
Composition of Architectural Models: Empirical Analysis and Language
Support

Nelis Boucké∗, Danny Weyns∗, Tom Holvoet∗

DistriNet,KULeuven
Celestijnenlaan 200A, 3001, Leuven, Belgium

Tel: +3216327825, Fax: +3216327996

Abstract

Managing the architectural description (AD) of a complex software system and maintaining consistency
among the different models is a demanding task. To understand the underlying problems, we analyze several
non-trivial software architectures. The empirical study shows that a substantial amount of information of ADs
is repeated, mainly by integrating information of different models in new models. Closer examination reveals
that the absence of rigorously specified dependencies among models and the lack of support for automated
composition of models are primary causes of management and consistency problems in software architecture.
To tackle these problems, we introduce an approach in which compositions of models, together with relations
among models, are explicitly supported in the ADL. We introduce these concepts formally and discuss a
proof-of-concept instantiation of composition in xADL and its supporting tools. The approach is evaluated
by comparing the original and revised ADs in an empirical study. The study indicates that our approach
reduces the number of manually specified elements by 29%, and reduces the number of manual changes to
elements for several realistic change scenarios by 52%.

Keywords: composition, relations, software architecture, architectural models, empirical analysis,
architectural description language (ADL)

1. Introduction

As the size and complexity of software systems
increases, designing the systems becomes more chal-
lenging. Software architecture plays a prominent
role in keeping software-intensive systems manage-
able. Bass et al. (2003) state that an architecture
of a software system defines its essential structures,
which comprise software elements, the externally
visible properties of those elements and the relation-
ships between them, together with the environment
in which it is deployed (ISO (2007)).

∗Corresponding author
Email addresses: nelis.boucke@cs.kuleuven.be (Nelis

Boucké), danny.weyns@cs.kuleuven.be (Danny Weyns),
tom.holvoet@cs.kuleuven.be (Tom Holvoet)

ISO (2007) defines that the documentation of
software architecture, i.e. the ‘architectural descrip-
tion’ (AD), consists of views and models. Every ar-
chitectural view consists of architectural models to
describe the architecture from the perspective of a
related set of stakeholder concerns. An individual
model describes concrete architectural elements. Ex-
amples are component and connector (C&C) models,
communicating processes, deployment and work as-
signment models. The use of views and models al-
lows to divide the architecture in manageable and
comprehensible pieces.

An AD typically contains a substantial amount
of information that is repeated in several models
throughout the AD. In particular, there are models
that mainly join information from other models. We
refer to these models as integrated models. Inte-

Preprint submitted to Journal of System and Software June 3, 2010

grated models are responsible for a large part of the
repetition. Describing them is common for obtaining
an overview (Nejati et al. (2007)), for understand-
ing the interactions (Egyed (2000); Giese and Vilbig
(2006)), for bringing features together (Jayaraman
et al. (2007)) or for communicating with stakehold-
ers (Clements et al. (2003)).

Preserving consistency in the presence of repe-
tition in the models is a non-trivial task. The fact
that software is typically in constant evolution makes
maintaining a consistent AD even more complex.
Since rigorous descriptions of the dependencies be-
tween models are often lacking, consistent handling
of changes requires a lot of effort. This is especially
true for the integrated models.

This paper investigates in three steps how auto-
mated composition can help prevent problems asso-
ciated with repetition in integrated models.

First, we present an empirical study on the ADs
of three non-trivial software systems in section 2.
This study yields quantitative statements on the prob-
lems associated with repetition, in particular with
respect to integrated models. The empirical study
identifies opportunities for relations and composi-
tions and defines our goals in extending ADs.

Secondly, we introduce an ADL-based composi-
tion approach in order to reach these goals (section 3
and 4). The approach consists of an explicit speci-
fication of relations and compositions of models in
an ADL. We introduce these concepts formally, and
provide a proof-of-concept instantiation of composi-
tion in xADL and its supporting tools. As a result, an
architect no longer specifies the integrated models di-
rectly. Instead the architect specifies a composition,
which leads to the same integrated model.

Next, we evaluate our approach in section 6. The
evaluation empirically compares the original and re-
vised ADs of the software systems included in sec-
tion 2.

Finally, the remaining two sections discuss re-
lated work and conclusions.

2. Empirical Study and Goals

To investigate the problems associated with inte-
grated models, we performed an empirical study on
several existing ADs. The objective of this section is

to discuss the problems with integrated models that
we encountered during this empirical study (2.1) and
to identify the high-level goals for a composition ap-
proach (2.2). We come back on the empirical study
in section 6 to evaluate our composition approach.

2.1. Empirical Study
2.1.1. Hypotheses

We formulated three hypotheses. The first hy-
pothesis is that an AD contains a lot of repetition
(e.g. elements repeated in multiple models) (H1).
The second hypothesis is that a large part of this rep-
etition can be attributed to integrated models (H2).
The third hypothesis states that for each change to an
AD, a large part of the elements needing changes are
in integrated models, and thus are repeated updates
(H3). These hypotheses are defined with the follow-
ing assumption in mind: more (manual) repetition in
an architectural description is a bad thing, because
(1) it requires more effort to specify, (2) changes in
combination with repetition are cumbersome and of-
ten a source of inconsistencies.

2.1.2. Empirical Procedure
The input of the empirical study consists of three

existing ADs for non-trivial systems. The three ADs
were specified independent of this study. The first
system is an automatic guided vehicle transportation
system (AGVTS), a fully automated system that uses
unmanned vehicles to provide logistic services in an
industrial environment such as a warehouse or a fac-
tory. Weyns and Holvoet (2008) specifies more de-
tails on this AGVTS. The second system is a digital
publishing system (DPS), a next-generation end-to-
end media platform using various wired and wire-
less communication channels for publishing, allow-
ing personalized services based on user-profile and
context. Van Landuyt et al. (2006) and Landuyt
et al. (2008) specify more details on the DPS. The
third system is a modern transport management sys-
tem (TMS) to cope with ever-changing road circum-
stances, such as road works, traffic diversions and
emergency clearances.

These three example systems are real, mid-size
complex distributed systems, with an AD contain-
ing multiple views and models. The respective sizes

2

 0

 20

 40

 60

 80

 100

AGVTS TMS DPS

%
 o

f t
ot

al
 n

um
be

r o
f e

le
m

en
ts

Case studies

Repetition in architectural descriptions
Fraction of total plotted as stacked histogram

first occurrence repetition

Figure 1: Analysis of repetition: Repetition in ADs.

of the ADs are: 6 models and 130 architectural el-
ements (such as component, interface and link) for
AGVTS, 7 models and 341 elements for the TMS
and 8 models and 683 elements for the DPS. The de-
tails of these cases are not crucial for this paper. We
only discuss the TMS in more details below to illus-
trate the concepts of this paper.

From the original ADs we only consider the
C&C, infrastructure and deployment models, as they
make up the largest part of the ADs. To ensure a
fair comparison, we align the notation of the three
original ADs with each other (according to the basic
ADL introduced further in section 3.2). This align-
ment is fairly simple and preserves the original se-
mantics and specification in the models (e.g. from a
custom UML like notation to our basic ADL).

To the best of our knowledge, there are no ex-
isting metrics to quantify repetition and changes
across architectural models. Related empirical stud-
ies by Oliveira et al. (2008) and Chitchyan et al.
(2009) propose metrics on the architectural level to
quantify conflict rates, scaffolding, stability of com-
positions and expressiveness of compositions, but
they cannot be used to confirm or refute our hypothe-
ses. To avoid biassing the metrics, we aim to keep the
metrics simple and self-explaining based on count-

ing of elements (further discussed in the section on
threads to validity). Measuring is done by manual
counting of elements in the different models.

We successively discuss the hypotheses, make an
observation on consistency and couple the results to
the motivating problems of our research.

2.1.3. Hypothesis 1&2: Repetition and Integrated
Models

Elements can be repeated in multiple models.
Figure 1 shows repetition as a fraction of the total
amount of elements for the three case studies. To
calculate repetition, we distinguish between a first
occurrence of an element in a model (white region),
and all other occurrences in other models which are
considered repetitions (shaded region). Possible ele-
ments are components, connectors, interfaces, links,
interface mappings, nodes or communication chan-
nels. Details on the types of elements can be found
in section 3.2. Surprisingly, more than half of the
ADs are repetitions (between 51% and 56%). This
confirms the first hypothesis and indicates that archi-
tects spend a lot of effort in repeating architectural
elements.

To see what causes repetition we further analyze
repetition. This analysis reveals that a large part of
repetition is caused by models that integrate infor-

3

 0

 20

 40

 60

 80

 100

AGVTS TMS DPS

%
 o

f t
ot

al
 re

pe
tit

io
n

Case studies

A categorization of repetition
Fraction of total repetition plotted as stacked histogram

integrated C&C model
deployment model

refinement
separate features

Figure 2: Analysis of repetition: Classes of repetition.

mation from other models (integrated models), in-
cluding integrated C&C models and deployment mo-
dels. For example, several of the architectural de-
scriptions contain an integrated C&C model. Such
model shows nothing more than the integrated in-
formation from several other models (e.g. to pro-
vide an overview) without adding additional infor-
mation. Figure 3 shows an example of an integrated
C&C model in the TMS. The models above the arrow
(Overview, Data and Actuator) are integrated with
each other in the model below the arrow (Integrated).
The details of the models are not important at this
stage, but are discussed later.

Repetition can also be caused by refining compo-
nents from one model in another model (refinement)
and by models describing overlapping features. Each
of these causes is considered as a class of repetition.
Figure 2 provides an overview of the fraction of repe-
tition in each class with respect to the total repetition.

The results show that integrated C&C models and
deployment models are responsible for a large part of
the repetition. This confirms the second hypothesis,
although it also shows that any solution to cope with
integrated models will not take away all repetition.
Integrated models are the focus of the remainder of
this analysis and chapter.

In all three case studies the architects constructed
the integrated models by copying/pasting and manu-
ally integrating the information. This indicates that
an architect spends a lot of time repeating informa-
tion on integrated models.

2.1.4. Hypothesis 3: Changes
Keeping the integrated models consistent in the

context of evolution is a challenge. We studied the
effects of several change scenarios on the TMS archi-
tectural description, in particular the integrated mo-
dels. These scenarios were proposed by the origi-
nal architects and are representative for real changes
during the life cycle of the TMS. The changes to the
architecture are: (S1) adding interaction with exter-
nal media; (S2) adding a new type of actuators; (S3)
adding details (a substructure) on data management
(distinction between validation and collection); and
(S4) adding a deployment alternative.

The nature of the changes to the system is rela-
tively simple. Scenarios S1 and S2 add a component
to the system, and connect it through appropriate in-
terfaces, links and connectors to the remainder of the
system. Change scenario S3 and S4 also add compo-
nents and connect them to the remainder of the sys-
tem, but these scenarios also add additional models
to the architectural description. For S3 this is a model

4

Integrated

Overview

Detector
Management

Data
Management

Traffic
Management

Actuator
Management

Actuator

Datex to
Actuator Data

Converter

TrafficLight
Controller

Proxy1 VMS1

Proxy2 VMS2

Data

Data
Collection

Data
Validation

Data Management

Detector
Management

Traffic
Management

Data
Collection

Data
Validation

Data Management
DatexTo

ActuatorData
Converter

TrafficLight
Controller

Proxy1 VMS1

Proxy2 VMS2

Actuator Management

A
Y

Component
Connector
Link

inout, in, out interfaces
Model

KEY
Integration by

architect

Figure 3: Example of an integrated model: the models above the arrow (Overview, Data and Actuator) are integrated in the model
below the arrow (called Integrated).

Table 1: Overview of the number of changes required for each
scenario.

S1 S2 S3 S4
total #changes 21 26 33 103

#changes in integrated 12 18 28 103
% integrated 57% 69% 76% 100%

specifying the substructure of the Data Management
component, for S4 this is an infrastructure and de-
ployment model for the new deployment alternative.

The Molesini et al. (2008) metric for measuring
architectural change propagation inspired our met-
rics for measuring changes. The metrics of Molesini
do not take multiple models into account but con-
sider the architecture as a monolithic whole, while
we distinguish in which model the change is being
made. For each of the scenarios, we measured the to-
tal number of changes and the changes in integrated
models. One change is the addition, removal or alter-

nation of an architectural element. An element is a
component, connector, interface, link, interface map-
ping, node or communication channel. Table 1 con-
tains a summary of the number of changes for each
change scenario.

The results show that more than half of the
changes take place in integrated models. This con-
firms the third hypothesis. These changes required
manual intervention as there is no mechanism to au-
tomatically synchronize integrated models with the
models that are integrated.

