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M
odern distributed software systems 
such as Web-based e-commerce and 
business-process management pose 
huge engineering challenges. As the 
systems interact with one another, 
they necessarily become decentral-

ized. The underlying system components and 
collaborations change over time—often in unan-

ticipated ways. The systems must therefore make 
adaptations at runtime—that is, they need to be 
self-adaptive.

Engineering such systems requires concepts, 
methods, and infrastructures beyond what cur-
rent practice offers. Conventional engineering 
approaches call for direct specification of all pos-

sible configurations and reconfigurations. Build-
ing systems that can handle unanticipated events 
is difficult and error prone. Self-adaptive systems 
call for a shift in engineering vision from satisfying 
offline requirements through traditional top-down 
methods to satisfying online requirements through 
the coordination of decentralized systems. This is 
where multiagent systems and agent-oriented soft-
ware engineering can help.

Self-Adaptive Systems
Self-adaptive systems respond dynamically to 
changes in their environment and user require-
ments. Self adaptation can apply to various sys-
tem properties. For example, a self-healing system 
can automatically discover, diagnose, and correct 
faults; alternatively, a self-optimizing system can 
automatically monitor and adapt resource usage 
to ensure optimal functioning relative to defined 
requirements.

Current engineering practice takes an  
architecture-centric perspective on self-adaptive 
systems. Typical examples include the Rainbow 
framework developed at Carnegie Mellon Univer-
sity and IBM’s blueprint for autonomic computing 
(see the sidebar for Web links). These approaches 
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provide an appropriate abstraction level 
for describing and managing dynamical 
system changes. Over the past decade, var-
ious frameworks have contributed to suc-
cessful self-adaptive systems.

However, several challenges remain, 
including decentralized coordination of 
self-adaptation in a distributed setting. 
Decentralized control is crucial for qual-
ity requirements such as openness, robust-
ness, and scalability. Global control of 
distributed systems such as Web-scale in-
formation systems, intelligent transporta-
tion systems, and power grids is difficult 
to achieve or even infeasible, although 
centralized control of local subsystems is 
possible.

Multiagent Systems
Multiagent systems belong to a class 
of decentralized systems in which each 
component (agent) is an autonomous 
problem solver, typically able to oper-
ate successfully in various dynamic and 
uncertain environments. These agents 
interact to solve problems that are be-
yond their individual capabilities or 
knowledge. 

Multiagent systems have features that 
are key to engineering self-adaptive sys-
tems—specifically, loose coupling, con-
text sensitivity, and robustness to failures 
and unexpected events. To some extent, 
loose coupling and context sensitivity 
are also present in conventional service-
oriented systems. But self-adaptive mul-
tiagent systems extend these mechanisms 
to the behavior of each agent component.

Loose Coupling
Agents are self-contained, goal-directed 
entities. They get their adaptability from 
goals. When multiple agents are avail-
able, a goal can be achieved by selecting 
among the agents at runtime rather than 
requiring a hardwired design. For exam-
ple, agents could negotiate a supply-chain 
collaboration at runtime on the basis of 
service providers’ availability and specific 
preferences of the collaborating parties. 
This is similar to loosely coupled services 
in a service-oriented architecture (SOA) 
and yields the same flexibility and reuse 
benefits. However, because goals normally 
have a well-defined semantics (corre-
sponding to some preferred world state or 
behavior), one agent can invoke others on 

the basis of what they can achieve rather 
than their names. This gives agent-based 
systems more flexibility than service- 
oriented approaches.

Loose coupling and goal-directed be-
havior extend to an agent’s internal pro-
cessing, as typified by BDI (belief-desire-
intention) architectures. For example, in a 
manufacturing execution system, an agent 
responsible for routing work pieces might 
adapt its routing strategy dynamically ac-
cording to particular observations in its 
environment. By having a library of inde-
pendent, semantically complete processes 
(rather than a hard-linked network of pro-
cesses), a system can easily add new pro-
cesses to the library, making it easy to ex-
tend the agent’s capabilities. It’s similarly 
easy to modify existing processes without 
having to rewire code in other processes.

