
Delegate MAS Patterns for Large-Scale Distributed
Coordination and Control Applications

Tom Holvoet
DistriNet labs

Dept. of Computer Science,
KULeuven, Belgium

Tom.Holvoet@cs.kuleuven.be

Danny Weyns
DistriNet labs

Dept. of Computer Science,
KULeuven, Belgium

Danny.Weyns@cs.kuleuven.be

Paul Valckenaers
Center for Industrial Mgt

Dept. of Mechanics,
KULeuven, Belgium

Paul.Valckenaers@mech.kuleuven.be

ABSTRACT
This paper documents patterns that support coordination in
large-scale, dynamic, distributed systems. The patterns are
related, and are linked to existing patterns as documented
in literature (e.g. by Yaridor and Lange [AL98], Kendall
e.a. [KKPS98]). This paper refines the patterns as described
in [HWV09].

The patterns are disciplined flood, propertinerary,
smart message, delegate MAS, and delegate ant
MAS. Identifying the patterns fosters reuse of particularly
useful coordination techniques, and can serve as a catalyst
for new or altered approaches.

1. AUDIENCE
The patterns in this document are particularly intended for
researchers as well as practitioners who study and develop
large-scale decentralized systems - including decentralized
control systems, internet applications. The reader should
be familiar with typical issues and challenges in develop-
ing distributed systems, and be acquainted with elemen-
tary terminology of agents and multi-agent systems (MAS,
[Woo09]), and the discrete optimization metaheuristic called
Ant Colony Optimization [DDC99].

2. MOTIVATION
The complexity of large-scale distributed applications has
motivated several researchers and practitioners to study
and develop self-organizing systems. A self-organizing sys-
tem is typically composed of a large number of components
that interact and cooperatively reach the system objectives.
The global behavior of the system emerges from local in-
teractions. Engineering self-organizing systems is, however,
known to be quite a challenge.

Literature is flooded with technical descriptions and experi-
ments of self-organizing systems in different application do-
mains. Networking, middleware, distributed optimization,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission. A preliminary version of this paper was presented in a
writersÕ workshop at the 15th European Conference on Pattern Languages
of Programs (EuroPLoP 2010), July 7-11, 2010, Irsee Monastery, Bavaria,
Germany. Copyright 2010 is held by the author(s). ACM 978-1-4503-0259-
3.

distributed simulation, logistics management, peer-to-peer
systems, ... These systems are more often than not the re-
sult of quite smart engineering that combines clever techni-
cal solution ideas with expert domain knowledge that can
be exploited to obtain performant and flexible systems.

One example is literature that reports on particular coor-
dination mechanisms for large-scale decentralized systems.
Research on ‘delegate MAS’ for manufacturing control and
traffic management [HV06, WHH07], Polyagents for mili-
tary applications and manufacturing control [PB07], mo-
bile agents for internet applications such as e-commerce or
tourist assistance [KMTU03, CPV97], bio-inspired network
routing [CD98, CDG05] and bio-inspired distributed mid-
dleware management [LS08]. Several of these works are
inspired by ant colony optimization techniques [DDC99].
Some focus on the integration of coordination in e.g. a BDI-
based agent architecture (Beliefs-Desires-Intentions). Some
include symbiotic simulation. Within their respective ap-
plication domains, these approaches yield valuable solutions
by combining clever ideas that relate to coordination mech-
anisms. In our research, we observe that these approaches
bear similarities in their key solution techniques.

For clever solution techniques to prosper beyond a single
system and become reusable assets for other software engi-
neers in building other applications, they can be described
in a more generic, reusable fashion. Patterns are one of
the most appreciated instruments for reuse in software engi-
neering. Patterns emerge from frequent use and experience.
They identify a generic problem, a suitable generic solution
scheme including solution quality characteristics. As such,
engineers can reuse proven solutions, and can be inspired by
them in solving similar problems.

3. SETTING THE SCENE: ANTICIPA-
TORY VEHICLE ROUTING

A concrete example of a large-scale, dynamic distributed
control system can help set the scene for the patterns in this
paper, although without going in too much technical details
on how the problem can be solved. The example is vehicle
routing coordination in traffic.

Everyone is familiar with traffic and - unfortunately - with
traffic jams. Traffic jams are not only a source of huge eco-
nomic loss with substantial influence on environmental dete-
rioration, they are considered to extremely inconvenient for
road users. Often, however, traffic jams could be avoided al-



together. Traffic jams are often a consequence of poor usage
of available resources. If all road users would have relevant
and accurate information (including forecast traffic density)
of alternative routes towards their destination(s), they could
make a better choice, reducing traffic jam waiting time and
travel time.

Typical satellite navigation (satnav) devices can help peo-
ple find the fastest route to their destinations - at least,
under the assumption that there is no one else out there.
More advanced satnav devices are able to make use of cur-
rent traffic information, and may suggest a detour if a road
has been blocked. Anticipatory vehicle routing takes routing
one step further, by taking into account traffic forecasts in
calculating the travel time for alternative routes. Statisti-
cal approaches to anticipatory vehicle routing are useful for
traffic flows with regular patterns. In case of disturbances
(e.g. road blocks due to accidents or road works), statistical
approaches do not yield satisfactory results. At best, road
users should be able to take into account the actual inten-
tions of other users. If a road user would need to go from
point A to point B, and knows that there are three alterna-
tive routes, it would be interesting to know whether or not
other road users intent to massively use a part of one of the
routes from A to B. The driver could take this into account
and choose for another route.

It is clear that route guidance is a coordination problem that
is huge in terms of underlying infrastructure as well as in
number of actors involved, it is submitted to various sources
of dynamics - road blocks, road infrastructure constraints,
road users entering and leaving the system continuously, and
many more.