An observation from our study is that consistent
updating of an AD is difficult because there is no rig-
orous description of the relations between the mo-
dels. If one model is updated, an architect may need
to review all other models to see if they need updat-
ing as well.

5

2.1.5. A Remark on Inconsistencies
One observation during the empirical study is

that we found several inconsistencies in each of the
ADs. Typically, an inconsistency is an element, such
as components, interfaces or links, that is shown in
one model but lacking in another while being essen-
tial for understanding that part of the design. Other
typical inconsistencies are contradictions in terms of
links between component. For example, in the TMS
we found that a deployment model lacks an essential
component and several deployment models lack sev-
eral links. Most of the inconsistencies we found are
between integrated models and the models being in-
tegrated. Nearly all integrated models contained one
or more inconsistencies.

Note that the lack of rigorous specification of re-
lations between the models hampers the identifica-
tion of inconsistencies. We found the inconsistencies
as a side effect of collecting data for the empirical
study.

2.1.6. Summary and Associated Problems
The use of integrated models is common prac-

tice in ADs. The analysis shows that integrated mo-
dels play an important role in the three case stud-
ies. The ADs from our case studies contain a lot of
repetition. A large part of this repetition is found
in integrated models. Moreover, a large part of the
elements needing updating for change scenarios are
present in integrated models, and thus are repeated
updates. Finally, we observed that integrated models
are a source of inconsistencies.

In summary, we identified the following prob-
lems:

P1 Too much effort is spent in specifying repeated
elements.

P2 For each change, too much effort is spent in re-
peated updates to elements.

P3 Manual updates with repetition in multiple mo-
dels without explicit information on how mo-
dels are related is error-prone and a breeding
ground for inconsistencies.

2.2. Goal
In our work, we aim at automated composition of

integrated architectural models. When using compo-

sition, an architect no longer specifies the integrated
models directly, but instead specifies a composition
that leads to the same integrated model. The com-
position, and the integrated model it defines, become
an integral part of the AD.

The high-level goals of our approach for support-
ing composition of architectural models are:

Language support for compositions and relations
Support in ADLs is needed for rigorously
specifying the relations between the mo-
dels and what models must be integrated
(a composition specification). Embedding
both concepts in ADLs makes them integrals
part of any AD. This ensures unambigu-
ous specifications and facilitates consistent
updates.

Guarantees about semantic preservation
Guarantees are needed about a composi-
tion function preserving the semantics of the
models and relations being composed. This
ensures that the meaning of the AD does not
change because of composition.

Automated composition
Tool support is indispensable for making com-
position useful in practice. Automated com-
position allows an architect to easily obtain a
composed model, to get an overview of sev-
eral models, to see how models are integrated
or to reveal possible conflicts between models.

3. Background

In this section we discuss the TMS case study in
more depth and present the basic formal ADL. Both
the case study and basic ADL are used in section 4
to explain our composition approach.

3.1. Case study: A Traffic Management System
The TMS is part of an industrial project involv-

ing eight companies, two universities (including the
KULeuven) and the Flemish government. The sys-
tem aims at flexible TMSs to cope with changing
road circumstances, such as road works, traffic di-
versions and emergency clearances.

6

Table 2: Overview of views and models in the TMS

View Purpose Models Fig
Top-level End-to-end architecture Overview (C&C) 4,6
Monitoring Detectors and data fusion Detectors (C&C)
Data Validation and storage Data (C&C) 6
Traffic Interpretation Traffic (C&C)
Actuator Signalization Actuator (C&C) 6
Deployment Deployment on infrastruc-

ture
MultiAS (Deploy)
SingleAS (Deploy)

5

Overview

Detector
Management

Data
Management

Traffic
Management

Actuator
Management

Figure 4: The Overview architectural model, key as in figure 3.

Table 2 briefly explains the purpose of the views
and models of the TMS. The Overview model (fig-
ure 4) contains an end-to-end view on the system.
The system monitors traffic using devices such as
cameras and inductive loops to count the number of
cars with the DetectorManagement component. Mon-
itoring information is verified and collected in a
repository in the DataManagement component. The
monitoring information is used to control traffic in
the TrafficManagement component through actuators
such as traffic lights and signalization boards in the
ActuatorManagement component.

The Detectors, Data, Traffic and Actuator mo-
dels describe a substructure of the DetectorManagement,
DataManagement, TrafficManagement and ActuatorManage-
ment components respectively. The two deployment
models in the Deployment view describe two possible
deployment alternatives.

3.2. A Basic ADL
In this section we introduce a basic ADL that

formalizes common architectural concepts. This in-
cludes C&C models and two types of models to sup-
port allocating the components to an infrastructure:
infrastructure models and deployment models. The
basic ADL serves as a basis to formalize composi-
tion in an ADL neutral way in the next section.

Set theory is used for specifying the ADL. Set
theory is well known, easy to read and understand,
and provides enough rigor for unambiguous defini-
tions. In this section we only define the sets. Well-

formedness rules are used to exclude invalid and re-
dundant tuples from set-based specifications and are
included in Appendix A.3. To prove properties of
compositions, we also made an extended specifica-
tion in Haskell (Boucké (2008)).

3.2.1. Views and Models
The basic ADL defines views and models as pro-

posed by ISO 42010. The AD has a name and a set of
views. Each of the views has a name and a set of mo-
dels. In this basic ADL, the set of models consists of
C&C models, infrastructure models and deployment
models. Formally:

AD = ID × P VIEW AD
VIEW = ID × P MODEL Architectural views

MODEL = CCMODEL ∪ INFRA ∪ DEPLOY Architectural models
ID Set of names

The next sections define the types of models in
more details.

3.2.2. C&C models
An example of a component and connector

(C&C) model is shown in figure 4. C&C models
describe runtime software elements such as compo-
nents, connectors and their interfaces, and links that
describe the pathways of interactions. Components
can have substructures, in which case interface map-
pings are used to map an outer interface (on the en-
closing component or connector) onto an inner in-
terface (on the internal element). Interfaces have a
direction to indicate the information flow: in, out or
inout. The sets defining a C&C model are1:

Example well-formedness rule for a C&C model
are: “all elements have a unique name”, “links in a
C&C model must be between interfaces of compo-
nents or connectors in the same model” and “con-
nectors must be in between components, i.e. a link
to an interface of a connector always comes from an

1The following abbreviated notations apply. All elements
are referred to by their type with the instance name as subscript,
e.g. a component C is referred to compC. Since the name is al-
ready shown in the subscript, the name is not shown in the tuple.
We also use an abbreviated notation to refer to the internals of
an element. For example, to refer to the interfaces of a compo-
nent compC we use the notation compC .ints. All abbreviated
notations are included in Appendix A.1.

7

MultiAS

vms2

vms1

LightController1

Count1

Cam2

Cam1
ApplicationServer1 ApplicationServer2

DatabaseServer1 DataBaseServer2

TMS
Camera1

Data
Fusion

Loop
Proxy

Inductive
Loop

Camera
Proxy

Data
Collection

Data
Validation

Traffic
Information

Incident
Detection

TrafficModel

Media
Proxy

Solution
Strategies

TrafficLight
Controller

Proxy1
VMS1

Datex to
Actuator Data

Converter

Proxy2

VMS2

External
Camera

A Component
Link

inout, In, out
interfaces

Model

Node ComPath

Figure 5: The MultiAS deployment model. MultiAS stands for multiple application servers.

DIR = {in, out, inout} Directions
INT ⊂ ID × DIR Interfaces

CC ⊂ ID × P INT × S UB C&Cs
COMP ⊂ CC Components

CON ⊂ CC Connectors
LINK ⊂ INT × INT Links

IM ⊂ INT × INT Interfacemappings
S UB ⊂ P COMP × P CON × P LINK × P IM Substructures

none = 〈∅, ∅, ∅, ∅〉; 〈∅, ∅, ∅, ∅〉 ∈ S UB No substructure
CCMODEL ⊂ ID × P COMP × P CON × P LINK C&C models

interface of a component”. Appendix A.3.1 contains
the complete set of well-formedness rules.

Using this definition of C&C models, we can
now formally specify the Overview model of our
case study, shown in figure 4:

ccmodelOverview = 〈comps, ∅, links〉
comps = {compDetectorManagement, compDataManagement, . . . }
compDetectorManagement = 〈{irequest, irawdata}, none〉
irequest = 〈inout〉
iDetectorManagement.rawdata = 〈out〉
compDataManagement = 〈{irawdata, iquery}, none〉
iDataManagement.rawdata = 〈in〉
iquery = 〈inout〉
. . .
links = {l1, ...}
l1 = 〈iDetectorManagement.rawdata, iDataManagement.rawdata〉

. . .

The extract focusses on two components, Detector-
Management and DataManagement, with their interfaces
and one link that connects the two components. We
assume that all elements have a fully qualified name.
For example, the two ‘rawdata’ interfaces can be dis-
tinguished by using the name of the component to
which they belong as preposition.

3.2.3. Infrastructure and Deployment Models
To allocate components on a run-time infrastruc-

ture we introduce two additional models: an infras-
tructure model and a deployment model. Infrastruc-
ture models are used to document the infrastructure
available to the software system before deciding on
deployment. The deployment model extends the in-
frastructure model and contains the deployment con-
figuration of components on the infrastructure. The
concepts used in both models are based on UML de-
ployment models.

An infrastructure model defines nodes and their
connections through communication channels. A
node represents a computer system, and can be anno-
tated with several properties to describe its character-
istics. Example nodes are embedded devices, servers
and personal computers. A communication channel
represent a connection between the nodes, and also
has properties. Example communication channels
are local area networks (LAN), wireless local area
networks (WLAN) and GPRS connections.

A deployment model combines an infrastructure
model with a C&C model to allow the allocation of
components and connectors to nodes and channels.
A deployment model can be considered as an inte-
grated model2, as it combines both elements of the
infrastructure and C&C models. Figure 5 shows an

2This roughly corresponds to the combined view
of Clements et al. (2003), which is a view that is a com-
bination of styles. In the terminology of this paper this comes
down to combining the types of several models.

8

example deployment model for the TMS called Mul-
tiAS.

The formal definition of infrastructure and de-
ployment models is given below. We left out prop-
erties in this formal definition because they are not
important for the remainder of this paper.

NODE Set of Nodes
COMPAT H ⊂ ID × P NODE Com. channels

INFRA ⊂ ID × P NODE × P COMPAT H Infrastructure models

DNODE ⊂ NODE × P COMP × P CON × P LINK Deployment nodes
DCOMPAT H ⊂ ID × P NODE × P LINK Com. channels

DEPLOY ⊂ ID × P DNODE × P DCOMPAT H Deployment models

An example of a well-formedness rule is “ a
communication path in an infrastructure model or
deployment model should be between nodes in the
same model”. The well-formedness rules that ap-
ply to infrastructure and deployment models are de-
scribed in Appendix A.3.2.

3.3. Relations
Relations specify how models are related before

they are composed (Boucké et al. (2008); Sabetzadeh
et al. (2006)). Boucké and Holvoet (2008) already
present several types of relations, of which we use
the following:

• Unification: expresses that two elements (ei-
ther components or connectors) that appear in
two different C&C models are the same ele-
ment. Interface unifications express which in-
terfaces are the same.

• Submodel: expresses that a C&C model de-
scribes the internal structure of a component
or connector of another C&C model. Interface
mappings are used to map internal elements on
the enclosing element.

• Allocation: expresses that a set of compo-
nents and connectors is allocated onto a spe-
cific node in an infrastructure model.

Relations can be specified either by a software
architect or automatically deduced by tools using
heuristics.

The following sets define the relation types:
Examples of well-formedness rules are: “a com-

ponent can only be unified with a component”, “one

IU ⊂ ID × INT × INT Interface unifications
UNIF ⊂ ID ×CC ×CC × ID × P IU Unification relations

S UBMODEL ⊂ ID ×CC ×CCMODEL × P IM Submodel relations
ALLOC ⊂ ID × NODE × P CC Allocation relations

REL = UNIF ∪ S UBMODEL ∪ ALLOC The set of all relations

can only unify components or connectors from dif-
ferent models”. The complete set of well-formedness
rules can be found in Appendix A.3.3.
The following definition extends our basic ADL
with support for relations between models:

AD′ = ID × P VIEW × P REL

In this paper we do not distinguish relations be-
tween models in a single view and relations between
models in different views.

3.3.1. Example of Unification and Submodel
Using the above definitions, we can explicitly

specify the relations between the models needed for
composition. As an example, figure 6 shows a uni-
fication relation between the Overview model and
the Data model and a submodel relation between the
Overview model and the Actuator model.