Goal-based, loose coupling of agents 
externally and of agent processes inter-
nally provides the flexibility needed for 
self-adaptation and reuse. It also drives 
standardization and reduces total owner-
ship costs.

Context Dependence
An agent includes a specification of the 
situation or context in which it’s appropri-
ate or expected to achieve its target goal. 
A calling agent can simply post the goals 
it wishes to achieve and select only those 
agents appropriate to the goal and cur-
rent processing context: the right agent at 
the right time in the right circumstances. 
Similarly, an agent’s internal processes are 
typically associated with a context con-

dition describing the situations in which 
the process can achieve its specified goal. 
This means that processes “self select” ac-
cording to the desired goal and prevailing 
situation.

In conventional engineering, this con-
textual information isn’t typically in-
cluded in the definition of the called ser-
vice or process (although service-oriented 
approaches move some way toward this 
objective). Instead—somewhat bizarrely 
when you think about it—the developer 
must write conditional decision logic in the 
calling process to ensure that the system 
will select the right called process. This 
complex decision logic rapidly leads to un-
manageable code. 

More troublesome, any changes to a 
process and the context in which it’s ap-
propriate require changes to the decision 
logic—not just in one place, but every-
where the process is used. As a result, de-
velopers can’t create processes indepen-
dently of one another. 

Robustness
Goal-directed multiagent systems elimi-
nate most of the complexity needed for 
handling agent or process failures, such as 
a delivery service’s truck breaking down, 
and unanticipated events, such as a road 
closure. In such systems, failures and un-
expected events cause the original goal to 
be reposted and tried again, without the 
need for explicit exception handling.

This way of handling failure is typi-
cal of the real world: if a door fails to 
open, try a key; if that also fails, ring the 
buzzer for someone to let you in. The goal 
is simple, but if we tried to write this in a 
conventional process language, we would 
have to explicitly specify all the exception-
handling processes and how and when to 
apply them. In goal-directed agent sys-
tems, there is nothing to do. If other agents 
or processes can achieve the same objec-
tive, the goal-directed mechanism will au-
tomatically try them until success or ulti-
mate failure.

Technology Comparison
Agent-based software engineering is of-
ten compared to object-based approaches. 
This might be useful for clarifying some 
aspects of agent technology, but the com-
parison is finally between apples and or-
anges. Agents are a specific architectural 

Multiagent systems  
have features that are 

key to engineering self-
adaptive systems— 

loose coupling,  
context sensitivity,  

and robustness.
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style that imposes particular constraints 
on a system while yielding particular qual-
ities and tradeoffs. Objects are the primary 
building blocks for implementing practical 
multiagent system architectures.

A more useful comparison contrasts 
agent-based approaches with more tradi-
tional architectural styles. Table 1 com-
pares multiagent systems with client-
server and service-oriented approaches 
in terms of usefulness, quality attributes, 
and cost.

A Self-Adaptive Automated 
Transportation System
An application for an automatic guided 
vehicle (AGV) transportation system illus-
trates the self-adaptive value of multiagent 
systems (for background information on 
this project, visit the Emc2 Web site listed 
in the sidebar). 

An AGV system transports loads in an 
industrial environment. Different clients 
can generate transports—for example, a 
warehouse management system, a ma-
chine’s software, or a human operator. 
The system’s main functionalities include 
assigning transport tasks to appropriate 
AGVs, routing the AGVs efficiently while 
avoiding collisions and deadlocks, and 
providing AGV maintenance services. 
The system must operate efficiently and 

robustly while handling dynamic operat-
ing conditions such as AGVs leaving the 
system for maintenance, variable wait-
ing times for production machines, delays 
in supply of goods, temporary closures in 
warehouse areas, and blocked paths.

Traditionally, a central server con-
trols an AGV system. The server plans 
the schedule for the system as a whole, 
dispatches commands to the AGVs, and 
continually polls their status. This results 
in reliable, predictable solutions and easy 
diagnosis of errors. However, such solu-
tions are usually inflexible and difficult to 
adapt to changing business needs. Systems 
that can autonomously adapt to changing 
circumstances must meet quality require-
ments for flexibility and openness. Specifi-
cally, they must have the flexibility to deal 
autonomously with dynamic operating 
conditions and the openness to deal auton-
omously with AGVs leaving and entering 
the system. 