A centralized approach to individual-based, anticipatory ve-
hicle routing is hence infeasible for obvious reasons. For
a decentralized approach, we will assume1 vehicles to be
equipped with electronic devices with computational capac-
ity, which moreover are able to communicate wirelessly with
other devices in their vicinity. Additionally, we assume road
infrastructure elements (such as roads, cross roads) to be
equipped with computation and communication devices as
well.

While a solution for anticipatory vehicle routing is sought
to reduce traffic jams and deal with traffic disturbances, the
overhead that the solution can create is strictly bound by
the computational and bandwidth capacity of the devices in
the vehicles and road infrastructure.

The decentralized architecture as discussed in [WHH07] uti-
lizes the devices in vehicles to assist in routing their respec-
tive drivers by coordinating with other devices of both ve-
hicles and road infrastructure, i.e. traffic resources.

First, every vehicle - that is, their respective devices - would
need to communicate with other vehicles and resources in or-
der to (1) explore different routes towards its destination(s),
(2) find out about the intended road usage of the other ve-
hicles, and (3) to disseminate its own intentions. Clearly,

1The assumptions are made for the sake of setting the scene
for the patterns, not because the authors are convinced that
these are realistic assumptions today.

sending direct messages to every individual vehicle and re-
source element is impossible. On the other hand, broadcast-
ing or flooding the distributed environment for this purpose
is unacceptable due to the tremendous overhead that such
messaging policy would create. A vehicle, however, is inter-
ested in spreading a message is a ‘disciplined way’; that is,
the message can be provided with specific cloning behaviour
that makes the message spread to those elements in the sys-
tem that can be relevant for this message. If a vehicle wants
to go from A to B, there is no point in sending a message
towards a location C that is not part of any route between
A and B.

Second, people may need to visit a number of destinations
instead of just one. In some cases, the order of destina-
tions can be fixed, in other cases the order is irrelevant, and
yet other situations could prescribe other ordering relations
between destinations. Hence, a message that is sent by a
vehicle as discussed above may need to take this ‘itinerary
information’ along, in order to judge upon the suitability of
cloning itself in a particular direction.

In fact, vehicles could issue ‘smart messages’, which incor-
porate a disciplined flooding policy and itinerary informa-
tion with mobile code and state to be executed in the nodes
that the messages arrive at. For instance, a message that
arrives at a node that represents a crossroad, could commu-
nicate with the device that manages this crossroad to find
out about future reservations. As such, a smart message is
a light-weight, mobile agent, and is sometimes referred to as
ant-like agents or just ants.

Entities such as vehicles that would make use of such smart
messages would need to repeat sending out these messages
to make sure that the information that is either gathered
from the environment or send to the environment is up to
date. The component within the behaviour of these entities
that manages sending smart messages is called a ’delegate
MAS’. The vehicle ’delegates’ behaviour to this management
component, which manages the smart messages, i.e. which
manages a set of mobile agents.

The approach to anticipatory vehicle routing as documented
in [WHH07] defines vehicles that each use two instances of
delegate MAS, each with their own types of smart mes-
sages. Figure 1 aims to visualise the approach. First, the
‘exploration delegate MAS’ of a vehicle is responsible for
exploring different routes towards the destination(s) of the
vehicle. Smart exploration messages - or exploration ants -
are sent out over different feasible routes, and interact with
the resource entities (i.e. the road infrastructure elements)
through what-if scenarios. This allows the smart message
to be informed about future traffic load at the time that its
vehicle could arrive at this element. The infrastructure ele-
ment would e.g.‘ if the vehicle would arrive here at time t,
it would take the vehicle about ∆t to pass through this ele-
ment. The smart message clones towards the infrastructure
element devices that represent elements that are physically
connected to the current infrastructure element, and that
could be a hop in the route towards the desination(s) of
the vehicle. When it reached its goal, the smart message
reports back to its vehicle. The vehicle collects such infor-
mation and maintains one route as its intended route (e.g.



Figure 1: Ants exploring the environment of the city of Leuven (Belgium). Exploration ants, depicted in blue,
explore the environment and aggregating forecast information. Based on this information, the vehicle chooses
a route it intents to follow and informs the road infrastructure elements along this path using intention ants,
depicted in red.

the fastest route to the destination(s)).

Second, the ‘intention delegate MAS’ of a vehicle is respon-
sible for disseminating its own intended route to the infras-
tructure elements along this route. Smart intention mes-
sages - or intention ants - are equipped with information
about the intended route and travel along the infrastruc-
ture to inform the fact that the vehicle intends to be at this
resource at that particular point in time, and make reserva-
tions. The reservations are volatile and need to be refreshed
regularly; reservations that are not refreshed are removed
after some time. The intention smart messages report back
with the exact information of what has been reserved. The
vehicle can then decide to stick to this intended route or
rather explore for a better alternative.

This case is one example of a broader domain of so-called
‘coordination and control applications’.

4. COMMON CONTEXT AND FORCES
All patterns described in this document are related to a
common context. The context consists of large-scale dis-
tributed systems for which applications must be developed.
Applications that are considered are so-called ‘coordination
and control applications’. Examples of applications are traf-
fic management, manufacturing control, distributed process
management. Due to some non-functional requirements (e.g.
scalability or robustness), centralized solutions are consid-
ered infeasible. Instead, the architects develop decentralized
software architectures, where decentralized software entities

(or agents) need to communicate and collaborate to coordi-
nate their activities and collectively control the distributed
system. Software entities that are deployed on network
nodes can execute behavior and communicate with entities
on other nodes in their vicinity.