We briefly explain the new models. The Data
model contains the DataManagement component which
is decomposed in: DataValidation to validate moni-
toring data and DataCollection to store data and al-
low queries. The Actuator model contains the Datex-
ToActuatorDataConverter component to translate com-
mands to low-level control signals for actuators. The
other components represent actuators, namely the
TrafficLightController and two variable message signs
(VMS) with a proxy to translate the commands to
the appropriate format understandable for a VMS.

The unification relation expresses that the Data-
Management component of the Overview model is the
same as the DataManagement component of the Data
model. Interface unification specifies which inter-
faces are the same.

The submodel relation expresses that the Actua-
tor model describes the substructure of the Actuator-
Management component. Interface mappings specify
which interfaces of ActuatorManagement map on inter-
faces in the Actuator model.

9

Overview

Detector
Management

Data
Management

Traffic
Management

Actuator
Management

Actuator

DatexTo
ActuatorData

Converter

TrafficLight
Controller

Proxy1 VMS1

Proxy2 VMS2

AM
im

im

im

im

Data

Data
Collection

Data
Validation

Data Management

DMiu iu

submodel
unif

A

Y
Component
Connector
Link

inout, in, out interfaces
Model

Relation, either
unif, submodel or
alloc

Interface unification (iu)
or

 Interface mapping (im)

uni fData = 〈compOverview.DM , compData.DM ,DM, ius〉 submodelAM = 〈compActuatorManagement, ccmodelActuator, ims〉
ius = {iu1, iu2} ims = {im1, im2, im3, im4}

iu1 = 〈iOverview.DM.Provider, iData.DM.Provider〉 im1 = 〈iActuatorManagement.DatexActuator, iDatexToActuatorConverter.DatexActuator〉

iu2 = 〈iOverview.DM.Query, iData.DM.Query〉 im2 = 〈iActuatorManagement.ActuatorOperator, iTra f f icLightController.Operator〉

im3 = 〈iActuatorManagement.ActuatorOperator, iProxy1.Operator〉

im4 = 〈iActuatorManagement.ActuatorOperator, iProxy2.Operator〉

Figure 6: Example of unification and submodel relations. Top: visual notation. Bottom: formal notation.

4. Composition of Architectural Models

The basic ADL provides the necessary building
blocks for specifying composition. Composition is
introduced in four steps. We start by discussing how
composition is specified and embedded in the ADL.
Then, we provide two examples of how composition
is used in the TMS. Next, we discuss the formal spec-
ification of the composition function and the seman-
tics of composition. Finally, we instantiate composi-
tion in xADL and its tool to demonstrate the feasibil-
ity of the approach.

4.1. Language Support for Composition
A composition is the integration of several ar-

chitectural models based on the relations defined be-
tween these models. We distinguish between a com-
position specification and a composition function.

A composition specification has a name and con-
tains the models and relations to be composed. This
is captured in the following formal definition:

COMPS PEC ⊂ ID × P MODEL × P REL Set of composition specs

specname = 〈inModel, inRels〉 Naming conventions

We use the terms ‘input models’ (inModel) and
‘input relations’ (inRels) for models and relations
in the composition specification. Well-formedness
rules ensure that the input relations are defined on
the input models, and that there is no interference
between the relations. The complete set of well-
formedness rules is given in Appendix A.3.4.

The composition function takes a composition
specification as input and defines an integrated
model together with a set of traces. This leads to a
function with the following signature:

composition : COMPS PEC → MODEL × P TRACE

In section 4.3, we revisit the formal specification
of the composition function. The term ‘integrated
model’ is used to refer to the model defined by com-
position. The term ‘traces’ denote the resulting set of

10

traces.
Traces describe the relations between input and

integrated models. Traces are also a kind of relation
between models, but they are always the result of
applying a composition and that is why they are
treated separately. Formally, traces are defined as:

TRACES = (MODEL × MODEL) ∪ (COMP ×COMP) ∪ (CON ×CON) ∪

(INT × INT) ∪ (NODE × DNODE) ∪ (COMPAT H × DCOMPAT H)

trace = 〈out, in〉

With this definition of composition, we can
extend the basic ADL with support for compositions.

AD′′ = ID × P VIEW′ × P REL

VIEW′ = ID × P MODEL′

MODEL′ = CCMODEL ∪ INFRA ∪ DEPLOY ∪COMPS PEC

A composition specification is added to the set
of models. An architect obtains the integrated model
by applying the ‘composition’ function on the spec-
ification. The resulting integrated model is a regular
model that can be used for visualization, analysis or
in another composition.

4.2. Using Compositions
First, we illustrate how an architect can use com-

position for integrated models before going into the
formal details of the composition function in 4.3.
Composition is illustrated using two examples: an
example of composing C&C models and a deploy-
ment model.

4.2.1. C&C Model Composition
Figure 7 shows our running example. Remember

that an architect wants to compose the models above
the arrow with each other, resulting in the integrated
model below the arrow.

Specifying a composition involves two steps.
Firstly, the architect specifies the relations between
the models that need to be composed. Potentially
some or all of the relations are already present in the
AD for other compositions or could be specified for
other reasons such as consistency analysis. In that
case, an architect can reuse the existing relations. We
already specified the unifData and submodelAM rela-
tions between these models in figure 6.

Secondly, the architect specifies the composition.
This is shown below:

specIntegrated = 〈{ccmodelOverview, ccmodelData, ccmodelActuators},

{uni fData, submodelAM}〉

The specification states that the Overview, Data
and Actuator model are composed using the unifData

and submodelAM relations.
The integrated model itself is the result of

applying the composition function. This could be
the responsibility of an architectural design tool that
applies this function on the specification as shown
below:

(ccmodelIntegrated, traces) = composition(specIntegrated)

The result is the Integrated model below the ar-
row in figure 7. The unifDM relation leads to an
unified component DataManagement with DataValidation
and DataCollection as elements of its substructure. The
submodelAM relation defines that the components of
the actuator model are in the substructure of the Ac-
tuatorManagement component. The remainder of the
elements are retained unchanged from the input mo-
dels. The traces between the input models and the
integrated model called traces are shown as light-gray
lines. The traces between the interfaces are left out
to keep the figure understandable.

4.2.2. Deployment Model
An alternative to describing a deployment model

directly is to define it in terms of a composition. The
use of composition for deployment is similar to C&C
composition. Figure 8 contains an example of allo-
cating the components of the Actuator model to the
InfraSingle infrastructure model. The latter model
contains an application server and several nodes to
allocate the actuator devices (LightController1, vms1
and vms2). This is a simplified example of an infras-
tructure model for the TMS.

We briefly discuss the two steps required for
composotion. Firstly, the architect defines the
relations between the models. The example contains
four allocation relations, allocating six compo-
nents in total. For example, allocAS allocates the
compDatexToActuatorDataConverter and two proxies to

11

Integrated

Overview

Detector
Management

Data
Management

Traffic
Management

Actuator
Management

Actuator

Datex to
Actuator Data

Converter

TrafficLight
Controller

Proxy1 VMS1

Proxy2 VMS2

AM
im

im

im

im

Data

Data
Collection

Data
Validation

Data Management

DMiu iu

Detector
Management

Traffic
Management

Data
Collection

Data
Validation

Data Management
DatexTo

ActuatorData
Converter

TrafficLight
Controller

Proxy1 VMS1

Proxy2 VMS2

Actuator Management

submodel
unif

A

Y
Component
Connector
Link

inout, in, out interfaces
Model

Relation, either
unif, submodel or
alloc

Interface unification (iu)
or

 Interface mapping (im)

traces

composition
operator

Figure 7: Example composition, defined by the specIntegrated.

nodeApplicationS erver.

allocAS = 〈nodeApplicationS erver, {compDatexToActuatorDataConversion,

compProxy1, compProxy2}〉

allocLC1 = 〈nodeLightController, {compTra f f icLightController}〉

allocvms1 = 〈nodevms1, {compV MS 1}〉

allocvms2 = 〈nodevms2, {compV MS 2}〉

Secondly, the architect defines the composition
specification as shown below. The composition
specification comprises two models and four rela-
tions.

inModel = {ccmodelActuator, in f raIn f raS ingle}

inRels = {allocAS , allocLC1, allocvms1, allocvms2}

specdeploy1 = 〈inModel, inRels, S impleS ingleAS 〉

The integrated model called SimpleSingleAS is
obtained by applying the composition function on
this specification. The result is shown below the ar-
row in figure 8. It is a simplified version of the Sin-
gleAS model of the TMS.

4.3. Specification of the Composition Function
In this section we show an extract of the defi-

nition of the composition function in figure 9. We
only show the details on how C&C models with a
unification relation are composed, the other parts of
the composition function are similar. The full defini-
tion of the composition function is given in Boucké
(2008).

12

Actuator InfraSingle

vms2

vms1

LightController1

Application
Server

ASalloc

Datex to
Actuator Data

Converter
TrafficLight
Controller

Proxy1 VMS1

Proxy2 VMS2 vms2alloc

vms1alloc

LC1
alloc

SimpleSingleAS

vms2

vms1

LightController1

Application Server

Datex to
Actuator Data

Converter

TrafficLight
Controller

Proxy1

VMS1

Proxy2 VMS2

Figure 8: Example composition, defined by specdeploy1. SimpleSingleAS stands for simplified example of the single application
server model (SingleAS model).

We describe the most important functions one by
one, progressively focussing on unification of C&C
models.

We begin with the description of the composition
function (figure 9 a). There are three possible cases.
Firstly, the composition function is used to compose
several C&C models. This is handled in the cccom-
pose function and results in a C&C model. Secondly,
the composition function is used to allocate C&Cs to
an infrastructure. This is handled in the deployment
function, resulting in a deployment model. Thirdly,
a composition can be a combination of both previous
cases. This is handled by the mixedCompose function
using both other functions.

Next, we focus on the cccompose function to com-
pose C&C models (figure 9 b). This function is build
up around three sets related, nonRelated and links. The
set related represents the components implied by rela-
tions with the relatedElements function. The set nonRe-
lated defines the C&C elements for which there is no
relation in the composition specification. Finally, the
set links represents the links in the integrated model
defined by the linker function.

Two small help functions are the allCC function
and tt function. The allCC function maps an element
or a set to all C&C that are recursively contained in
the element or set. The tt function maps an element
to an element with an updated qualified name (be-
cause the elements will be part of a different model)
and traces between this element and the input mo-
dels. The tt function is used when elements in the in-
put and output model only differ in their name. This
is the case for the nonRelated set.

We focus on the elements defined by relations.
The relatedElements function (figure 9 c) is specified
recursively in terms of the relatedElement (figure 9 d),
which in turn is specified in terms of a help func-
tion for each type of relation, i.e. the submodel and
unifiedElement functions. The ++ operator specifies
a new tuple that is the pairwise union, i.e. the first
element in the output tuple is the union of the first
elements in the input tuples, etc.

We describe the unifiedElement function (figure 9
f) in more details. This function consists of four
main parts. The first part defines the unified inter-
faces and their traces (the unifiedInterfaces function).

13

a) composition : COMPS PEC → MODEL × PTRACE
composition(c) =

cccompose(c)
i f (c.models ⊂ CCMODEL)

deployment(c)
i f (c.rels ⊂ ALLOC)

mixedCompose(c)
otherwise

b) cccompose : COMPS PEC → CCMODEL × PTRACE
cccompose(〈name,models, rels〉) =

〈〈name, ccs/CONS , ccs/COMPS , links〉, t1 ∪ t2〉∣∣∣∣∣∣∣∣∣∣∣
〈related, t1〉 = relatedElements(name, rels)
〈nonRelated, t2〉 = tt(name, allCC(models)/allCC(rels))
ccs = related ∪ nonRelated
links = linker(allIms(ccs), allLinks(models))

c) relatedElements : ID × PREL→ PCC × PTRACE
relatedElements(base, rels) =

〈∅, ∅〉
i f (rels = ∅)

relatedElement(base, r)++relatedElements(base, rels/r)
otherwise
|r ∈ rels

d) relatedElement : ID × REL→ PCC × PT ACE
relatedElement(base, r) =

uni f iedElement(base, rel)
i f (rel ∈ UNIF)

subModel(base, rel)
otherwise

e) submodel : ID × S UBMODEL→ PCC × PTRACE
submodel(base, 〈name, elem, submodel, ims〉) =

〈〈newName, elem.ints, sub〉, traces〉∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈newName, tname〉 = tt(base, name)
〈sub.comps, tcomp〉 = tt(newName, submodel.comps)
〈sub.cons, tcon〉 = tt(newName, submodel.cons)
〈sub.links, tlink〉 = submodel.links
sub.ims = ims
traces = tname++tcomp++tcon++tlink

f) uni f iedElement : ID × UNIF → PCC × PTRACE
uni f iedElement(base, 〈name, elem1, elem2, ius〉) =

〈{〈newName, ints, sub〉}, traces〉∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈newName, tname〉 = tt(base, name)
〈uni f ied, tuni f ied〉 = uni f iedInter f aces(newName, ius)
(nonUni f ied, tnon) = tt(newName, (elem1.ints ∪ elem2.ints/(allInts(ius))))

sub = tt(newName,


elem1.sub

i f elem1.sub , none
elem2.sub

otherwise
traces = {〈name, elem1〉, 〈name, elem2〉} ∪ tuni f ied ∪

tnon ∪ tsub

g) uni f iedInter f aces : ID × PIU → PINT × PTRACE
uni f iedInter f aces(base, ius) =

〈∅, ∅〉
i f (ius = ∅)

uni f iedInter f ace(base, iu)++uni f iedInter f aces(base, ius/iu)
otherwise |iu ∈ ius

h) uni f iedInter f ace : ID × IU → INT × PTRACE
uni f iedInter f ace(〈name, int1, int2〉) =

〈newName, {〈newName, int1〉, 〈newName, int2〉}〉
|〈newName, tname〉 = tt(base, name)

Figure 9: Formal definition of the composition function.

