
On Decentralized Self-Adaptation: Lessons from the
Trenches and Challenges for the Future

Danny Weyns
Dept. of Computer Science

Katholieke Universiteit Leuven
danny.weyns@cs.kuleuven.be

Sam Malek
Dept. of Computer Science
George Mason University

smalek@gmu.edu

Jesper Andersson
Dept. of Computer Science

Linnaeus University
jesper.andersson@lnu.se

ABSTRACT
Self-adaptability has been proposed as an effective approach to
deal with the increasing complexity, distribution, and dynamicity
of modern software systems. Although noteworthy successes have
been achieved in many fronts, there is a lack of understanding on
how to engineer distributed self-adaptive software systems in which
central control is not possible. In this paper, we first describe the
key attributes of decentralized self-adaptive systems that set them
apart from their centralized counterparts. We illustrate these at-
tributes using two case studies on decentralized self-adaptation.
The first case study is an instance of a self-healing system deal-
ing with automated traffic management control. The second case
study is an instance of a self-optimizing system that improves the
quality of service of a decentralized software system through rede-
ployment of its software components. We generalize the lessons
learned from our experiences in the form of a reference model. In
light of this model, we present numerous challenges that forms the
focus of future research in this area.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures

General Terms
Design

Keywords
Self-adaptation, decentralized control

1. INTRODUCTION
Due to the increasing complexity, distribution, and dynamicity of

software systems, assuring and maintaining the required qualities
of software constitutes a tremendous challenge. Self-adaptability
has been proposed as an effective approach to tackle the increasing
complexity of managing modern-day software systems after their
initial deployment. Self-adaptability endows a system with the ca-
pability to adapt itself to changes in its environment and user re-
quirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’10, May 2-8, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-971-8 ...$10.00.

For managing the complexity of dynamic adaptation several so-
lutions have been proposed. Researchers have previously argued
that software architecture provides the right level of abstraction and
generality to deal with the challenges of self-adaptability [11, 19,
29]. The adaptation process itself is supported by various frame-
works [11, 29, 17], which exploit principles and techniques from
feedback control loops [33] and computational reflection [20] to
manage system adaptation. The adaptation process monitors the
system and typically uses an architecture representation of the sys-
tem to perform an adaptation when the conditions for that adap-
tation hold. Existing approaches typically support centralized or
hierarchical control of adaptation.

Although noteworthy successes have been achieved in many do-
mains, there is a lack of understanding on how to engineer dis-
tributed self-adaptive software systems in which central control is
not possible [2, 4]. Decentralized control is crucial for quality re-
quirements such as resilience, robustness, and scalability. In a large
class of modern distributed systems, such as web-scale information
systems, intelligent transportation systems, and power grids, global
control is difficult to achieve or even infeasible, although central-
ized control of local subsystems is possible.

In this paper, we first lay down the key capabilities required for
engineering a decentralized self-adaptive software system. In par-
ticular, through careful study of literature and reflecting on our own
experiences with the development of such systems, we have dis-
tilled several key attributes that distinguish these systems from the
more commonly found centralized self-adaptive systems.

Afterwards, we illustrate these attributes using two case studies.
In the first case study, intelligent cameras collaborate to detect and
monitor traffic jams on the highway in a decentralized way, avoid-
ing the bottleneck of a centralized control center. Our particular
interest in this case is on robustness to camera failures. Therefore,
cameras are equipped with support for self-healing that allows the
system to detect failures and recover autonomously. In the sec-
ond case, we describe a decentralized instantiation of a framework
intended to improve a software system’s quality of service via re-
deployment of its components.

We generalize the lessons we have learned in the development
of these systems in the form of a high-level reference model. The
reference model reconceptualizes constructs and principles found
in existing commonly known frameworks to fit the unique require-
ments of decentralized self-adaptation. In light of the reference
model and our experiences we identify a number of key challenges
that form the focus of future research in this area.

The remainder of this paper is structured as follows. Section 2
outlines the required capabilities for engineering decentralized self-
adaptive systems. Section 3 presents the first case study on self-
healing in the traffic monitoring application. Section 4 presents
the second case study on a self-optimization framework. Section 5



generalizes from the case studies by presenting a reference model.
Finally, Section 6 draws conclusions and formulates a number of
challenges for future research in this area.