The context dictates common forces to which solutions
must adhere. First, the large-scale of the system makes it
particularly challenging - one needs to ensure that all en-
tities acquire relevant information to base their decisions
upon, and vice versa, one needs to ensure that local infor-
mation that is relevant for other entities is properly dissem-
inated. Second, the applications are deployed on networked
computer systems with limited capacity in terms of com-
putational resources and bandwidth. Communication over-
head should be limited, in number and size of messages.
The additional computational complexity that decentraliza-
tion brings should be limited as well. Third, these systems
are susceptible to various sources of dynamism (including
network topology changes, node or communication failures,
software failures). Dynamism should not be considered as
exceptional situations, but rather as ‘business as usual’.

Patterns that have been documented before, and which
are particularly useful in this context with the above
forces, can be found in Kendall e.a. [KKPS98], Aridor and
Lange [AL98]. In particular Aridor and Lange identified
three classes of patterns for designing mobile agents. Travel-
ing patterns support routing and quality of service behavior
of mobile agents, task patterns are concerned with the break-



down of tasks and the way they are allocated to (mobile)
agents, interaction patterns support designing how (mobile)
agents interact. The layered agent pattern as described by
Kendall e.a. [KKPS98] proposes a generic agent architecture
based on well-defined layers.

These patterns assist developing decentralized applications
using mobile agents, yet are not (and not meant to be)
complete. The patterns described in this document make
a useful addition to literature for the targeted application
domain.

5. THE PATTERNS
The patterns that are proposed in this paper constitute sev-
eral pieces that can be used to make a single puzzle. The
patterns describe generic solutions for agent interaction and
coordination. While the individual patterns are illustrated
using scenarios from traffic management, more elaborate de-
scriptions of known usage of the patterns are addressed in
Section 6.

5.1 Disciplined flood
The first pattern describes a mechanism that a software en-
tity can use for sending messages in a large-scale environ-
ment.

Problem / Motivation

How can a software entity send a message to other entities in
the distributed environment, of which it may not know their
locations, yet avoid unnecessarily flooding the environment
with communication messages?

In the traffic case discussed earlier, a vehicle could need to
send a message towards potential destinations, e.g. to find
out whether there is a package at any of these locations that
it could pickup. The vehicle does not have information about
routes for the messages towards the destinations. Flooding
the environment with messages is infeasible.

Solution

Software entities issue messages that encapsulate specific
cloning behavior. The messages may be considered mes-
senger agents, as presented in [AL98], that are enhanced
with behavior logic: the messages will match information
that is available at the current node (in particular, infor-
mation on outbound nodes) with information about their
own target. The matching process yields a probability value
for each outbound node. The probability that a message
is cloned towards an outbound node is determined by this
value.

In the example of traffic coordination, vehicles can send such
messages to their destination(s). The nodes that represent
road infrastructure elements can maintain road signs (or
routing tables) that indicate whether particular outbound
nodes can lead to the target, and if so, provide an estimate
of the distance. The messages’ cloning behaviour uses this

information in calculating the probability of cloning towards
an outbound node.

Consequences

This solution allows to steer the flooding behavior of messen-
gers based on local information. Depending on the quality of
the local information, the disciplined flood allows to reduce
usage of communication bandwidth. Using this patterns re-
quires maintaining good quality of the local information re-
lated to the messengers’ objectives. Care needs to be taken
that messages do not clone for ever. Moreover, the message
may not reach its destination altogether, because of the dy-
namic nature of the context (links may be broken, messages
may be lost). This is not necessarily harmful, yet important
for the message sender to be aware of - an autonomous soft-
ware entity - or agent - is by definition unsure whether its
action are or are not fulfilled [Woo09].

Related patterns

This pattern provides a generic solution to limited cloning
behavior of flooding messages. Related to this pattern is, as
mentioned, the messenger agent pattern [AL98]. A mes-
senger agent allows software entities (or mobile agents) to
asynchronously communicate with other entities while mov-
ing on (in terms of mobility and behavior). The disciplined
flood solution adds cloning and does not aim to reach one
particular destination, but rather has its own objective to
fulfill - i.e. reach any destination with a particular property.

5.2 Propertinerary
The itinerary pattern is a well-known pattern in mobile
agent [AL98]. It is a so-called traveling pattern, that is
concerned with routing a mobile agent among multiple des-
tinations. An itinerary maintains a list of destinations and
defines a routing scheme based on this list.

The propertinerary is a variation of the itinerary pat-
tern. The pattern maintains a list of properties of desti-
nations rather than destinations themselves, and defines a
routing scheme based on this list.

Problem / Motivation

How can a mobile agent, that is sent out on behalf of an-
other software entity, self-route in order to fulfill its objec-
tive if this objective is to visit a sequence of locations with
particular properties?

In the example of the traffic case, a software entity repre-
senting the driver of a vehicle can issue a mobile agent to
explore various routes that bring it along the school of the
children, any grocery shop, and any post office, where going
to the school must be visited first, but there is no preferred
order for the other two activities (running errands and buy-
ing stamps).



Solution

A mobile agent is endowed with routing behavior that is
based on an ‘itinerary of properties’ (we call this proper-
tinerary). The itinerary of properties defines sequences of
location properties. The itinerary can either be represented
as a list, but could as well be a (directed or undirected)
graph structure.

The routing behavior is guided by (1) an itinerary of prop-
erties, and (2) that agent state, that represents the loca-
tions (and their properties) visited so far. When the mobile
agents needs to decide upon the next node to move to, it
will consider which neighbouring nodes have properties that
would match a next element in the itinerary, or that would
bring the agent to a location that is closer to a location
that matches the next property in the sequence. The loca-
tions themselves need to make their properties available for
inspection, and could disseminate their properties to their
neighbours. If the agent cannot find information that may
help in deciding upon the next node, it either randomly vis-
its neighbouring nodes or dies off (e.g. using a maximum hop
count).