The second part defines the interfaces that are not
unified (nonUnified). The third part defines the sub-
structure of the unified element (sub). This substruc-
ture is taken over from one of the elements. Well-
formedness rules on the composition specification
make sure that these substructures are compatible
with each other (rule A.11 in Appendix A.3.3). The
final part defines the traces.

The unifiedInterfaces function (figure 9 g) is speci-
fied recursively in terms of the unifiedInterface function
(figure 9 h) which defines the result of a single inter-
face unification. The unifiedInterface function defines
a unified interface and two traces to the interfaces in
the input models.

4.4. Semantics of Composition
The formal specification of model composition

allows us to specify the semantics of the composition
function. The semantics are specified as rules on the
input and output of a composition. Together these
rules determine the outcome of a composition. In
this section we discuss the most important rules that

define the semantics of composition. The full set of
rules can be found in Appendix A.

4.4.1. Composition Results are Traceable
The results of a composition are traceable to the

input models. An example rule states that, for each
component and connector in the integrated model,
there exists a corresponding component or connec-
tor in the input models, identifiable through traces.
This rule is shown below. Similar rules are defined
for interfaces, nodes and communication paths.

∀cout ∈ allCC outModel,∃model ∈ inModels,∃cin ∈ allCC model :

〈cout , cin〉 ∈ traces

4.4.2. Composition Respects Relations
A composition should correctly reflect the rela-

tions selected in the composition specification. For
example, when there is a unification relation between
two components, we expect the integrated model to
have a component that corresponds to these two in-
put components. The following rule formally defines
the semantics of a unification:

14

∀uni fi ∈ inRel ∩ UNIF,∃!ccout ∈ (allCC outModel),∃t1, t2 ∈ traces :(
t1 = 〈ccout , uni fi.elem1〉 ∧ t2 = 〈ccout , uni fi.elem2〉 ∧

(@t3 ∈ trace : t3.out = ccout ∧ t3 , t1 ∧ t3 , t2)

)
∧∀iu j ∈ uni fi.ius,∃!iout ∈ ccout .ints,∃t1, t2 ∈ traces :

t1 = 〈iout , iu j.ui1〉 ∧ t2 = 〈iout , iu j.ui2〉∧
(@t3 ∈ trace : t3.out = iout ∧ t3 , t1 ∧ t3 , t2)

∧(
∀iin ∈ (uni fi.elem1.ints ∪ uni fi.elem2.ints)/allInts uni fi.ius,

∃ik ∈ ccout .ints : 〈ik , iin〉 ∈ traces

)

The ‘allInts’ function recursively returns all inter-
faces. The ‘int’ function returns all interfaces, non-
recursively. The first part of the rule (lines 2-3) cap-
tures the semantics of a unified component or con-
nector. More specifically, line 2 expresses what is
present (positive) and line 3 expresses what cannot
be present (negative). A similar pattern is followed
in the lines that follow. The second part (lines 4-
6) captures the semantics of unified interfaces. The
last part (lines 7-8) captures the semantics for non-
unified interfaces. Similar rules are defined for the
submodel and allocation relations.

4.4.3. Composition Preserves the Model Semantics
A composition should not affect or change the

meaning of the input models. The definition of
the composition function implies that the integrated
model is well-formed, because it is an element of the
MODEL set.

Element distinction. Model composition pre-
serves the distinction between elements defined in
the input models. For example, if an input model
contains components A and B, the integrated model
cannot contain a single component that represents
both A and B. This would imply that the composi-
tion does not correctly reflect the distinction between
components A and B in the input model. The same
holds for interfaces, nodes and communication paths.
This is captured in the following formal statements:

∀cout ∈ allCC outModel,∀model1,model2 ∈ inModels,

∃c1 ∈ allCC model1,∃c2 ∈ allCC model2 :

(〈cout , c1〉 ∈ traces ∧ 〈cout , c2〉 ∈ traces ∧ c1 , c2)⇒ model1 , model2

Substructures. A composition preserves sub-
structures. If an element is part of a substructure in
the input models, it should still be part of the sub-
structure in the integrated model. This is captured in
the following rule:

∀cin ∈ inModels.ccs,∀cinsub ∈ cin.sub.css,∃cout ∈ outModel.ccs,

∃coutsub ∈ cout .sub.ccs : 〈coutsub, cinsub〉 ∈ traces)⇒ 〈cout , cin〉 ∈ traces∧

(@co2 ∈ outModel.ccs : 〈co2, cinsub〉 ∈ traces)

The ‘ccs’ function returns components and con-
nectors, non-recursively. The rule states that if an
element is part of a substructure of an input element
cin and there exists a corresponding element part of
a substructure of output element cout, there is a trace
between cin and cout. This rule ensures that the ele-
ment is part of the same substructure in the integrated
model. The last line states that if an element is part
of a substructure in the input models, there exists no
corresponding element that is not part of a substruc-
ture in the integrated model.

Link preservation. Composition preserves links
between the elements. If elements are linked in the
input models, they are linked in the integrated model.

∀model ∈ inModels,∀iin1, iin2 ∈ (allInts model),

∃!iout1, iout2 ∈ (allInts outModel) :

〈iout1, iin1〉 ∈ traces ∧ 〈iout2, iin2〉 ∈ traces ∧ connected iin1 iin2

⇓

connected iout1 iout2

The rule states that for each connection between
interfaces in the input models, there exists a connec-
tion between the corresponding interfaces in the in-
tegrated model.

4.4.4. Composition is Complete
The result of a composition is complete, i.e. all

elements from the input models can be traced to a
unique element in the integrated model. An example
rule for components and connectors is shown below.

∀modelin ∈ inModels,∀cin ∈ allCC modelin,

∃!cout ∈ allCC outModel : 〈cout , cin〉 ∈ traces

5. xADL&Co: Instantiating Composition in
xADL

As an illustration of the feasibility of compo-
sition, we extended the xADL language defined
by Dashofy et al. (2005) and the associated devel-
opment environment ArchStudio to support compo-
sitions.

15

Figure 10: Snapshot of xADL&Co, the ArchStudio extension for composition.

5.1. Extending xADL for Composition
The extension of xADL for supporting composi-

tion manifests itself in several aspects.
Firstly, a language extension is needed that

introduces additional models (infrastructure, de-
ployment), relations (unification, submodel, subele-
ments) and composition specifications. Under the
hood this requires several additionl XML Schemas
that extend the xADL language definition.

Secondly, a tool is needed to support automated
composition. Such tool support is indispensable to
make model composition practical. Tool support al-
lows architects to quickly obtain a unified perspec-
tive on the architecture and reveal conflicts between
models. Under the hood, the tool is an Eclipse plugin
for ArchStudio.

Finally, we extended the visual tool to show
substructures, infrastructure and deployment models.
Figure 10 shows a snapshot of the tool.

5.2. The Role of Formalization
xADL itself is not supported by a formal lan-

guage. Language concepts are defined in XML
schemas to allow flexible and fast prototyping of lan-
guage definitions.

The main role of our formalization is providing
an unambiguous description of relations and compo-

sitions. The formalization helps to guide the design-
ers and developers in building a consistent and con-
ceptually sound tool. We also formalized the basic
elements of an ADL, thus providing a formal basis
for the part of the xADL language used by our tool.

Especially the introduction of traces during for-
malization proved to be a very useful for building the
tool. During composition, the set of traces contains
an up-to-date mapping between the integrated model
and input models of all elements that are already pro-
cessed by the composition function. This allows to
navigate back and forth between input and output to
check whether elements are already processed during
composition.

5.3. Limitations of the Tool
The current tool illustrates the feasibility, but sev-

eral key challenges remain for making it usable in an
industrial setting. The main challenges are: (1) a vi-
sual and intuitive interface for specifying relations
and composition; (2) automatic triggering of compo-
sitions when an input model changes; (3) automatic
deduction of trivial relations using simple heuristics
such as names or structures as done by Abi-Antoun
et al. (2008); and (4) automatic compatibility checks
of relations between models.

16

6. Empirical Evaluation

The goal of the empirical study is to evaluate con-
sequences and tradeoffs of using composition. The
evaluation builds on the study in section 2.1. It
compares the original AD for the three case studies
(AGVTS, TMS, DPS) with using an alternative AD
including relations and compositions.

6.1. Empirical Procedure
6.1.1. Hypotheses

The focus of the evaluation is on differences in
the ADs. The evaluation does not include usability
or an evaluation of the architectural tools itself (fur-
ther discussed in section 6.4). In addition to the three
hypotheses mentioned in section 2.1.1, we add two
hypotheses on the use of relations and compositions.
The fourth hypothesis is that the number of elements
that must be specified by the software architect (man-
ual specification) is smaller for the AD with relations
and composition than the original AD (H4). The fifth
hypothesis is that in the event of changes, a software
architect has to change less elements in the architec-
tural description (H5).

6.1.2. Constructing an Alternative AD
As part of this empirical study, we constructed

an alternative AD using relations and compositions.
We made sure that the architecture of the original
and alternative AD were the same, only the descrip-
tion differs. The alternative AD contains at least the
models present in the original AD. Only information
is added, such as additional models, relations and
compositions specifications. As a final check, we in-
volved the original architects to confirm that the AD
still described the same architecture. The following
steps were followed during construction of the alter-
native AD.

1. Two of the three ADs had no infrastruc-
ture models. We extracted the infrastructure
model from the existing deployment models
and added this to the AD.

2. The AGVTS contained several models that are
nearly an integrated model, but also contained
some new information. In these cases, we
extracted the new information in a separate
model to allow the use of compositions.

3. None of the original ADs had relations that
were precise enough for automated composi-
tion. We added unification, submodel and al-
location relations between the existing models
without altering them.

4. In the last step, we replaced the combined
C&C models and the deployment models with
composition specifications.

Overview

Detector Data Traffic Actuator

Infrastructure1 Infrastructure2

Model

One or multiple
relations

Composition MultiAS
Composition SingleAS

Figure 11: Overview of relations and compositions in the TMS.

As an example, we summarize the results for
the TMS case study in figure 11. The first step
introduces two infrastructure models, extracted from
the two existing deployment models MultiAS and
SingleAS. The second step adds four unifications
and eighteen allocations. There is one unification
relation for each component in the Overview model,
related to the respective components in the Detector,
Data, Traffic and Actuator model. There is an
allocation relation for each node in the infrastructure
models, allocating in total thirty-eight components.
The last step replaces the two deployment models
with two composition specifications. Since the
relations are already specified, the composition
specifications are relatively simple. Both composi-
tion specifications are given below. They differ only
in the selection of the infrastructure model.

specmulti = 〈{ccmodelOverview, ccmodelDetectors, ccmodelData,

ccmodelTra f f ic, ccmodelActuators, in f raIn f rastructure1}, ∅,MultiAS 〉

specsingle = 〈{ccmodelOverview, ccmodelDetectors, ccmodelData,

ccmodelTra f f ic, ccmodelActuators, in f raIn f rastructure2}, ∅, S ingleAS 〉

17

6.2. Results
This section discusses the results of investigating

the hypotheses. At the end of this section we make a
remark on inconsistencies and size.