2. MOTIVATION
The underlying motivation in our work has been the lack of ad-

equate techniques and principles for systematic engineering of de-
centralized self-adaptive software systems. In this section, we elab-
orate on this assertion by first zooming in on the unique character-
istics of decentralized self-adaptation. These characteristics in turn
enable us to explain the shortcomings of existing frameworks, the
majority of which make certain assumptions on the availability of
information and flow of control that are not suitable in this setting.

2.1 Decentralized Self-Adaptation
A self-adaptive software system is typically developed in a lay-

ered architecture. As further detailed in Section 5, the reference
model presented in this paper builds on our previous work [1], in
which we have demonstrated the prominent role of reflection in
self-adaptive software, and in particular the fact that through re-
flection one could clearly separate concerns and identify its layers.
The bottom layer comprises the software that deals with the appli-
cation logic which we call the managed system (a.k.a, base-level
subsystem). On top of that, the self-adaptive layer is added that
comprises the software that deals with a particular concern (e.g.,
performance, robustness, etc) which we call the self-adaptive unit
(a.k.a., meta-level subsystem). The self-adaptive unit comprises
components that monitor the managed system and based on a set of
goals adapt it to changing conditions. Additional layers with self-
adaptive units could be added that deal with higher level concerns
and goals.

A decentralized self-adaptive software system is a special form
of autonomic system in which there is no central point of con-
trol. The lack of a central point of control could manifest itself
in various stages of autonomic computing (i.e., monitoring, analy-
sis, planning, and execution). Moreover, the lack of a central point
of control often implies the unavailability of global knowledge on
any particular host. A self-adaptive layer in such systems thus con-
sists of several self-adaptive units with the corresponding locally
managed systems. As a consequence, self-adaptive units that deal
with a concern that involves multiple local managed systems have
to collaborate.

Based on a thorough study of literature (e.g., [17, 19, 29, 5,
10, 9]) and reflecting on our own experiences, which are further
discussed in Sections 3 and 4, we identified a set of required ca-
pabilities for such systems that differentiate them from the more
commonly found centralized self-adaptive systems. We distinguish
between requirements for the different types of computations in
self-adaptive systems.

Coordinated monitoring collects data of the underlying managed
system and possibly of the operating environment in which the sys-
tem is situated (e.g., hardware devices, network connections). In
a centralized setting, the self-adaptive unit has access to the en-
tire managed system. As such, the self-adaptive unit has global
knowledge of the underlying system. In a decentralized setting, on
the other hand, each self-adaptive unit has only access to the lo-
cal managed system. Consequently, it has only a partial model of
the complete system. Therefore, monitor computations of different
self-adaptive units may need to coordinate to share and synchronize
locally collected data.

Coordinated analysis interprets the collected data to determine
goal violations and predicts possible future situations. In a cen-
tralized setting, analyze computation has all the data required to

perform the analysis, while in decentralized self-adaptive systems,
analyze computation often has only partial knowledge. As a conse-
quence, analysis computations of different self-adaptive units may
need to coordinate with one another, such that adaptation options
are evaluated within a group.

Coordinated planning constructs the actions needed to achieve the
system’s objectives. In a centralized setting, the self-adaptive unit
has access to the goals of the self-adaptive system. As such, plan
computation may select and construct an adaptation plan that satis-
fies the system’s objectives. In a decentralized setting, self-adaptive
units may have private goals (i.e., be selfish). Moreover, there may
be conflicts between the goals of different units. As such, self-
adaptive units exhibit autonomous behavior. Consequently, plan
computations may need to coordinate (e.g., negotiate) with one
another to construct an adaptation plan that satisfies the different
goals.

Coordinated execution carries out the changes to the underlying
system. In a centralized setting, the self-adaptive unit has full con-
trol over the order and timing in which adaptations are executed.
In a decentralized setting, execute computations may need to syn-
chronize the changes to the system. In particular, executing trans-
actional adaptation poses a challenge in a decentralized setting by
severely disrupting the system.