Consequences

The propertinerary solution makes the concrete objective of
a mobile agent explicit, and uses this to steer its routing
in the distributed system. This solution does not ensure
efficient achievement of its objective - it mainly provides a
design structure that allows matching such an objective with
local information.

Related patterns

The messenger pattern [AL98] self-routes a message to
one destination. The itinerary pattern [KKPS98] describes
routing behavior based on a set of destinations that a mobile
agent needs to visit. Instead of explicit destinations, the
propertinerary describes sequences of properties of locations
that need to be visited.

5.3 Smart message
A smart message structures the behaviour of a mobile agent
and incorporates its reproductive (or cloning) behaviour, mi-
gratory (or self-routing) behaviour, and computational be-
haviour.

Problem / Motivation

How can a distributed entity, such as an agent, engage in
complex interactions with (sequences of) various other enti-
ties in the large-scale and dynamic environment?

Figure 2: Smart message

In the example of traffic management, how can a vehicle
explore various paths towards its destination(s), and for each
path interact with the infrastructure elements in this path
in order to find out about traffic forecasts? By aggregating
traffic information about all elements in a route, one can
assess the quality (e.g. travel time) of the route.

Solution

One can use a self-contained, mobile entity that is com-
prised of state and behavior, and that retains information
about the entity that is responsible for the message (e.g. the
sender) - see Figure 2. Such an entity is called a smart
message. A smart message autonomously moves in the
environment and interacts with nodes.

The behavior of a smart message includes:

• querying context information, and possibly interacting
with local software entities,

• executing local computation that complies with the
messages’ objective,

• exhibiting migratory behavior that decides which node
to move to next, and

• executing reproductive behavior which allows new
smart messages or clones of itself to be created and
spawned in the execution context.

A smart message is deployed in an execution context, i.e. an
environment in which the message can perform its behavior
and update its state, and which is statically linked to a node.
The execution context offers services for

• creating new smart messages,

• migrating a smart message to a neighboring node,



• receiving and consequently re-enacting smart messages
(i.e. triggering their behavior execution), and

• querying for context information, including for topo-
logical information (e.g. providing lists of neighboring
nodes) and for other registered entities (e.g. providing
references to agents that are active at the node).

In the traffic management example, vehicles can send out
a smart message to explore the quality of various journeys
that the vehicle could make. It can use a disciplined flood
to limit communication overhead in its search, combined
with a propertinerary of several destinations it aims to visit.
In order to assess the time it would take the vehicle itself
to perform the journey, the smart message can interrogate
the nodes it passes to find out about their forecast traffic
density. The smart message accummulates this information
until it was able to explore an entire journey. At that time,
the smart message changes its reproductive, migratory and
computational behaviour such that it can resend itself to the
vehicle that created the message in the first place.

Consequences

A smart message is a valuable instrument for software en-
tities for communicating with other entities in a large-scale
and uknown environment. Care should be taken that the
reproductive behaviour of the smart message does not cause
flooding (e.g. using a disciplined flood) or eternal traveling
behaviour. Due to the limited communication capacity, the
state and mobile code must be limited in size. Due to lim-
ited computational capacities of nodes, the behaviour must
be of limited complexity.

Related patterns

Although there is no such thing as a ‘mobile agent pattern’,
a smart message is an autonomous and mobile software en-
tity and could be considered to be a mobile agent. As a
mobile agent, the smart message routes itself and performs
its behavior in order to reach its objective. Two aspects sup-
port presenting smart messages as a new pattern. First,
the light-weight nature is crucial. Smart messages may not
have a complex agent architecture, yet consist of three ba-
sic behavioral components. Second, smart messages have a
particular subordinate role compared to high-level software
entities - smart messages make a generic solution to commu-
nication and interaction between high-level software entities
in large-scale distributed applications.

A smart message can make use of disciplined flood to
define its reproductive and migratory behaviour. It can use
properinerary if visiting a sequence of locations (based on
properties) is part of its objective.

The messenger and itinerary patterns [AL98] describes
an autonomous message that self-routes towards one ore
more destination. Smart messages are self-contained mes-
sages endowed with their own objectives.

Figure 3: Delegate MAS

5.4 Delegate MAS
A smart message is a single, mobile unit. Smart mes-
sages can effectively be used in a conglomerate, collectively
executing a particular task or role on behalf of a software
entity. Such a conglomerate needs to be managed properly
- e.g. smart messages need to be sent out regularly, and
the results that are collected by smart messages need to be
processed and provided to the entity. A delegate MAS
represents such a managed conglomerate.

Problem / Motivation

How can a software entity make efficient and effective use of
smart messages, without becoming too complex itself?

Solution

The presented solution is to delegate the management of the
communication and interaction to a separate module that
manages smart messages. A delegate MAS (see Figure 3)
is a behavior module [Mae90], i.e. a well-defined behavior
that an agent can perform to reach a particular objective
or task2. An agent’s behavior consists of selecting and exe-
cuting behavior modules, possibly in a concurrent manner.
The agent itself manages the activation and deactivation of
behavior modules, as well as the coordination between be-
havior modules. A behavior module is monitored and con-
trolled by an agent, and fulfills a well-defined objective or
task on behalf of the agent.

A delegate MAS is a behavior module that uses smart mes-
sages to fulfill its objective or task. As such, a delegate MAS
is in charge of the management of the smart messages, and
encapsulates a policy for creating smart messages (including
a policy about timing and frequency of creating messages)
with their own suitable (parameterized) behavior and ini-

2Other terms that are strongly related to behavior modules
are capabilities, skills, or plans.



tial state, and spawning the messages through the execution
context of the node. Additionally, the delegate MAS module
collects the results that smart messages report back. The re-
sults are processed to meet the expectations that the agent
has of this behavior module. Processed results are forwarded
to the coarse grain agent for further interpretation (e.g. via
a shared data space or an event-listener mechanism).