6.2.1. Hypothesis 4: Manual Specification
During problem analysis we identified the poten-

tial for composition (section 2.1.3). Here, we investi-
gate to what extent automatic composition can coun-
terbalance the cost of specifying relations and com-
positions. As we only have the AD available for in-
spection, we used the number of elements that must
be specified by the architect as an indicator of this
cost. This includes all architectural elements, rela-
tions and composition specifications, but without the
elements in the integrated models as these elements
are automatically derived by a tool.

Result. Figure 13 summarizes the results. It
shows that in three cases there is a significant differ-
ence in the number of elements that require manual
specification. For the TMS and AGVTS case stud-
ies, this difference is the largest (29%). For the DPS
case study the difference is smaller (11%), but still
significant. This confirms hypothesis H4.

The difference is smallest for the DPS case study
because about half of the repetition is not caused by
integrated models, but by separate features (the last
cause in section 2.1.3).

6.2.2. Hypothesis 5: Change Scenarios
Next, we analyze to what extent relations and

compositions help in handling changes. We focus on
the same change scenarios as in the problem analysis
in section 2.1.4, and measure the effort of changing
the description in the same way.

Each of the scenarios is applied to both versions
of the AD. For each of the scenarios, we counted the
number of elements that an architect manually needs
to add, to remove or to change the AD. For the AD
with relations and compositions we also counted the
total number of changes to relations and composi-
tions.

Result. The results are shown in figure 14. The
abbreviation RTMS refers to the version of the AD
with relations and composition. The numbers with
a plus represent the number of changes needed for a
particular scenario. The results show that the number

S1 S2 S3 S4
TMS +21 +26 +33 +103

RTMS +11 +13 +14 +54
%difference manual 52% 50% 42% 52%

Figure 14: Overview of changes required for the different sce-
narios.

of changes is between 42% and 52% lower for the
AD with relations and compositions. This confirms
hypothesis H5.

Note that the scenarios not only triggered
changes to the models, but also to the model ele-
ments. For example, in S1 and S2, allocation rela-
tions must be added. In S3 a submodel relation must
be added for the Data model. In S4 we had to add an
allocation relation for each node in the new deploy-
ment alternative.

6.2.3. A Remark on Inconsistencies and Size
During the problem analysis we observed that

most inconsistencies are in the integrated models.
Replacing integrated models with automated com-
position prevents inconsistencies in integrated mo-
dels. This corresponds with problem P3 (see sec-
tion 2.1.6).

Another remark is that the total AD will be larger
in size. The total size includes the elements in all
models (this explicitly includes integrated models),
the elements in all relations and compositions, and
all elements in the integrated models of composition.
Restructuring the AD for use with relations may add
additional model elements, and describing relations
and composition will also add to the size. The AD
may be more complete and less ambiguous, but the
complete document will be larger.

To quantify this, we compared the size of two
versions of the AD using the total number of ele-
ments in the description as an indicator. Figure 12
summarizes the size of the ADs. The left hand side
shows the size in a stacked histogram. The shaded
region shows the information added. We also stud-
ies which elements can be attributed to models or to
relations/compositions. The right hand side of fig-
ure 12 summarizes the absolute values and percent-
ages. This reveals a significant increase in size of the
alternative AD between 20% and 94%.

The significantly higher size of the AGVTS AD

18

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

AGVTS TMS DPS

%
 o

f t
ot

al
 n

um
be

r o
f e

le
m

en
ts

Case studies

Growth of architectural description

original
additional model elements

additional relation elements

#m
od

el
s

#m
od

el
el

em
en

ts

#r
el

at
io

n
el

em
en

ts

#t
ot

al

%
in

cr
ea

se
in

si
ze

AGVTS +5 +71 +52 +123 94%
TMS +2 +34 +68 +102 30%
DPS +1 +17 +117 +134 20%

Figure 12: Illustration of the increase in size of the alternative AD. Left: Stacked histogram. Right: Absolute values and percent-
ages.

 0

 100

 200

 300

 400

 500

 600

 700

AGVTS TMS DPS

nu
m

be
r o

f e
le

m
en

ts

Case studies

Difference in the amount of elements that must be specified manually

original description
description with relations and composition

#m
an

ua
lf

or
or

ig
in

al
A

D

#m
an

ua
lf

or
re

l&
co

m
p

%
le

ss
co

m
pa

re
d

w
ith

or
ig

in
al

AGVTS 130 92 29%
TMS 341 241 29%
DPS 663 606 11%

Figure 13: A comparison between the amount of elements that must be specified manually for the original AD and the AD including
relations and composition. Left: Histogram. Right: Absolute values and percentages.

19

has several causes. Firstly, the description contains
only a few strongly related models. Secondly, there
is more restructuring needed to allow the use of re-
lations and compositions. For example, there are
several models that are nearly integrated models but
contain one or more new elements. These models are
split into an integrated model and a model with new
information by the second step of constructing the
alternative AD. The other two case studies required
less restructuring and both have an increase of ap-
proximately 20%.

6.3. Summary of Analysis
The main results of this analysis, and their connec-
tions with the problems outlined in section 2.1.6, are:

• The architect must specify less elements for
the alternative AD and for the change scenar-
ios (corresponds to P1 and P2) because inte-
grated models are automatically updated.

• The inconsistencies examined in the problem
analysis are prevented in the alternative AD
(corresponds to P3) because integrated models
are automatically kept consistent with the mo-
dels being integrated.

• The alternative AD is larger in size

The fact that both relations and compositions are
rigorously captured in the AD made it easier to keep
the AD consistent. This corresponds with P3.

Implications. An implication is that the architect
must specify significantly less elements, and ends up
with an AD that is more complete as it includes re-
lations and traces to integrated models. The results
also imply that an architect must change significantly
less elements for change scenarios. This indicates
that the cost of specifying relations and compositions
is compensated by the benefits of automated compo-
sition.

One remark is that a potential reader who wants
to study the complete AD must study significantly
more elements because the alternative AD is larger.
However, not all stakeholders will be interested in
this, so the impact of the growth in size is probably
limited.

6.4. Threats to Validity
In this section we briefly discuss a number of

threats to the validity of the empirical study and dis-
cuss how we have tried to limit the impact of these
threats.

6.4.1. Cases
A threat is the kind of ADs used in the study.

Each of the ADs in the study is a cooperation be-
tween DistriNet and one or more industrial partners.
They are representative for the ADs in DistriNet and
for typical ADs build following a multi-model doc-
umentation approach by architects who are experi-
enced in these kinds of approaches. A threat is that
the results are generalized to other cases that are dif-
ferent in nature without consideration.

Another threat is that one of the authors of the
study was involved in specifying the architecture for
the AGV application. This is a threat as it could im-
ply a certain bias. We believe that the impact of this
is limited as the architectural description of this sys-
tem was finished and available before the empirical
study started, so the empirical study itself did not in-
fluence the architecture of the AGV system.

A next threat is that we had to prepare the orig-
inal architectural description to allow a broader use
of compositions as described in section 6.1.2. The
preparation only involved extracting certain informa-
tion in separate models, without altering the mean-
ing of the description in any way. To confirm this
we involved some of the original architects. This re-
factoring to improve the use of compositions could
indicate a potential bottlenecks of the composition
approach and needs further investigation.

Finally, only a limited number of cases is con-
sidered. Broader studies are required to confirm the
findings.

6.4.2. Metrics
A threat is that the measurements are only based

on the architectural description, not on the time or ef-
fort spend by software architects. The problem with
measuring the effort of architects is that the quality
of the tools to describe relations and compositions
(needs a production ready tool!) and the knowledge
of the software architects on relations and composi-
tions will have a large influence on the results. As

20

a consequence we used measurements based on the
ADs as an indicator of the possible effort spend by
practicing architects. The threat to validity is that
measurements based on the AD will probably not
correspond one-to-one to the effort spend by a soft-
ware architect, and thus the results must not be inter-
preted in an absolute manner but must be seen as an
indicator.

Another threat is that we mostly had to defined
our own metrics. The area on multi-view architec-
tural descriptions is still relatively young and mea-
surements on an architectural description are uncom-
mon. Consequently, no previous studies or metrics
existed that allowed to confirm or refute our hypothe-
ses. E.g. we needed to quantify repetition, change
and the number of elements specified in an architec-
tural description. As a result, the metrics could be
biased to our approach, or not provide practical in-
formation at all.

To provide some trust in the metrics, we preferred
to keep them as simple as possible so that the results
speak for themselves. Each of the metrics is based
on the number of elements according to some prop-
erty (repetition, changes, ...). For example, to quan-
tify changes, we calculated the number of elements
to be changed and the proportion of changes to be
done in integrated models. The metrics to analyse
the change scenarios is based on an existing metric
proposed by Molesini et al. (2008).

Finally, the empirical study and the metrics used
are narrowly scoped to investigate the use of rela-
tions and compositions for certain change scenarios.
The broader influence of using relations and compo-
sitions needs further investigation.

6.4.3. Usability
The empirical evaluation does not include an

evaluation of the usability of the xADL&Co tool. A
threat to validity is that the usability of the extensions
and tool will have a significant impact on the feasi-
bility of using relations and composition in practice.
As a consequence, some usability questions remain
open. How easy can the extension be understood by
architects? Do they over complicate the models by
introducing additional information between models
instead of in the models themselves? Do architects
use the relational and composition techniques cor-

rectly?
Our experiences with applying these techniques

revealed no real problems from this perspective. On
the contrary, the proposed relations and composi-
tions seem to align with the expectations of archi-
tects. But this needs deeper investigation once the
research demonstration tool is further advanced to
support a usability study involving a large group of
architects.

7. Related Work

Our composition approach builds upon experi-
ence with model composition. It employs ideas from
several other approaches in the domain of software
architecture and ADLs. The distinguishing aspects
of our work are: (1) the use of composition to man-
age repetition, changes and inconsistencies in inte-
grated models on the architectural level; (2) the focus
on architectural models such as C&C, infrastructure
and deployment; and (3) the explicit embedding of
composition in an ADL.

Architectural. To the best of our knowledge,
there are no ADLs that support composition of ar-
chitectural models. The tools associated with ADLs
also offer no alternative solution to handle the prob-
lems associated with integrated models. There are,
however, approaches using composition on the archi-
tectural level. We discuss several examples.

Moriconi and Qian (1994) did work on compo-
sition in the context of ADLs, in particular for cor-
rect composition of partial descriptions (abstract and
concrete descriptions). That work focusses on refine-
ment of architecture in general, not with the use of
architectural models. The work is strongly related to
our formal underpinning and our use of refinement.

Egyed et al. (Egyed (2000); Egyed and Med-
vidovic (2000); Medvidovic et al. (2003)) exploit
redundancies between different types of UML dia-
grams to ensure consistency between the views. The
underlying strategy is to transform and integrate sev-
eral heterogenous models with each other to facilitate
consistency checking. Examples include UML dia-
grams such as class, interaction and state diagrams.
In contrast, our work is about composing several ar-
chitectural models to support integrated models, and
embedded this composition specification in an ADL.

21

Our work is not focussed on finding inconsistencies,
but rather on composing architectural models to see
how the elements are effectively integrated.

Grundy and Hosking (2003) propose SoftArch,
an environment for flexible architecture modeling re-
lying on successive refinement. Such refinement is
essential to view the system on different levels of ab-
straction, with traceability support between the dif-
ferent levels. Refinement can be done in three ways:
enclosing components in another component, adding
a subview for an element and specifying explicit re-
finement links between elements. Furthermore, Soft-
Arch also supports an extensible language, analy-
sis tools and run-time visualization of systems. Our
work differs by making relations first-class citizens
of the ADL, and by using these relations for compo-
sition of architectural models.

Giese and Vilbig (2006) formally define compo-
sition of component behavior and properties of this
composition. The focus on behavioral composition
is complementary to our approach. Differences with
are approach are that relations are not explicitly spec-
ified but matching is programmed in the composition
algorithm. And more specifically for integrated mo-
dels, it remains unclear if and how composition spec-
ifications are embedded in the AD.

Abi-Antoun et al. (2008) propose an approach
for differencing and merging version of an AD in
ACME (described by Garlan et al. (2000)). Impor-
tant differences with our work are that the authors:
(1) merge complete ADs, where we compose indi-
vidual models; and (2) that we explicitly capture the
relations and compositions in the ADL and support
infrastructure and deployment models.

MDE. Although our work originates from an ar-
chitectural background, it is closely related to re-
search on Model Driven Engineering (MDE).