2.2 Existing Frameworks for Self-Adaptation
Since the late 1990s multiple perspectives on self-adaptive and

autonomic software systems have been developed [29, 9, 17, 19].
Several of these works provide high-level reference models and ref-
erence frameworks that constitute a solid ground for self-adaptive
systems. Key principles that underlie these approaches are the
control-loop, as expressed in early work of Shaw [33], and more
recently, Dobson et al. [8] and Brun et al. [3], and computational re-
flection, Maes [20], which was extended further to software archi-
tecture by Tisato et al. [35], and to reflective middleware by Coul-
son et al. [6]. One of the rare proposals that considers decentral-
ization at the outset is [12]. In this work, software components au-
tomatically configure themselves according to an overall architec-
tural specification without central configuration management ser-
vice. The presented approach uses reliable broadcast channels to
maintain local copies of the configuration and coordinate compo-
nent managers. As mentioned by the authors, this restrict the scal-
ability of the approach. The question of how to solve this problem
is left open by the authors.

In light of the attributes identified earlier, we take a close look at
two representative seminal frameworks for the construction of self-
adaptive software systems: Rainbow [11] and IBM’s autonomic
manger [17]. While we believe these framework have achieved
noteworthy success in alleviating challenges of developing self-
adaptive software in centralized and hierarchical settings, they are
neither directly suitable for decentralized self-adaptation, nor that
has been their intention.

The Rainbow framework offers a generic architecture for build-
ing self-adaptive systems. The architecture of Rainbow consists
of three layers: system layer, translation layer, and architectural
layer. The system layer provides the application logic. It offers
probes for measuring properties of interest, such as the workload of
servers, and effectors for performing changes. The translation layer
is responsible for bridging the abstraction gap between the system
layer and the architectural layer. The architectural layer deals with
self-adaptation. This layer includes an architectural model of the
executing system consisting of components, connectors, properties
associated with components and connectors, and constraints that
define allowed configurations. A constraint evaluator periodically



evaluates the constraints of the architectural model and in case of
constraint violations triggers an adaptation of the system.

The Rainbow framework supports monitoring and adaptation of
software systems that are distributed in a network. However, the
control of adaptation is centralized. Rainbow does not provide ex-
plicit support for adaptation scenarios where two or more adapta-
tion control units have to collaborate to achieve self-adaptation.

IBM’s approach of autonomic systems proposes a layered archi-
tecture. The bottom layer consists of system components which
could be either software or hardware resources. Software resources
correspond to the application logic. Each resource is managed by
an autonomic manager. Autonomic managers are the basic building
blocks for realizing self-adaptation in autonomic systems. The au-
tonomic manager provides a traditional control loop consisting of
four basic computations: monitor, analyze, plan, and execute. Four
concrete types of autonomic managers are distinguished: man-
agers for self-configuring, self-optimizing, self-healing, and self-
protecting. The autonomic manager itself provides sensors and ac-
tuators that enables other autonomic managers to manage the au-
tonomic manager. This enables hierarchical composition of auto-
nomic managers. E.g., a set of resource autonomic managers that
deal with self-healing may be managed by an orchestrating auto-
nomic manager. In a hierarchy of autonomic managers, data can
be obtained and shared via knowledge sources, such as a registry,
dictionary, or a database.

IBM’s autonomic systems support hierarchical arrangement of
autonomic managers. These managers can share information via
knowledge sources. However, autonomic managers do not pro-
vide explicit support to interact as peers in a decentralized archi-
tecture. Autonomic managers in the bottom layer of the hierar-
chy have adaptation goals specific to the concern of interest to the
managed resource, while autonomic managers in the higher layers
deliver system-wide autonomic capabilities.

As illustrated above, and further corroborated by our study
of other approaches (e.g., [9, 29]), existing frameworks for self-
adaptive systems are geared to centralized/hierarchical systems and
do not really consider the capabilities required for building decen-
tralized solutions. This has been the key motivation for our work.

3. CASE STUDY ON SELF-HEALING
The first case study presents a traffic monitoring application. We

start the section with introducing the application. Then we explain
the decentralized self-healing approach for dealing with camera
failures.

3.1 Traffic Monitoring Application
The monitoring application we consider fits in the domain of in-

telligent transportation systems, a worldwide initiative to exploit
information and communication technology to improve traffic. The
system consists of a set of intelligent cameras which are distributed
evenly along the road. An example of a highway is shown in Fig-
ure 1. Each camera has a limited viewing range and cameras are
placed to get an optimal coverage of the highway with a minimum
overlap.