Consequences

This solution allows coarse-grain application-level software
entities to delegate part of their communication and interac-
tion behavior to a separate module. This supports managing
the complexity. Using this pattern requires careful consid-
eration of which aspects of the decision making can be fully
delegated to this behavior module and which aspects must
remain controlled by the application-level entity itself.

5.5 Delegate ant MAS
A delegate ant MAS is a delegate MAS that is specifi-
cally targeted for implementing distributed, ACO-like be-
havior. ACO stands for the ant colony optimization meta-
heuristic [DDC99].

Problem / Motivation

How can software entities in large-scale distributed and dy-
namic environments, cooperatively build routing informa-
tion.

The problem that is addressed by this pattern arises when
application-level software entities need to find suitable
routes through the graph-structured network cooperatively ,
hence yielding to more up-to-date routing information. As
an example, assume vehicles that need to perform tasks (e.g.
movement of goods, such as pickup and delivery services)
needing to route towards pickup and delivery locations. Ve-
hicles need to cooperate to improve the accuracy of the rout-
ing information.

Solution

While ACO is a discrete optimization meta-heuristic, the
fundamental ideas of ACO can be applied for decentralized
cooperative routing.

Delegate ant MAS is an ACO-inspired refinement of del-
egate MAS, see Figure 4. A delegate ant MAS manages ant
agents instead of smart messages. We define an ant agent as
a smart message of which the behavior and state is directly
related to ant colony optimization techniques. The objective
of an individual ant agent is to traverse the environment in
search for a solution, on behalf of its delegate ant MAS to

Figure 4: Delegate ant MAS

which it reports back. The migratory behavior of an ant
agent is based on a probabilistic rule that takes into account
pheromone values that are associated with connections to
neighboring nodes. An ant agent influences the pheromone
values on nodes by a valuation of a connection as part of an
overall solution.

As such, an ant agent requires the following refinement com-
pared to smart messages:

• pheromone infrastructure at every node - specific in-
frastructure holds the pheromone data; the infrastruc-
ture updates the pheromone data based on the valua-
tion of ant agents, and possibly based on an automatic
evaporation function; the pheromone infrastructure is
offered to ant agents as a service that is accessible via
the execution context;

• forward-backward behavior - the behavior (incl. com-
putational, migratory and reproductive behavior) of a
typical ant agent distinguishes between two phases: a
forward behavior, and a backward behavior; the for-
ward behavior aims to explore the environment for a
solution (potentially updating pheromone values al-
ready), the backward behavior traces back to the re-
sponsible entity, updating pheromone values at the dif-
ferent nodes in its path; the phase that an ant agent
is in, is stored in the ant agent’s state.

In case of the traffic example, smart ant messages can drop
routing information that they have collected on behalf of
their vehicle, and make it available - through the pheromone
infrastructure. Other ant messages can benefit from this
information, yielding more accurate routing information.



Consequences

Delegate ant MAS combine delegate MAS with ACO-
based principles: the quality of solutions that have been
explored by smart ant messages are represented in the envi-
ronment for other explorers to exploit. Practical experience
shows, however, that delegate ant MAS requires a disci-
plined approach to parameter setting: many parameters are
involved (evaporation rate, quality computation, frequency
of exploration, and so on), which either need to be fine-tuned
off-line (e.g. using genetic algorithms or similar approaches)
or need to be monitored and adapted at run-time, i.e. de-
pending on the circumstances at hand.

6. KNOWN USES
Our research studies engineering of large-scale self-
organizing systems, with a particular focus on environment-
centric coordination mechanisms and their integration
within local decision components. In [HV06], we propose
‘delegate MAS’. Delegate MAS refers to a coordination
mechanism that is inspired by ant behavior and the con-
cepts of BDI-based agents. During our research, we observed
approaches for self-organizing system that have interesting
similarities to our work. We present these approaches be-
low. For each approach, we indicate (1) the application area
for which it has been proposed, (2) key characteristics of the
problem that is addressed, and (3) the basic elements and
philosophy of the approach. Finally, we indicate how the
approaches relate to the patterns described earlier in this
document.

6.1 Delegate MAS
The coordination mechanism called ‘delegate MAS’ is the
result of research on the application of multi-agent system
(MAS) technology in manufacturing control. In particu-
lar, we investigated self-organizing solutions for controlling
mobile units - which enable partially fabricated goods to
move through a manufactory - in a graph structured network
of machines and conveyor belts. The approach is based on
the PROSA reference architecture [BWV+98], which iden-
tifies the core domain agents that mainly represent the mo-
bile units and the resources. Our experience in using the
approach for manufacturing control led us to identify a class
of applications which we call ‘coordination-and-control
(C&C) applications’. C&C applications are applications
in which software controls entities in an underlying physical
environment. Entities include fixed (non-mobile) resources,
capable of performing particular operations, as well as mo-
bile entities which can move in the environment. The pur-
pose of a C&C application is to execute “tasks”. Executing a
task requires moving through the environment and perform-
ing operations by using resources. The environment itself is
highly dynamic. Resources may crash, new resources may
be added, connections between resources may be added, lost,
or their characteristics (e.g. throughput, speed) may change.
Members of this family of coordination and control applica-
tions include, next to manufacturing control, traffic control
and web service coordination, but also supply chain man-
agement and multi-modal logistics.

Problem characteristics include the large scale, dynam-
ics, uncertainty, and going concerns as the system objec-
tive. The approach needs to cope with large scale of the

system, both in terms of number of agents (vehicles, orders,
tasks) and physical distribution. Dynamics are intrinsic to
any realistic control system, hence the software needs to be
designed to cope with uncertainty w.r.t. the perceptions of
the world and the results of actuation. The approach must
aim for a continuous strive for performance in the presence
of dynamics. As such, C&C systems are never single-shot
applications but going concern applications.