To meet these quality requirements 
for an AGV system, researchers from 
Distri Net Labs and engineers from Ege-
min—the two partners in the project—
developed a new architecture based on 
multiagent systems. Figure 1 shows a high-
level deployment model of the system. An 
AGV agent deployed on a computer sys-
tem in each vehicle controls the vehicle. A 

transport agent deployed at a dedicated 
computer system called the transport base 
represents each transportation task in the 
system. AGV agents and transport agents 
must coordinate their actions—for ex-
ample, assigning transports and avoiding 
collisions. Common middleware services 
manage communications over a wireless 
network.

To illustrate the system’s self-adaptive 
properties, we explain how the agents use 
a dynamic communication protocol for 
transport assignment. The protocol ex-
tends the well-known contract-net proto-
col (CNET) that Reid G. Smith introduced 
in the early 1980s. DynCNET (Dynamic 
CNET) consists of five basic steps, shown 
in Figure 2.

 1. The transport agent—the protocol’s 
initiator—sends a call for propos-
als (cfp) to the AGV agents in its con-
text—that is, the agents within a cer-
tain area from the load.

 2. The AGV agents in this area—the 
participants in the protocol—respond 
with proposals.

 3. The transport agent notifies the provi-
sional winner.

 4. While the AGV moves toward the 
load, the transport agent as well as the 
AGV agent can abort the provisional 

Table 1
Technology comparison of multiagent systems 

with client-server and service-oriented system approaches
Description Usefulness Performance Robustness Adaptability Scalability Cost

Client-server Centralized, 
reliable, 
high-security 
environments

Fast; response 
times increase 
gradually as 
more requests 
are made

System fails 
when server goes 
down; solve by 
increasing number 
of servers

Difficult to adapt 
to changing 
circumstances 
or new business 
requirements

Congestion risk 
when adding more 
users; solve by 
increasing number 
of servers

Higher initial 
capital 
investment, higher 
maintenance costs

Service-
oriented

Loosely coupled 
systems with 
business- and 
technology- 
domain 
alignments

Dynamic service 
composition 
and description 
parsing 
introduce 
performance 
overhead

Depends on the 
quality attributes 
of the service 
composition 
infrastructure to 
deal with failures

Can adapt at the 
service level using 
dynamic service 
discovery

Stateful services 
require exchange of 
service (meta)data, 
which increases 
coupling and 
reduces scalability

Cost effective 
as a result of 
reusability, 
composability, and 
standardization

Multiagent 
system

Inherently 
distributed, 
locally 
autonomous, 
highly dynamic 
environments

Efficient 
adaptation to 
local changes; 
lack of global 
information can 
result in myopic 
decisions

Goal-directed 
mechanism 
handles failures; 
if failure occurs, it 
will have only local 
impact

Goal-directed, 
context-sensitive 
process selection 
extends the benefits 
of loose coupling 
and adaptability to 
individual processes 
and workflows

Depending on 
the connectivity, 
communication 
channel can become 
a bottleneck when 
adding nodes; 
solve by increasing 
bandwidth

Economical with 
regard to required 
processing power; 
poor integration 
of agent-based 
design tools 
with common 
engineering tools
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agreement if a more suitable assign-
ment is available.

 5. The selected AGV agent informs the 
transport agent when the AGV picks 
the load (bound). 

The shaded zones in the activation boxes 
represent periods in the protocol when 
both agents can switch the provisional 
agreement.

The DynCNET protocol, in combi-
nation with the goal-directed, context- 
sensitive process selection, enables the 
agents to reconsider the environmental 
situation and adapt the task assignments 
dynamically when circumstances change. 
When a load is picked up or a new task 
enters the system, or when an AGV enters 
or leaves the system, the candidates for 
interaction will dynamically change and 
the agents will adapt their behavior ac-
cordingly. For example, an AGV that has 
provisionally accepted a certain task might 
decide, while moving toward its assigned 
load, to change the assignment to another 
load that now appears closer than the ini-
tially assigned load.

Tests in industrial installations have 
demonstrated up to 50 percent improve-
ment in system throughput compared to 
the traditional static approach for task as-
signment. The trade-off is a doubling of re-
quired communications bandwidth.