MDE focusses on the creation and use of models
to create software and model transformation (trans-
forming models to other models) to bridge levels of
abstraction. The subclass of model transformations
with which our composition approach is most closely
related to is model merging as defined by Kolovos
et al. (2006). Model merging encompasses compar-
ison and merging of design models. There are ex-
isting approaches to merge class diagrams (Clarke
and Baniassad (2005); Katara and Katz (2003); Ru-

bin et al. (2008)), state diagrams (Nejati et al.
(2007); Nejati (2008)) and interaction diagrams (Ne-
jati (2008)), as well as combinations of the previ-
ous (Barais et al. (2008); Sabetzadeh et al. (2008)).
Some approaches can be extended to any type of
UML model, for example Fabro et al. (2006) and
Kolovos et al. (2006), by defining relations and trans-
formations on the UML meta-model level. Bendix
and Emanuelsson (2009) and Mehra et al. (2005)
provide support for differencing and merging di-
agrams for version control. Yet others define a
generic approach for differencing and merging con-
trol (Mehra et al. (2005)), a reference process (Jean-
neret et al. (2008)), a generic approach (Fleurey et al.
(2008)), a canonical scheme (Bzivin et al. (2006))
and an algebraic view on the semantics (Herrmann
et al. (2007)) of model merging.

Our work considers model merging in architec-
tural descriptions. As in MDE, we also specify rela-
tions, automate composition and provide formal se-
mantics for conformance checking and merging ele-
ments. The main difference is that where MDE ap-
proaches are defined within the context of the meta-
object facility, we focussed on embedding these re-
lations and compositions in a typical ADL and pro-
vide support for common architectural models such
as C&C, infrastructure and deployment models. The
latter brings model composition to software architec-
ture.

AO. Aspect-orientation (AO) focusses on sepa-
rating secondary or supporting functions (aspects)
from the main functionality. The initial focus of AO
was on programming languages, but this has later
been extended to design and requirements.

Similar to AO, our work separates certain con-
cerns (in models), and uses composition to integrate
the models. Consequently, AO model composition
approaches are related. Part of this related work
overlaps with MDE and is discussed above, but aside
from this there are related architectural approaches.
A first category of related approaches focuses on sep-
arating concerns by adding behavior to architectural
elements in ADLs (such as Aspectual ACME of Gar-
cia et al. (2006), DAOP-ADL of Pinto et al. (2005),
and the work of Grundy (2000)). We, on the con-
trary, separate concerns by using separate models. A
second category of related approaches follows the

22

principles of multi-dimensional separation of con-
cerns (MDSOC) by Tarr et al. (1999) on architecture
(e.g. Kandé (2003); Baniassad et al. (2006)). This
is somehow related, as models could correspond to
hyperslices and composition to hypermodules. The
main distinguishing factors of our approach are the
explicit nature of relations, embedding relations and
compositions into the AD, and our support for C&C,
infrastructure and deployment models.

Alternative tool support. We briefly discuss
possible alternatives to composition using state-of-
the-art UML design tools.

Basic support for copying, pasting or cloning
parts helps for the initial specification of integrated
models, since elements must not be specified from
scratch. However, the architect still needs to man-
ually integrate the models and copy/pasting is little
help to consistently change the AD.

Somewhat more advanced is support for element
repositories. For example, in IBM’s software archi-
tect the Project Explorer pane contains a list of all
elements in a design project (IBM (2008)). Each
element can be used in several diagrams, e.g. by
dragging the element from the list onto a diagram.
Other example tools with similar support are Visio
and MagicDraw.

Element repositories are a useful addition, but
do not replace composition. Dragging and dropping
prevents re-specifying elements from scratch. Also,
changes to an element are synced to all diagrams
through the repositories. However, an architect still
has to select the appropriate element from the repos-
itory for the integrated model. The selection must
be reconsidered with each change, as a change might
add or remove an element from the integrated model
and these changes are not automatically synced. For
example, links added between elements are not au-
tomatically synchronized between the models. Also,
there is no explicit specification of which models are
composed in an integrated model, so updates may be
forgotten. An interesting idea is to combine element
repositories with composition. This needs further in-
vestigation.

8. Conclusion

This paper investigates how automated compo-
sition of architectural models can help preventing
problems associated with repetition in integrated mo-
dels. The paper includes an empirical study of the
problem, and presents an ADL based composition
approach with formal semantics, and an empirical
evaluation. The paper shows that composition of ar-
chitectural models can be a powerful mechanism for
software architects. An architect no longer speci-
fies the integrated models directly, but instead speci-
fies a composition that results in the same integrated
model. Composition relieves the architect from the
cumbersome task of specifying and maintaining rep-
etition in integrated models. The cost is that the al-
ternative AD will be larger in size.

The important lessons learned are:

• It is sometimes stated that composing het-
erogenous models is ‘the real challenge’, like
by Nuseibeh et al. (2003). From the empirical
study in this paper we learned that integrated
C&C models and deployment models make up
a substantial part of the AD. From our research
it became clear that embedding this type of
composition in ADs is already non-trivial and
solves a real problem.

• Composition can only be used in practice when
supported by languages and tools. The lack of
standard languages and tools is a handicap for
software architects.

• In this paper we add composition to a finished
architectural document. But composition also
influences the way architects design systems.
For example, composition influences the way
the AD is structured in models and views. This
needs further investigation.

Interesting tracks for future research are broaden-
ing the empirical study to more ADs and more types
of architectural models. Currently, we are looking
to relations between state-charts and C&C models
and their influence on the composition of state-chart.
Another possibility for the future is adding an auto-
mated identification of relations. This would be a
valuable addition to our approach.

23

Vitae

Nelis Boucké is a post-doctoral researcher at the
Katholieke Universiteit Leuven since 2009. His PhD
research was funded by the Institute for the Promo-
tion of Innovation through Science and Technology
in Flanders and focussed on relations and composi-
tions in the context of ADLs. During his PhD he
also studied software architecture in general, aspect-
oriented software development and multiagent sys-
tems. His current research interests focus mainly on
software architecture, including architectural design,
documentation and evaluation; languages and tools
to support the day to day job of software architects;
and software product line architectures. He has a
strong interest to investigate these topics in a real-
world setting and work towards practical solutions in
cooperation with industry.

Danny Weyns is a post-doctoral researcher at the
Katholieke Universiteit Leuven, funded by the Re-
search Foundation Flanders. He received a PhD in
Computer Science in 2006 from the Katholieke Uni-
versiteit Leuven for work on multiagent systems and
software archtitecture. Danny’s main research inter-
ests are in software architecture, self-adaptive sys-
tems, multiagent systems, and middleware for decen-
tralized systems.

Tom Holvoet is a professor in the Department of
Computer Science, Katholieke Universiteit Leuven.
His research interests include software engineering
of decentralized and multi-agent systems, coordina-
tion, software architecture, and autonomic comput-
ing. He received his PhD in computer science from
the Katholieke Universiteit Leuven in 1997 on open
distributed software development. Tom heads a re-
search team with three post-doctoral and 6 PhD stu-
dents within the DistriNet Lab.

Acknowledgment

Nelis is supported by the Institute for the Pro-
motion of Innovation through Science and Technol-
ogy in Flanders (IWT-Vlaanderen). Danny is sup-
ported by the Research Foundation Flanders (FWO
Vlaanderen). This research is partially funded by
the Interuniversity Attraction Poles Programme Bel-
gian State, Belgian Science Policy, and by the Re-
search Fund K.U.Leuven. The authors thank Alexan-

der Helleboogh and Dries Langsweirdt for the valu-
able discussions regarding the paper.

Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan,
D., 2008. Differencing and merging of architectural views.
Automated Software Engineering. 15 (1), 35–74.

Baniassad, E., Clements, P. C., Araujo, J., Moreira, A., Rashid,
A., Tekinerdogan, B., 2006. Discovering early aspects. IEEE
Softw. 23 (1), 61–70.

Barais, O., Klein, J., Baudry, B., Jackson, A., Clarke, S., Feb.
2008. Composing multi-view aspect models. pp. 43–52.

Bass, L., Clements, P., Kazman, R., 2003. Software Architec-
tures in Practice. Addison.

Bendix, L., Emanuelsson, P., 2009. Requirements for prac-
tical model merge — an industrial perspective. In: MO-
DELS ’09: Proceedings of the 12th International Confer-
ence on Model Driven Engineering Languages and Systems.
Springer-Verlag, Berlin, Heidelberg, pp. 167–180.

Boucké, N., October 2008. Formal proofs of well-formedness
and information-preservation properties and haskell source
code. http://www.cs.kuleuven.be/publicaties/

rapporten/cw/CW529.abs.html.
Boucké, N., Holvoet, T., 2008. View composition in multi-

agent architectures. Special issue on Multiagent systems
and software architecture, International Journal of Agent-
Oriented Software Engineering (IJAOSE) 2 (2), 3–33.

Boucké, N., Weyns, D., Hilliard, R., Holvoet, T., Helleboogh,
A., September 2008. Characterizing relations between
architectural views 5292, 66–81.
URL https://lirias.kuleuven.be/handle/

123456789/198294

Boucké, N., Weyns, D., Schelfthout, K., Holvoet, T., 2006. Ap-
plying the ATAM to an architecture for decentralized control
of a transportation system. In: Quality of Software Architec-
tures conference (QoSA). Vol. LNCS 4214.

Bzivin, J., S., B., Fabro, M. D. D., M., G., Jouault, F., Kolovos,
D., I., K., Paige, R., 2006. A canonical scheme for model
composition. In: Model Driven Architecture Foundations
and Applications. Vol. 4066/2006. p. Model Management
and Transformations.

Chitchyan, R., Greenwood, P., Sampaio, A., Rashid, A., Gar-
cia, A., Fernandes da Silva, L., 2009. Semantic vs. syntactic
compositions in aspect-oriented requirements engineering:
an empirical study. In: AOSD ’09: Proceedings of the 8th
ACM international conference on Aspect-oriented software
development. ACM, New York, NY, USA, pp. 149–160.

Clarke, S., Baniassad, E., 2005. Aspect-Oriented Analysis and
Design. Addison-Wesley.

Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Lit-
tle, R., Nord, R., Stafford, J., 2003. Documenting Software
Architectures, Views and Beyond. Addison Wesley.

Dashofy, E., van der Hoek, A., Taylor, R., 2005. A compre-
hensive approach for the development of modular software
architecture description languages. ACM Transactions on
Software Engineering and Methodology (TOSEM) 14 (2),
199–245.

Egyed, A., 2000. Heterogeneous view integration and its au-

24

tomation. Ph.D. thesis, Los Angeles, CA, USA, adviser-
Barry William Boehm.

Egyed, A., Medvidovic, N., 2000. A formal approach to het-
erogeneous software modeling. In: FASE ’00: Proceedings
of the Third Internationsl Conference on Fundamental Ap-
proaches to Software Engineering. Springer-Verlag, London,
UK, pp. 178–192.

Fabro, M. D. D., Bézivin, J., Valduriez, P., 2006. Weaving
models with eclipse amw plugin. Eclipse Modeling Sympo-
sium, Eclipse Summit Europe 2006, Esslingen, Germany.

Fleurey, F., Baudry, B., France, R., Ghosh, S., 2008.
A generic approach for automatic model composition.
Springer-Verlag, Berlin, Heidelberg, pp. 7–15.

Garcia, A., Chavez, C., Batista, T., Sant’anna, C., Kulesza, U.,
Rashid, A., Lucena, C., 2006. On the modular representation
of architectural aspects. In: Proc. of the European Workshop
on Software Architecture.

Garlan, D., Monroe, R., Wile, D., 2000. ACME: Architectural
description of component-based systems. In: Foundations of
Component-Based Systems. Cambridge University Press.

Giese, H., Vilbig, A., June 2006. Separation of non-orthogonal
concerns in software architecture and design. Software and
Systems Modeling 5 (2), 136–169.

Grundy, J., December 2000. Multi-perspective specification,
design and implementation of components using aspects. In-
ternational Journal of Software Engineering and Knowledge
Engineering 10 (6).

Grundy, J. C., Hosking, J. G., 2003. Softarch: Tool support for
integrated software architecture development. International
Journal of Software Engineering and Knowledge Engineer-
ing 13 (2), 125–151.

Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel,
S., 2007. An algebraic view on the semantics of model com-
position. In: Akehurst, D. H., Vogel, R., Paige, R. F. (Eds.),
ECMDA-FA. Vol. 4530 of Lecture Notes in Computer Sci-
ence. Springer, pp. 99–113.

IBM, 2008. Rational Software Architect. IBM, http:

//www-01.ibm.com/software/awdtools/architect/

swarchitect/.
ISO, July 2007. ISO/IEC 42010 Systems and Software Engi-

neering – Architectural Description. ISO.
Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H., 2007.