Cameras are equipped with a data processing unit capable of pro-
cessing the monitored data, and a communication unit to communi-
cate with other cameras. A camera is able to measure the local traf-
fic conditions and decide whether there is a traffic jam. The task of
the cameras is to detect and monitor traffic jams on the highway in a
decentralized way, avoiding the bottleneck of a centralized control
center. Possible clients of the monitoring system are traffic light
controllers, driver assistance systems such as systems that inform
drivers about expected travel time delays, systems for collecting
data for long term structural decision making, etc.

Figure 1: An example of a highway with traffic cameras.

Traffic jams can span the viewing range of multiple cameras and
can dynamically grow and dissolve. By default each camera mon-
itors the traffic state within its viewing range. When a traffic jam
occurs, the camera has to collaborate with other cameras detecting
the same traffic jam. Because there is no central point of control,
cameras have to aggregate the monitored data to determine the po-
sition of the traffic jam on the basis of the head and tail of it. One of
the cameras is responsible to distribute the aggregated data of the
traffic jam to the interested clients. Cameras enter or leave the col-
laboration whenever the traffic jam enters or leaves their viewing
range.

In this paper we are interested in one of the quality concerns of
the traffic monitoring system: robustness to camera failures. Our
particular focus is on silent node failures, i.e., failures in which a
failing camera becomes unresponsive without sending any incor-
rect data. Such failures may bring the system to an inconsistent
state and disrupt its services.

3.2 Managed System
We start with a high-level overview of the software architecture

of the system that deals with the domain functionality. Then we
explain how this architecture is extended with support for self-
healing. In particular, we focus on the support for its decentral-
ization.

Figure 2 shows the primary elements of the main system which
provides the camera software that deals with the domain function-
ality. The main system is conceived as an agent-based system con-
sisting of four layers. The host infrastructure encapsulates com-
mon middleware services and basic support for distribution, hid-
ing the complexity of the underlying hardware. The agent middle-
ware layer provides basic services in multi-agent systems, includ-
ing support for interaction with the environment and communica-
tion. The organization middleware layer encapsulates the life-cycle
management of organizations and it provides role-specific services
to the agents to interact with the environment and communicate
with other agents. The agents in the agent layer use the organiza-
tion middleware to interact with each other through the roles they
play in the organizations, providing the services to the clients of the
system, i.e., reporting traffic jams.

We briefly explain how the agents collaborate to provide the sys-
tem services. In normal traffic conditions, each camera agent be-
longs to a single member organization and plays the role of data
observer, monitoring the local traffic. We say that the agent has
a role contract with the organization. A role contract is a mutual
agreement between the agent and the organization that allows the
agent to play the role in that organization. In the role of data ob-
server, the agent shares the traffic conditions it monitors with the
organization. When the traffic conditions change and a jam is de-
tected, the organization middleware opens a role position for the
data pusher role. A role position can be considered as a vacancy
for a particular role in a particular organization. When the agent
accepts this role position it gets a role contract. In the role of data
pusher, the agent is responsible for collecting traffic data in the or-



ganization and notifying interested clients of the traffic jam. The or-
ganization middleware stores the role contracts with the local agent
and advertises the open role positions. When the traffic jam grows,
the organization middleware joins the neighboring organizations in
a single organization that spans the viewing range of the cameras
that monitor the traffic jam. In this joined organization, only one
agent plays the role of data pusher. When the traffic jam resolves,
the organization is split dynamically.

Figure 2: Main system deployed on each camera.

Organization dynamics are managed by organization controllers.
Organization controllers need to collaborate to manage an organi-
zation that spans multiple nodes. Neighboring organizations that
are candidates for merging are denoted as interaction candidates.
To make the system scalable, a decentralized peer-to-peer approach
is used to manage the inter-organizational dynamics. However, to
simplify synchronization issues, a master/slave principle is used at
intra-organizational level. The master/slave principle is a control
model, which centralizes (locally) the control of each organization
and the state required for this control. For each organization, one of
the organization controllers is elected as master, whereas the other
controllers of the organization are slaves. The master is responsible
for managing the dynamics of that organization by synchronizing
with all of the slaves.

3.3 Decentralized Self-Healing
To support robustness to node failures, a self-healing subsystem

is added to the main system that is responsible for dealing with
camera failures. The self-healing subsystem is a domain specific
instance of a self-adaptive unit, while the main system corresponds
to a local managed system.