Hints for Practitioners
Although multiagent systems are an ap-
pealing approach for developing decentral-
ized self-adaptive systems, the gains don’t 
come without cost. We report some impor-
tant lessons learned from experiences with 
developing industrial-strength multiagent 
systems.

The Right Motivation 
Quality requirements are the main drivers 
for structuring a software system. Mul-
tiagent systems are known for addressing 
quality attributes such as adaptability, ro-
bustness, openness, and scalability. The 
decision to apply a multiagent system ar-
chitecture must be based on a good under-
standing of the stakeholders’ main quality 
attributes and those realized by a multi-
agent system architecture. 

Clarifying the added value and trade-
offs of adopting a multiagent system will 
help architects make well-considered de-

cisions and prevent stakeholders from 
overestimating or underestimating agent 
technology.

Multiagent System Integration
Software systems are rarely built in iso-

lation. Introducing a multiagent system 
usually requires embedding and integrat-
ing it with an existing software environ-
ment, including legacy systems. In multi-
agent system engineering, developers often 
consider “agentification” to be a general  
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Agent middleware

Common
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1: send(cfp)

2: [available]
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3: send(provisional-accept)

4: [better assignment]
send(abort)

5: [task started]
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Figure 1. Deployment model of the automatic guided vehicle (AGV) 
transportation system. Each AGV is deployed with an AGV agent, and a 
transport base supports transport agents. Communications occur through a 
wireless Ethernet.

Figure 2. DynCNET protocol. The start() operation initiates the protocol. The 
transport agent—initiator—sends a call for proposals to m AGV agents—
participants—within a certain area of the load. AGV agents respond with 
proposals to n transport agents within a certain area from their current 
location. After the provisional agreement, task assignment can be aborted, 
and the task can be reassigned until the load is picked up. 
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solution for integrating legacy code. How-
ever, concerns such as security, persis-
tence, and transactional behavior often 
crosscut a system. Wrapping falls short 
when integrating existing infrastructure 

that supports these concerns, which are 
typically provided as reusable middleware 
services.

Unfortunately, most available agent 
platforms do a poor job of integrating 

with common middleware services. No-
table exceptions are Whitestein Technol-
ogies’ Living Systems and Agentis Soft-
ware’s AdaptivEnterprise platform, which 
are integrated with Java Enterprise Edition 
(see the sidebar for more information).

Multiagent System Design
The multiagent system community has de-
veloped a variety of agent-based method-
ologies. These methodologies have their 
value, but their specificity can hamper in-
dustrial adoption. Experience taught us 
that integrating agent-based techniques 
within mainstream software engineering 
works well for building practical multiagent 
systems. 

For the AGV transportation system, we 
used the Software Engineering Institute’s 
attribute-driven design method. To realize 
the system goals, we employed a set of mul-
tiagent system architectural patterns and 
combined them with some common archi-
tectural patterns. We organized an archi-
tectural evaluation using Carnegie Mellon’s 
Architecture Trade-off Analysis Method to 
determine the design trade-offs and risks 
with respect to satisfying important qual-
ity attribute scenarios, particularly those 
related to flexibility, openness, and perfor-
mance. The agent-based software architec-
ture became a blueprint for system develop-
ment, which we implemented in C#.

Multiagent System Testing
As with any distributed system, testing a 
multiagent system is challenging. Decen-
tralization and deployment in open envi-
ronments add to the complexity. Among 
the important issues to be considered when 
testing a multiagent system are dynamic 
interactions, nondeterminism, dependen-
cies on third-party infrastructure, partial 
failures, semantic interoperability, task 
synchronization, and unwanted emergent 
behaviors.

You can combine traditional testing 
techniques such as unit and functional 
tests, advanced simulations, and partial for-
mal verification to test a multiagent system.

Impact of Multiagent System Adoption
Conway’s Law says that software archi-
tecture is related to a developing organiza-
tion’s structure. A dramatic change in the 
software architecture typically requires 
corresponding changes in the way teams 

Resources
Jeff Kramer and Jeff Magee provide an excellent overview of the state-of-the-art 
and challenges in self-adaptive systems in “Self-Managed Systems: An Archi-
tectural Challenge” (Future of Software Engineering, IEEE CS Press, 2007, pp. 
259–268).