Model composition and feature interaction detection in prod-
uct lines using critical pair analysis. In: International Confer-
ence on Model Driven Engineering Languages and Systems
(MODELS).

Jeanneret, C., France, R., Baudry, B., 2008. A reference process
for model composition. In: AOM ’08: Proceedings of the
2008 AOSD workshop on Aspect-oriented modeling. ACM,
New York, NY, USA, pp. 1–6.

Kandé, M., 2003. A concern-oriented approach to software ar-
chitecture. Ph.D. thesis, École Polytechnique Fédérale de
Lausanne.

Katara, M., Katz, S., 2003. Architectural views of aspects.
In: Proceedings International conference on Aspect-oriented
software development. pp. 1–10.

Kolovos, D., Paige, R., Polack, F., 2006. Merging models with
the epsilon merging language (eml). In: In Proc. ACM/IEEE
9th International Conference on Model Driven Engineering
Languages and Systems (Models/UML 2006. pp. 215–229.
URL http://dx.doi.org/10.1007/11880240_16

Landuyt, D. V., de beeck, S. O., Kemper, B., Truyen, E., Joosen,
W., June 2008. Building a next-generation digital publishing
platform using aosd. http://distrinet.cs.kuleuven.
be/projects/digitalpublishing/.

Mahieu, T., Joosen, W., Van Landuyt, D., Grégoire, J., Buyens,
K., Truyen, E., March 2007. System requirements on digital
newspapers. CW Reports CW484, K.U.Leuven, Department
of Computer Science.
URL https://lirias.kuleuven.be/handle/

123456789/156662

Medvidovic, N., Gruenbacher, P., Egyed, A., Boehm, B. W.,
December 2003. Bridging models across the software life-
cycle. Journal of Systems and Software 68 (3), 199–215.

Mehra, A., Grundy, J., Hosking, J., 2005. A generic approach
to supporting diagram differencing and merging for col-
laborative design. In: ASE ’05: Proceedings of the 20th
IEEE/ACM international Conference on Automated soft-
ware engineering. ACM, New York, NY, USA, pp. 204–213.

Molesini, A., Garcia, A. F., Chavez, C. v. F. G., Batista, T. V.,
2008. On the quantitative analysis of architecture stability in
aspectual decompositions. In: WICSA ’08: Proceedings of
the Seventh Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA 2008). IEEE Computer Society, Wash-
ington, DC, USA, pp. 29–38.

Moriconi, M., Qian, X., 1994. Correctness and composition of
software architectures. In: SIGSOFT ’94: Proceedings of the
2nd ACM SIGSOFT symposium on Foundations of software
engineering. ACM, New York, NY, USA, pp. 164–174.

Nejati, S., 2008. Behavioural model fusion. Ph.D. thesis, Uni-
versity of Toronto.

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave,
P., 2007. Matching and merging of statecharts specifications.
In: ICSE ’07: Proceedings of the 29th International Con-
ference on Software Engineering. IEEE Computer Society,
Washington, DC, USA, pp. 54–64.

Nuseibeh, B., Kramer, J., Finkelstein, A., 2003. Viewpoints:
meaningful relationships are difficult! In: ICSE ’03: Pro-
ceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society, Washington, DC,
USA, pp. 676–681.

Oliveira, K., Garcia, A., Whittle, J., 2008. On the quantitative
assessment of class model compositions: An exploratory
study. In: Workshop on Empirical Studies of Model-Driven
Engineering.

Pinto, M., Fuentes, L., Troya, J. M., 2005. A dynamic com-
ponent and aspect-oriented platform. Computing Journal
48 (4), 401–420.

Rubin, J., Chechik, M., Easterbrook, S. M., 2008. Declarative
approach for model composition. In: MiSE ’08: Proceedings
of the 2008 international workshop on Models in software
engineering. ACM, New York, NY, USA, pp. 7–14.

25

Sabetzadeh, M., Nejati, S., Easterbrook, S., Chechik, M., 2006.
A relationship-driven approach to view merging. SIGSOFT
Softw. Eng. Notes 31 (6), 1–2.

Sabetzadeh, M., Nejati, S., Easterbrook, S., Chećhik, M.,
2008. Global consistency checking of distributed models
with tremer+. In: ICSE ’08: Proceedings of the 30th in-
ternational conference on Software engineering. ACM, New
York, NY, USA, pp. 815–818.

Tarr, P., Ossher, H., Harrison, W., Sutton, S., 1999. N degrees
of separation: Multi-dimensional separation of concerns. In:
Int. Conf. on Software Engineering. pp. 107–119.

Van Landuyt, D., Grégoire, J., Michiels, S., Truyen, E.,
Joosen, W., October 2006. Architectural design of a digital
publishing system. CW Reports CW465, Department of
Computer Science, K.U.Leuven, Leuven, Belgium.
URL https://lirias.kuleuven.be/handle/

123456789/131455

Weyns, D., Holvoet, T., 2008. Architectural design of a situated
multiagent system for controlling automatic guided vehicles.
International Journal on Agent Oriented Software Engineer-
ing 2 (1), 90–128.

Appendix A. Formal Underpinning

This appendix provides the details of the formal
underpinning of the basic ADL, relations and com-
position. We discuss successively the naming con-
ventions, helper functions, well-formedness rules,
traceability and semantic preservation.

Appendix A.1. Naming Conventions
Below there is an overview of the abbreviations

for C&C models. Since the name is shown in sub-
script, it is not shown in the tuples defining the nam-
ing conventions.

iname = 〈dir〉 Interface
ccname = 〈ints, sub〉 CC

compname, conname = 〈ints, sub〉 Component, connector
li = 〈int1, int2〉 Link

sub = 〈comps, cons, links, ims〉 Substructure
imi = 〈inner, outer〉 Interfacemapping

ccmodelname = 〈comps, cons, links〉 Structural model

The abbreviations for infrastructure and deploy-
ment models:

nodename Node
compathname = 〈nodes〉 Communication path

in f raname = 〈nodes, paths〉 Infrastructure model
dnodename = 〈comps, cons, links〉 Node

dcompathname = 〈nodes, links〉 Communication path
deploymentname = 〈nodes, paths〉 Infrastructure model

The abbreviations for relations:

iu = 〈ui1, ui2, newName〉 Interface unification
uni fname = 〈elem1, elem2, newName, ius〉 Unification
submodelname = 〈target, submodel, ims〉 Submodel

allocname = 〈node, ccs〉 Allocation

Appendix A.2. Helper Functions
We define several functions. For the sake of sim-

plicity, we define a function with the same name
for several types (separated by a comma). This can
be translated to several functions for each of the
types. Boucké (2008) provides the full specification
of these functions.

ccs : CCMODEL, S UB → P CC: returns all components
and connectors in the given C&C model or
substructure; we use the abbreviated notation
ccmodel.ccs and sub.ccs.

allCC : CC,CCMODEL,PCC,PCCMODEL,DEPLOY,PDEPLOY →

P CC: returns recursively all components and
connectors in the given element (i.e. all ele-
ments in substructures are included).

ints : CC,CCMODEL,PCC,PCCMODEL,DEPLOY,PDEPLOY →

P INT: returns all interfaces that are in the given
element (non recursively, so interfaces in sub-
structures are not included).

allInts : CC,CCMODEL,PCC,PCCMODEL,DEPLOY,PDEPLOY →

P INT: returns recursively all interfaces in the
given element.

connected : INT × INT → Bool: checks if two given inter-
faces are connected either by a link or by a link
and several interface mappings.

Appendix A.3. Well-formedness Rules
Well-formedness rules exclude invalid and re-

dundant tuples from the formal definition of the mo-
dels, relations and composition specifications.

Appendix A.3.1. Well-formedness of C&C models

∀iname1, iname2 ∈ INT : name1 = name2⇒ i1 = i2
∀cname1, cname2 ∈ CC : name1 = name2⇒ c1 = c2

. . .

(A.1)

∀im ∈ IM : im.outer , im.inner ∧ im.outer.dir = im.inner.dir

∀l ∈ LINK : (l.int1.dir = inout ∧ l.int2.dir = inout)∨

(l.int1.dir = in ∧ l.int2.dir = out) ∨ (l.int1.dir = out ∧ l.int2.dir = in)

(A.2)

26

∀ccm ∈ CCMODEL : ∀l ∈ ccm.links :

{l.int1, l.int2} ⊆ (ints ccm.comp ∪ ints ccm.con)

∀sub ∈ S UB,∀l ∈ sub.links :

{l.int1, l.int2} ⊆ (ints sub.comp ∪ ints sub.con)

(A.3)

∀sub ∈ S UB,∀cc ∈ CC : cc.sub = sub⇒

(∀im ∈ sub.im : im.inner ∈ (allInts sub.comp ∪ allInts sub.con) ∧

im.outer ∈ cc.ints)

(A.4)

∀ccm ∈ CCMODEL,∀con ∈ ccm.con,∃l ∈ struct.links :

(l.int1 ∈ con.ints⇒ ∃comp ∈ ccm.comp : l.int2 ∈ comp.ints) ∧

(l.int2 ∈ con.ints⇒ ∃comp ∈ ccm.comp : l.int1 ∈ comp.ints)

(A.5)

Rule A.1 ensures that each element with a specific
name is unique. The rule is only shown for inter-
faces and components. For connectors and C&C mo-
dels, the definition is similar. Rule A.2 ensures that
the directions of interfaces in interface mappings and
links are compatible. Rules A.3 and A.4 make sure
that links and interface mappings refer to interfaces
of the correct C&C model or substructure. This rule
excludes links between interfaces in different models
and links between an interface in a substructure and
an interface that is not in this substructure. Rule A.5
ensures that connectors can only be used between
components. We only show the rule for C&C mo-
dels, the definition for substructures is similar.

Appendix A.3.2. Well-formedness of Infrastructure
and Deployment Models

The same uniqueness requirement as defined in
rule A.1 applies on all elements in the infrastructure
and deployment models having a name.

∀compath ∈ COMPAT H : compath.nodes , ∅

∀dcompath ∈ COMPAT H : dcompath.nodes , ∅
(A.6)

∀in f ra ∈ INFRA,∀compath ∈ in f ra.paths :

compath.nodes ⊆ in f ra.nodes

∀deploy ∈ INFRA,∀dcompath ∈ deploy.paths :

dcompath.nodes ⊆ deploy.nodes

(A.7)

∀dnode ∈ DNODE : ∀l ∈ dnode.links :

{l.int1, l.int2} ⊆ (ints dnode.comp ∪ ints dnode.con)
(A.8)

∀deploy ∈ DEPLOY,∀dcompath ∈ DCOMPAT H,∀l ∈ dcompath.links,

∃dnode1, dnode2 ∈ deploy.nodes,∃c1 ∈ dnode1.ccs, c2 ∈ dnode2.ccs :

dnode1, dnode2 ⊆ dcompath.nodes ∧ l.int1 ∈ c1.ints ∧ l.int2 ∈ c2.ints
(A.9)

Rule A.6 states that each communication path should
connect nodes. Rule A.7 states that the nodes
in a communication path must be in the nodes of
the respective infrastructure or deployment model.
Rule A.8 states that the links in a dnode must be to
components which are also in this node. Rule A.9
states that the links in a dcompath must be between
components of the nodes connected by this path.

Appendix A.3.3. Well-formedness Rules for Rela-
tions

The same uniqueness requirement as defined in
rule A.1 applies to the relations. Furthermore, the
function allCC is also defined for relations.

∀uni f ∈ UNIF,∃s1, s2 ∈ CCMODEL :

(uni f .elem1 ∈ s1.comps ∧ uni f .elem2 ∈ s2.comps) ∨

(uni f .elem1 ∈ s1.cons ∧ uni f .elem2 ∈ s2.cons)

(A.10)

∀uni f ∈ UNIF : (uni f .elem1.sub = uni f .elem2.sub)∨

uni f .elem1.sub = none ∨ uni f .elem2.sub = none
(A.11)

∀uni f ∈ UNIF,∀s1, s2 ∈ CCMODEL :

uni f .elem1 ∈ s1.ccs ∧ uni f .elem2 ∈ s2.ccs⇒ s1 , s2
(A.12)

∀uni f ∈ UNIF,∀iu ∈ uni f .ius :

(iu.ui1 ∈ uni f .elem1.ints ∧ iu.ui2 ∈ uni f .elem2.ints)
(A.13)

∀submodel ∈ S UBMODEL :

submodel.target < (allCC submodel.submodel)
(A.14)

∀submodel ∈ S UBMODEL,∀im ∈ submodel.ims,

∃cc ∈ submodel.submodel.ccs :

im.outer ∈ submodel.target.ints ∧ im.inner ∈ cc.ints

(A.15)

Rule A.10 ensures that unifications between a com-
ponent and a connector are not possible. Rule A.12
ensures that two unified elements are always from
two different C&C models. Rule A.13 ensures that
all interface unifications are between the interfaces
of the unified elements. Rule A.11 ensures that the
substructures are compatible. Rule A.14 ensures that
the target element is not an element of the submodel.
Rule A.15 ensures that interface mappings in rela-
tions are indeed between the related elements. There
are no specific well-formedness rules for the inter-
nals of allocation links.