In the approach, the domain agents need to coordi-
nate their behavior for satisfying the (functional and non-
functional) system requirements. Here we distinguish task
agents which manage and control the mobile units, and re-
source agents which manage and control the static resources.
Direct communication and negotiation protocols are an ob-
vious approach for coordination, yet lead to very complex
agent behavior due to the large number of protocols an agent
can be involved in, and dynamics.

Delegate MAS alleviates this complexity by delegating part
of the coordination behavior to a dedicated behavior mod-
ule. Delegate MAS is, to some degree, inspired by food
foraging in ant colonies. Ants autonomously explore their
environment, and drop pheromones in their environment to
indicate the presence of food. Pheromones act as stimuli
for other ants. Pheromone trails evaporate over time, and
eventually disappear if not reinforced.

We exploit these principles in our approach and define three
types of light-weight agents (called ‘ant agents’), which each
represent a different delegate MAS. Feasibility ants are is-
sued regularly by resource agents to autonomously travel
the environment and distribute information about the paths
that they have followed - i.e. leaving road signs towards their
respective resource agents. Exploration ants are sent regu-
larly by task agents to autonomously explore the environ-
ment for paths that its task agent could follow. On every
node, an exploration ant interrogates the resource agent at
that node to find out about a potential scheduling of its task
agent. When a path is found, the exploration ants report
back to their issuing task agent. The task agent weighs the
different alternative paths, and decides upon one path as
its intention. Intention ants are regularly sent out to dis-
seminate this information and make reservations at every
node on the intended path. The terminology makes the link
to BDI-based agents (Beliefs-Desires-Intentions, see [RG91,
Bra87]) obvious. Exploration ants inform the task agent
about possible options, after which a task agent selects an
option as its intention.

A more detailed description of the approach can be found in
[HV06].

From this description, it can be seen that the exploration
ants are smart messages which incorporate the disci-
plined flood and propertinerary. The set of explo-
ration ants is managed using delegate MAS. Feasibility
ants are a second type of delegate MAS that consists
of smart messages that exhibit the behavior of a disci-
plined flood. Intention ants are managed by a delegate
MAS, and make specific smart messages, which adopt an
itinerary approach [AL98] - i.e. they are equipped with a
set of locations they need to visit.



6.2 Bio-Inspired Distributed Middleware
Management for Stream Processing
Systems

In their recent paper [LS08], Lakshmanan and Strom re-
port on a decentralized, ant-inspired algorithm for placing
(graphs of) stream processing tasks onto a distributed
network of machines. Stream processing systems support
applications such as processing financial market data or sen-
sor network data. Stream data sources produce large vol-
umes of data at high and variable rates. Performance can
be enhanced by dynamically placing stream processing tasks
on strategic nodes in the network.

The management application must aim at placing the stream
processing tasks on network nodes, taking into account di-
verse problem characteristics. A first characteristic is dy-
namics. The flow graph can change (a new query or con-
sumer of stream processing results), network topology and
quality characteristics can change, data production rates
may vary. Then, the source and consumer nodes can be
geographically dispersed in a large network. Third, next
to finding ‘optimal paths between producers of streaming
data, over processing nodes, to consumers’, it must be en-
sured that nodes in the path still comply to the expectations:
nodes in the path must still have sufficient computational ca-
pacity to meet the process operators of the query without
adversely affecting the performance of queries whose opera-
tors are already deployed on these nodes.

In this application, a centralized server which has up-to-
date global knowledge and which could calculate an optimal
allocation of tasks to nodes is unfeasible. Therefore, a de-
centralized solution is proposed and evaluated. In par-
ticular, producers, nodes and consumers coordinate the task
placement, not by direct communication protocols, but via
autonomous, ant-like entities. Also here, three types of ant
agents are proposed. Routing ants are created by data pro-
ducer sites, and explore paths to query consumers. When
they reached their destination, they report back to the pro-
ducer site, leaving a pheromone trail along the path they
have followed. The amount of pheromone is proportional to
the quality of the path for the query. This is closely related
to ant colony optimization techniques [DDC99, DCG99].
Scouting ants exploit the pheromone information about
routes to the destination and perform hypothetical place-
ment of tasks along the path. Much like exploration ants
in the delegate MAS approach, scouting ants explore differ-
ent solutions for the problem from the point of view of one
domain agent (a producer here, and a task agent in the del-
egate MAS approach). A queueing model at intermediate
nodes is used to estimate the effects of task placement at
this node. Scouting ants report back to the producer node
when a path with hypothetical task placement has been ex-
plored. When a producer has reports about several scouting
ants, enforcement ants (somewhat similar to intention ants)
make actual arrangements along one particular path. The
approach also allows to take into account multiple producers
for one query. Join points are then identified - join points
are nodes in the network where data from several producers
is merged. The placement algorithm is recursively executed
from each of he producers to this join point.

A more detailed description of the approach can be found in
[LS08].

The resemblance of the approach with the delegate MAS
approach is striking. The pattern usage is hence similar, ex-
cept that the scouting ants are to be considered as a ‘delegate
ant MAS’, since ACO-inspired techniques are used explicitly
to assist routing.

6.3 AntHocNet
AntHocNet [CDG05] addresses the problem of routing in
mobile ad hoc networks (MANETs). In typical MANET
applications, data sources need to send data packages to
destinations. Nodes however are mobile and communicate
over wireless connections.

Routing in MANETs is particularly difficult due to intrinsic
dynamics. Nodes are mobile, therefore the network topology
changes continuously, and therefore paths between nodes
have a limited lifetime. Overall, maximizing network perfor-
mance is a key objective. Bandwidth usage is limited and
variable, as the wireless communication medium is shared
and interference may occur. Scale is another quality crite-
rion - routing must support networks that consist of large
numbers of physically distributed nodes. Load balancing
should avoid network congestion - information about multi-
ple paths from a source to a destination is desirable.