Anand S. Rao and Michael P. Georgeff introduce the basics of the belief-
desire-intention agent architecture in “Modeling Rational Agents within a BDI 
Architecture” (Proc. 2nd Int’l Conf. Principles of Knowledge Representation and 
Reasoning, Morgan Kaufmann, 1991, pp. 473–484). 

In Architecture-Based Design of Multi-Agent Systems (ISBN 978-3-642-01063-
7, Springer, 2009), Danny Weyns describes an architecture-based approach for 
multiagent system software engineering and its application to the AGV (auto-
matic ground vehicle) transportation system that we describe in this article. 

Additionally, Weyns and coeditors H. Van Dyke Parunak and Onn Shehory 
developed a special issue on the future of software engineering and multiagent 
systems for the International Journal on Agent-Oriented Software Engineering 
(vol. 3, no. 4, 2009, pp. 369–415). The issue bundles a set of papers that discuss 
the opportunities as well as the technical and organizational obstacles for indus-
trial adoption of multiagent system technology.

Several Web sites offer information relevant to this article.
IBM Autonomic Computing takes a perspective on self-managing systems in-

spired by the human central nervous system; www.research.ibm.com/autonomic.
Rainbow is a framework for architecture-based adaptation of complex sys-

tems. It was developed at Carnegie Mellon University and supports automated, 
dynamic system adaptation via architectural models; www.cs.cmu.edu/~able/
research/rainbow.

A Dagstuhl seminar dedicated to Software Engineering for Self-Adaptive Sys-
tems brought together researchers from different disciplines, including research-
ers with backgrounds in autonomic computing, dependable computing, robotics, 
multiagent systems, and service-oriented architecture; www.dagstuhl.de/de/
programm/kalender/semhp/?semnr=08031.

Emc² (Egemin Modular Controls Concept) is a joint R&D project between 
Egemin and K.U. Leuven which has applied agent technology to developing 
a self-adaptive control system for an automated transportation system; http://
emc2.egemin.com.

The Foundation for Intelligent Physical Agents is working with OMG on agent 
standardization, including a service-oriented architecture standard that supports 
agents (SoaML) and an agent metamodel and profile; http://agent.omg.org.

Living Systems of Whitestein Technologies is a pioneer and leading innova-
tor in software agent technologies, autonomic computing, and self-adaptation; 
www.whitestein.com.

AdaptivEnterprise of Agentis Software is an innovative approach for devel-
oping adaptive software systems based on goal-directed agent theory; www.
agentissoftware.com

The International Journal of Agent-Oriented Software Engineering aims to 
promote the interface between research and commercial adoption of agent 
technology and bring together agent technologists and conventional software 
engineers; www.inderscience.com/browse/index.php?journalCODE=ijaose.
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are structured for developing, testing, and 
maintaining the software. Our experience 
indicates that moving from a traditional 
client-server architecture to a decentral-
ized multiagent architecture is a big step 
with far-reaching effects not only for the 
software but also for the organization’s 
structure.

One approach to manage this transition 
in a controlled way is to gradually shift re-
sponsibilities from the central server to the 
autonomous subsystems, focusing initially 

on those tasks that benefit most from mul-
tiagent systems.

C omplete offline design is no longer an 
option for distributed systems that 
must establish component collabora-

tions at runtime and adapt dynamically 
with changing operational conditions and 
user needs. Multiagent systems can tackle 
some of the hard problems of engineer-
ing self-adaptive systems. Although they 
aren’t a silver bullet, their added value will 

be a critical advantage as software systems 
continue to integrate and decentralization 
becomes a matter of fact, and the added 
value of multiagent systems will be of criti-
cal advantage.
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Katholieke Universiteit Leuven’s DistriNet Labs. Contact him at 
danny.weyns@cs.kuleuven.be. 

Michael Georgeff is founder and chief executive 
officer of Precedence Health Care and professor in the Faculty 
of Medicine at Monash University. Contact him at michael.
georgeff@precedencehealthcare.com.
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