Appendix A.3.4. Well-formedness Rules for Compo-
sition Specifications

∀spec ∈ COMPS PEC,∀rel1, rel2 ∈ spec.inRels :

rel1, rel2 ∈ S UBMODEL ∪ UNIFICAT ION∧

rel1 , rel2 ⇒ (allCC rel1 ∩ allCC rel2 = ∅)

(A.16)

∀spec ∈ COMPS PEC,∀rel1, rel2 ∈ spec.inRels :

rel1, rel2 ∈ ALLOC∧

rel1 , rel2 ⇒ (allCC rel1 ∩ allCC rel2 = ∅)

(A.17)

∀spec ∈ COMPS PEC,∀rel ∈ spec.inputRels :

allCC rel ⊆ allCC spec.inputModels ∧

allInts rel ⊆ allInts spec.inputModels

(A.18)

Currently, no overlap between relations is allowed
because we want to prevent interference between the
relations. This could be relaxed in the future, but

27

we need to further investigate the interplay between
the relations. Rule A.16 ensures that two relations
between C&C models do not overlap. Rule A.17
ensures there is no overlap between allocation rela-
tions. Rule A.18 ensures that all relations are within
the scope of the input models.

Appendix A.4. Traceability
We define four additional sets: inModels and in-

Rels are the sets that correspond to the input mo-
dels and relations for the composition function; out-
Model and traces represent the integrated model and
the traces defined by the composition function.

The formal definition of traceability is captured
as follows:

∀modeli ∈ inModels : 〈outModel,modeli〉 ∈ traces (A.19)

∀cout ∈ allCC outModel,∃model ∈ inModels,∃cin ∈ allCC model :

〈cout , cin〉 ∈ traces
(A.20)

∀nodeout ∈ outModel.nodes,∃model ∈ inModels,∃nodein ∈ model.nodes :

〈nodeout , nodein〉 ∈ traces
(A.21)

∀compathout ∈ outModel.path,∃model ∈ inModels,∃compathin ∈ model.path :

〈compathout , compathin〉 ∈ traces
(A.22)

∀cout ∈ (allCC outModel),∀iout ∈ cout .ints,∃model ∈ inModels,

∃cin ∈ (allCC model),∃iin ∈ cin.ints :

〈cout , cin〉 ∈ traces ∧ 〈iout , iin〉 ∈ traces

(A.23)

∀iout1, iout2 ∈ (allInts outModel),∀model ∈ inModels,

∃iin1, iin2 ∈ (allInts model) : (〈iout1, iin1〉 ∈ traces ∧

〈iout2, iin2〉 ∈ traces ∧ connected iout1 iout2)⇒ connected iin1 iin2

(A.24)

Rule A.19 states that there is a trace between the inte-
grated model and each input model of a model com-
position. Rule A.20 states that for each component
and connector in the integrated model, there exists
a corresponding component or connector in the in-
put models, identifiable through traces. Rule A.21
and rule A.22 state the same for nodes and compaths
respectively. Rule A.23 states that for each inter-
face of each component and connector in the inte-
grated model, there exists an interface of the corre-
sponding component or connector in the input mo-
dels, identifiable through traces. One could inter-
pret traces as a ‘binary surjective relation’ between
the set of all elements with a name in the integrated
model, and the set of all elements with a name in
the input models. Rule A.24 states that each con-
nection in the integrated model can be traced back
to a connection in the input model. Two interfaces

are connected if there is a link between the inter-
faces, or between interface mappings of the inter-
faces (captured in the connected function defined in
section Appendix A.2). Note that links are not di-
rectly traceable. Traces of links are implied by the
connections.

Appendix A.5. Semantic Preservation
Appendix A.5.1. Model Consistency

Model composition must preserve the distinction
between elements defined in the input models. For
example, if an input model contains components A
and B, it is not allowed that the integrated model con-
tains a single component that represents both A and
B. This would imply that the composition does not
respect the distinction between components A and B
in the input model. The same holds for interfaces,
nodes and communication paths. This is captured in
the following formal statements:

∀cout ∈ allCC outModel,∀model1,model2 ∈ inModels,

∃c1 ∈ allCC model1,∃c2 ∈ allCC model2 :

(〈cout , c1〉 ∈ traces ∧ 〈cout , c2〉 ∈ traces ∧ c1 , c2)⇒ model1 , model2
(A.25)

∀nodeout ∈ outModel.nodes,∀model1,model2 ∈ inModels,

∃node1 ∈ model1.nodes,∃node2 ∈ model2.nodes :

(〈nodeout , node1〉 ∈ traces ∧ 〈nodeout , node2〉 ∈ traces ∧ node1 , node2)

⇓

model1 , model2
(A.26)

∀compathout ∈ outModel.path,∀model1,model2 ∈ inModels,

∃compath1 ∈ model1.path,∃compath2 ∈ model2.path :

(〈compathout , compath1〉 ∈ traces ∧

〈compathout , compath2〉 ∈ traces ∧ node1 , node2)

⇓

model1 , model2

(A.27)

∀cout ∈ allCC outModel,∀iout ∈ cout .ints,∃model1,model2 ∈ inModels,

∃c1 ∈ (allCC model1),∃c2 ∈ (allCC model2),

∃i1 ∈ c1.ints,∃i2 ∈ c2.ints : 〈cout , c1〉 ∈ traces ∧ 〈cout , c2〉 ∈ traces ∧

〈iout , i1〉 ∈ traces ∧ 〈iout , i2〉 ∈ traces ∧ i1 , i2
⇓

model1 , model2
(A.28)

Rule A.25 states that for each component and con-
nector in an integrated model, if there are two corre-
sponding components or connectors in the input mo-
dels, these components or connectors must be from

28

different input models. Rule A.26, rule A.27 and
rule A.28 state the same for nodes, compaths and in-
terfaces respectively.

Next to preservation of the differences between
elements, substructures must be preserved. This is
captured in the following rules:

∀cin ∈ inModels.ccs,∀cinsub ∈ cin.sub.css, @cout ∈ outModel.ccs :

〈cout , cinsub〉 ∈ traces
(A.29)

∀cin ∈ inModels.ccs,∀cinsub ∈ cin.sub.css,∃cout ∈ outModel.ccs,

∃coutsub ∈ cout .sub.ccs : 〈coutsub, cinsub〉 ∈ traces)⇒ 〈cout , cin〉 ∈ traces
(A.30)

Rule A.29 states that if an element is part of a sub-
structure in the input models, there exists no corre-
sponding element that is not part of a substructure in
the integrated model. Rule A.30 states that if an el-
ement is part of a substructure of an input element
cin, and there exists a corresponding element part of
a substructure of output element cout, there must be a
trace between cin and cout. This ensures that the ele-
ment is part of the same substructure in the integrated
model.

Appendix A.5.2. Model Completeness

∀modelin ∈ inModels,∀cin ∈ allCC modelin,

∃!cout ∈ allCC outModel : 〈cout , cin〉 ∈ traces
(A.31)

∀modelin ∈ inModels,∀nodein ∈ modelin.nodes,

∃!nodeout ∈ outModel.node : 〈nodeout , nodein〉 ∈ traces
(A.32)

∀modelin ∈ inModels,∀compathin ∈ modelin.path,

∃!compathout ∈ outModel.path : 〈compathout , compathin〉 ∈ traces
(A.33)

∀model ∈ inModels,∀cin ∈ allCC model,∀iin ∈ ccInts cin,

∃!cout ∈ allCC outModel,∃!iout ∈ ccInts cout :

〈cout , cin〉 ∈ traces ∧ 〈iout , iin〉 ∈ traces

(A.34)

∀model ∈ inModels,∀cin ∈ (allCC model),∃!cout ∈ (allCC outModel) :

〈cout , cin〉 ∈ traces ∧ (cin.sub = notspeci f ied ∨

(∀cinsub ∈ allCC cin,∃!coutsub ∈ allCC cout :

〈coutsub, cinsub〉 ∈ traces))
(A.35)

∀model ∈ inModels,∀iin1, iin2 ∈ (allInts model),

∃!iout1, iout2 ∈ (allInts outModel) :

〈iout1, iin1〉 ∈ traces ∧ 〈iout2, iin2〉 ∈ traces ∧ connected iin1 iin2

⇓

connected iout1 iout2

(A.36)

Rule A.31 states that for each component and con-
nector in the input models, there exist a unique coun-
terpart in the integrated model, identifiable through
traces. Rules A.32 and A.33 state the same for nodes

and communication paths. Rule A.34 states that for
each interface of each component and connector in
the input models, there exists a corresponding in-
terface in the uniquely corresponding component or
connector of the integrated model. Rule A.35 states
that for each component and connector in the input
models, the corresponding component or connector
in the integrated model has a corresponding substruc-
ture. Rule A.36 states that for each connection be-
tween interfaces in the input models, there exists a
connection between the corresponding interfaces in
the integrated model. Notice that the completeness
property implies that the set of traces can be inter-
preted as a total surjective function between all ele-
ments in the input models with a name and all ele-
ments in the integrated model with a name.

Appendix A.5.3. Relational Completeness
The following rules formalize relational com-

pleteness. The rules have to be considered in the
context of the already defined properties:

∀uni fi ∈ inRel ∩ UNIF,∃!ccout ∈ (allCC outModel),∃t1, t2 ∈ traces :(
t1 = 〈ccout , uni fi.elem1〉 ∧ t2 = 〈ccout , uni fi.elem2〉 ∧

(@t3 ∈ trace : t3.out = ccout ∧ t3 , t1 ∧ t3 , t2)

)
∧∀iu j ∈ uni fi.ius,∃!iout ∈ ccout .ints,∃t1, t2 ∈ traces :

t1 = 〈iout , iu j.ui1〉 ∧ t2 = 〈iout , iu j.ui2〉∧
(@t3 ∈ trace : t3.out = iout ∧ t3 , t1 ∧ t3 , t2)

∧(
∀iin ∈ (uni fi.elem1.ints ∪ uni fi.elem2.ints)/allInts uni fi.ius,

∃ik ∈ ccout .ints : 〈ik , iin〉 ∈ traces

)
(A.37)

∀submodeli ∈ inRel ∩ S UBMODEL,∃!ccout ∈ (allCC outModel) :

〈ccout , submodeli.target〉 ∈ traces∧

(∀cc ∈ submodeli.submodel.ccs,

∃!ccsubout ∈ ccout .sub : 〈ccsubout , cc〉 ∈ traces)

(A.38)

∀alloc ∈ inRel ∩ ALLOC,∃!nodeout ∈ outModel.nodes :

〈nodeout , alloc.node〉 ∈ traces∧

(∀ccin ∈ alloc.ccs,∃!ccout ∈ nodeout .ccs : 〈ccout , ccin〉 ∈ traces)

(A.39)

∀model ∈ inModels,∀ccin ∈ model.ccs/allCC inRel,

∃!ccout ∈ outS tr.ccs,∃tc1 ∈ traces :

tc1 = 〈ccout , ccin〉 ∧ (@tc2 ∈ traces : tc2.out = ccout ∧ tc2 , tc1) ∧(
∀iin ∈ ccin.ints,∃!iout ∈ ccout.ints, ti1 ∈ traces : ti1 = 〈iin, iout〉 ∧

(@ti2 ∈ traces : ti2.out = iout ∧ ti2 , ti1)

) (A.40)

Rule A.37 defines what information is preserved
from a unification. The first part of the rule (lines
2-3) captures information preservation with respect
to components and connectors. The second part
(lines 4-6) captures information preservation of uni-
fied interfaces. The last part (lines 7-8) captures
information preservation for non-unified interfaces.

29

Rules A.38 and A.39 define the semantics of sub-
model and allocation respectively. Finally, rule A.40
states that all components and connectors (and their
interfaces) that are not part of a relation in the in-
put models must be uniquely traceable to an ele-
ment in one of the integrated models. This last rule
partly overlaps with the definition of completeness,
but with the additional requirement that there is a
unique trace.

30