Due to the nature of MANETs, centralized control of routing
is obviously not an option. In a MANET there are no des-
ignated routers. Every node is able to execute routing
functionality. AntHocNet aims to combine reactive and
proactive routing. Reactive routing denotes an approach
that corresponds to routing-on-demand. Routing informa-
tion is gathered when a new data transfer is initiated or an
existing path fails. Proactive routing ensures that routing is
available at all times. AntHocNet is to a large extent based
on the ant colony optimization metaheuristic [DDC99], and
in particular extends AntNet [CD98], a routing algorithm for
wired networks. On demand of a node, reactive forward ants
explore the network for paths to a particular destination.
These ants use existing routing information if available. If
not, they perform a local broadcast. When the destination
is reached, the ant becomes a reactive backward ant which
updates pheromone tables along its path back to its source.
Pheromone table entries represent the quality of a hop to a
next node for reaching the destination. Proactively, nodes
diffuse information they have on destination nodes to their
neighbors, called pheromone diffusion. Source nodes peri-
odically send out proactive forward ants which follow the
diffused pheromone, in order to find other paths to the des-
tination. This potentially yields multiple path to the desti-
nation, which can be used concurrently for stochastic data
routing.

A more detailed description of the approach can be found in
[CDG05].

Reactive forward ants form a delegate ant MAS of smart
ant messages that collaboratively ensure up to date routing
information. The pheromone difffusion mechanism corre-
sponds to a delegate MAS mechanism with disciplined
flood.



6.4 Polyagents
The term polyagent refers to an agent-based design approach
that has been validated in diverse application areas, includ-
ing manufacturing control and military applications such as
unmanned vehicle routing and commander control. As one
example, unmanned vehicle control is an application that
aims to find and maintain a suitable path for an unmanned
vehicle towards a destination. A path corresponds to a route
in the environment that evades hostile regions.

A battle field environment contains uncertainty and is
rapidly changing. Efficiency in controlling the vehicles, ro-
bustness with respect to message loss, and adaptability to a
changing environment are the main architectural drivers for
this application.

Polyagents [PB07] is a decentralized, agent-based approach.
It starts from the basic principle that domain entities can be
represented by multiple agents rather than a single agent. A
polyagent consists of one avatar, that is linked to the entity
itself, and multiple ghost agents that explore alternative be-
haviors of the avatar. Ghost agents are typically computa-
tionally simple agents that interact via digital pheromone
fields. Ghosts explore the environment and probabilisti-
cally choose their actions, based on the locally available
pheromones. Ghost agents can optionally drop pheromones
themselves. For the unmanned vehicle routing application,
ghosts imitate ant behavior by exploring a path to the des-
tination of the vehicle, avoiding threats. Ghosts drop ‘nest
pheromone’ while going outbound, and ‘target pheromone’
on their way back to the avatar. As the ghost agents report
back to the avatar that sent them, the avatar can base its
own decision on the experience that the ghosts had in the
environment. We note that the decision of an avatar is not
explicitly communicated through the environment. Besides
the fact that this is undesirable in a battle field environ-
ment, polyagents are mainly instruments to assist an avatar
in making its decision based on the current state of the en-
vironment, and not for coordination of future movements of
several avatars. In general, the approach does not dictate
or constrain how and for what purpose ghost agents can be
sent out. The application of commander control illustrates
the use of ghosts as explorers of possible future states of the
avatar itself. This application is an example of the use of
polyagents in adversarial or purely competitive systems. In
this case, polyagents can only roam local representations of
observed behavior of other agents, they do not interact with
these other avatars. In this paper, we will focus on the use
of polyagents to roam and interact with other agents in a
cooperative setting.

More details on polyagents can be found in [PB07,
PBW+07].

Polyagents make a form of delegate ant MAS where ghost
agents roam the environment using disciplined flood, and
drop pheromone information to indicate probabilities of fu-
ture behavior trajectories.

7. CONCLUSION
“Mature engineering disciplines are characterized by refer-
ence materials that give engineers access to the fieldÕs sys-
tematic knowledge. Cataloguing architectural patterns is a

first step in this direction.” (From ‘The golden age of soft-
ware architecture’ by Clements and Shaw, [SC06])

Large-scale and dynamic, decentralized applications are par-
ticularly hard to engineer. Several solutions have been de-
scribed in literature, yet it is not easy to consolidate the
solutions into reusable assets. One important reason is that
a solution technique makes only sense in a particular applica-
tion if applying the technique is studied in detail and a pos-
itive evaluation results from this study. However, reusable
solution patterns serve as inspiration rather than as instanti-
atable templates. In this paper, we have overviewed various
approaches in the area of large-scale and dynamic, decentral-
ized solutions. We identified recurring technical challenges
that each of the approaches address, as well as recurring
solution techniques. We attempt to consolidate these find-
ings in a limited number of clearly defined solution patterns:
smart messages, delegate MAS and delegate ant MAS.

Many challenges can be distinguished. On the agenda for
future work is providing an in-depth, formal definition of
the patterns. This allows to more rigourously define the
patterns, which is necessary for unambiguously applying the
patterns in an application.

Another challenge is the engineering or re-engineering of
non-trivial applications, inspired by the solution patterns
presented in this paper. One application that we intend to
study in the near future is decentralized power grid manage-
ment. Decentralized power producers and consumers need
to coordinate to avoid peeks in power production and max-
imizing the use of green energy. Another family of applica-
tions is pickup-and-delivery problems (PDP [Sav95]). The
patterns identified in this paper have been an interesting
source of inspiration in our first experiments in both areas.
The patterns stimulate to consider solutions beyond pure
ACO-based techniques, or beyond the original delegate MAS
approach.

