Goals,” Designing Au-
tonomous Agents, MIT Press, 1990.

[15] J. Ferber, An Introduction to Distributed Artificial Intelligence.
Addison-Wesley, 1999.

[16] “CArtAgO,” http://apice.unibo.it/xwiki/bin/view/CARTAGO/.

[17] J. Odell, H. V. D. Parunak, and M. Fleischer, “The Role of
Roles,” Journal of Object Technology, vol. 2, no. 1, 2003.

[18] D. Weyns, Architecture-Based Design of Multi-Agent Systems.
Springer, 2009.

[19] V. Dignum, Ed., Handbook of Research on Multi-Agent Sys-
tems: Semantics and Dynamics of Organizational Models.
Information Science Reference: Hershey, PA, USA, 2009.

[20] R. Smith, “The Contract Net Protocol: High Level Commu-
nication and Control in a Distributed Problem Solver,” IEEE
Transactions on Computers, vol. 29, no. 12, 1980.

[21] FIPA, “Foundation for Intelligent Physical Agents,”
http://www.fipa.org/, (7/2009).