Acknowledgment
We thank our EuroPLOP shepherd for his useful feedback
and hints.

This research is partially funded by the Interuniversity At-
traction Poles Programme Belgian State, Belgian Science
Policy, and by the Research Fund K.U.Leuven. Danny
Weyns is a post-doctoral researcher of the FWO-Vlaanderen.

8. REFERENCES
[AL98] Yariv Aridor and Danny B. Lange. Agent

design patterns: elements of agent application
design. In AGENTS ’98: Proceedings of the
second international conference on
Autonomous agents, pages 108–115, New York,
NY, USA, 1998. ACM.

[Bra87] Michael E. Bratman. Intentions, Plans, and
Practical Reason. Harvard, Cambridge, MA,
USA, 1987.

[BWV+98] Hendrik Van Brussel, Jo Wyns, Paul
Valckenaers, Luc Bongaerts, and Patrick
Peeters. Reference architecture for holonic
manufacturing systems: Prosa. Computers in
Industry, 37(3):255–276, 1998.



[CD98] Gianni Di Caro and Marco Dorigo. Antnet:
Distributed stigmergetic control for
communications networks. Journal of Artificial
Intelligence Research, 9:317–365, 1998.

[CDG05] Gianni Di Caro, Frederick Ducatelle, and
Luca M. Gambardella. Anthocnet: An adaptive
nature-inspired algorithm for routing in mobile
ad hoc networks. European Transactions on
Telecommunications, 16:443–455, 2005.

[CPV97] Antonio Carzaniga, Gian Pietro Picco, and
Giovanni Vigna. Designing distributed
applications with mobile code paradigms. In
ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages
22–32, New York, NY, USA, 1997. ACM.

[DCG99] Marco Dorigo, Gianni Di Caro, and Luca
Gambardella. Ant algorithms for discrete
optimization. Artif. Life, 5(2):137–172, 1999.

[DDC99] Marco Dorigo and Gianni D. Di Caro. The Ant
Colony Optimization Meta-Heuristic, pages
11–32. McGraw-Hill, 1999.

[HV06] Tom Holvoet and Paul Valckenaers. Exploiting
the environment for coordinating agent
intentions. In Danny Weyns, H. Van Dyke
Parunak, and Fabien Michel, editors, E4MAS,
volume 4389 of Lecture Notes in Computer
Science, pages 51–66. Springer, 2006.

[HWV09] Tom Holvoet, Danny Weyns, and Paul
Valckenaers. Patterns of delegate mas. In
Self-Adaptive and Self-Organizing Systems,
pages 1–9. IEEE Computer Society, September
2009.

[KKPS98] Elizabeth A. Kendall, P. V. Murali Krishna,
Chirag V. Pathak, and C. B. Suresh. Patterns
of intelligent and mobile agents. In AGENTS
’98: Proceedings of the second international
conference on Autonomous agents, pages
92–99, New York, NY, USA, 1998. ACM.

[KMTU03] Ryszard Kowalczyk, Jörg P. Müller, Huaglory
Tianfield, and Rainer Unland, editors. Agent
Technologies, Infrastructures, Tools, and
Applications for E-Services, NODe 2002
Agent-Related Workshops, Erfurt, Germany,
October 7-10, 2002. Revised Papers, volume
2592 of Lecture Notes in Computer Science.
Springer, 2003.

[LS08] Geetika T. Lakshmanan and Rob E. Strom.
Biologically-inspired distributed middleware
management for stream processing systems. In
Middleware ’08: Proceedings of the 9th
ACM/IFIP/USENIX International Conference
on Middleware, pages 223–242, New York, NY,
USA, 2008. Springer-Verlag New York, Inc.

[Mae90] Patti Maes. Situated agents can have goals. In
Patti Maes, editor, Designing Autonomous
Agents, pages 49–70. MIT Press, 1990.

[PB07] V. Parunak and S. Brueckner. Concurrent
modeling of alternative worlds with polyagents.
In Multi-Agent-Based Simulation VII,
International Workshop, MABS 2006,
Hakodate, Japan, May 8, 2006, Revised and
Invited Papers, volume 4442 of Lecture Notes

in Computer Science. Springer, 2007.

[PBW+07] H. Van Dyke Parunak, Sven Brueckner, Danny
Weyns, Tom Holvoet, Paul Verstraete, and
Paul Valckenaers. E pluribus unum: Polyagent
and delegate mas architectures. In Eighth
International Workshop on Multi-Agent-Based
Simulation, volume 5003 of Lecture notes in
computer science, pages 36–51, 2007.

[RG91] Anand S. Rao and Michael P. Georgeff.
Modeling rational agents within a
BDI-architecture. In James Allen, Richard
Fikes, and Erik Sandewall, editors, Proceedings
of the 2nd International Conference on
Principles of Knowledge Representation and
Reasoning (KR’91), pages 473–484. Morgan
Kaufmann publishers Inc.: San Mateo, CA,
USA, 1991.

[Sav95] Martin W. P. Savelsbergh. The general pickup
and delivery problem. Transportation Science,
29(1):17–29, 1995.

[SC06] M. Shaw and P. Clements. The golden age of
software architecture. IEEE Softw.,
23(2):31–39, 2006.

[WHH07] Danny Weyns, Tom Holvoet, and Alexander
Helleboogh. Anticipatory vehicle routing using
delegate multi-agent systems. In Intelligent
Transportation Systems Conference, 2007.
ITSC 2007. IEEE,, pages 87–93. IEEE,
October 2007.

[Woo09] Michael Wooldridge. An Introduction to
Multiagent Systems. Wiley, Chichester, UK, 2.
edition, 2009.