Figure 3 shows a deployment view of one node of the main sys-
tem extended with the self-healing subsystem. A self-healing sub-
system comprises the following components:

• Dependency Model. The dependency model contains a
model of the dependencies of the components of the main
system with other cameras. The Query/Update interface pro-
vides access for inspecting and updating the model. Figure 4
shows an overview of the dependencies in the system.

Figure 3: Deployment view with self-healing subsystem.

• Heartbeat Generator. The heartbeat generator periodically
receives alive messages from all of the nodes (cameras) that
it depends on, and sends alive messages to all of the nodes
that depend on its node. To exchange messages, the heartbeat
generator uses the Alive interface provided by the main sys-
tem, which exploits the communication facilities of the agent
middleware. The Notify interface notifies the self-healing
manager whenever an alive message arrives from a camera
with a dependency in the dependency model.

• Repair Strategy. The repair strategy component contains a
set of repair actions to bring the main system to a consis-
tent state in case of a failure, i.e., when a camera this node
depends on fails and no longer sends alive messages. Each
set of repair actions represent a plan to deal with a particular
failure. Figure 4 provides an overview of the repair actions
employed in the system.

• Self-Healing Manager. The self-healing manager component
contains the logic to deal with self-healing. The self-healing
manager monitors the main system using the Monitor inter-
face to maintain the dependency model. It interprets the no-
tifications of the heartbeat generator to derive the status of
the cameras with a dependency in the dependency model.
Finally, when a failure is detected, the self-healing manager
executes the repair actions of the repair strategy using the Re-
pair interface to bring the main system to a consistent state.

Self-healing subsystems monitor the main systems for failures
and only interfere in their operation when a failure is detected. The
self-healing subsystems ensure the system can continue its correct
operation (possibly in a degraded mode, e.g., one camera less) for
a limited time after a failure occurs.

The self-healing manager encapsulates the typical computations
of a self-adaptive unit: monitor, analyze, plan, and execute. The
monitor computation gathers the required data of the main system
locally. However, it requires coordination with self-healing man-
agers to gather the status of the nodes in the dependency model.
This coordination is realized using the heartbeat mechanism.



Figure 4: Dependencies with corresponding nodes to monitor and repair actions.

To recover from a silent node failure, the self-healing subsys-
tems have only to apply local repair actions. The required data for
analyzing, planning, and executing is available locally and the self-
healing subsystems engage in local repair actions when a failure is
detected. In other words, there are no negotiations between subsys-
tems to analyze a failure or execute repair actions. The self-healing
subsystem brings the main system back to a consistent state, from
which it can continue its correct operation on its own. Support for
more advanced repair actions, such as electing a new master when
the master fails, would require the coordination among the plan and
execute computations of different self-healing subsystems.

The decentralized approach for self-healing described above
builds upon the MACODO model and middleware platform. In-
terested reader may refer to [36].

4. CASE STUDY ON QOS-DRIVEN SELF-
OPTIMIZATION

For any large, distributed system many deployment architectures
(i.e., distributions of the system’s software components onto its
hardware hosts) are typically possible. However, some of those
deployment architectures are more dependable than others. For ex-
ample, a distributed system’s availability can be improved if the
system is deployed such that the most critical, frequent, and volu-
minous interactions occur either locally or over reliable and capa-
cious network links.

Finding a deployment architecture that exhibits desirable sys-
tem characteristics (e.g., low latency, high availability) or satisfies
a given set of constraints (e.g., the processing requirements of com-
ponents deployed onto a host do not exceed that host’s CPU capac-
ity) is a challenging problem: many system parameters (e.g. net-
work bandwidth, reliability, frequencies of component interactions,
etc.) that influence the selection of an appropriate deployment ar-
chitecture are typically not known at system design time and/or
may fluctuate at run time; the space of possible deployment archi-
tectures is extremely large, thus finding the optimal deployment
is rarely feasible [21]; and different desired system characteristics
may be conflicting (e.g., a deployment architecture that satisfies a
given set of constraints and results in specific availability may at
the same time exhibit high latency).

The above problem is further complicated in the context of the
emerging class of decentralized systems, which are characterized
by limited system-wide knowledge and the absence of a single
point of control. In decentralized systems, selection of a globally
appropriate deployment architecture has to be made using incom-
plete, locally-maintained information.

A methodology for improving a distributed system’s quality of
service properties consists of (1) active system monitoring, (2) esti-
mation of the improved deployment architecture, and (3) redeploy-
ment of (parts of) the system to effect the improved deployment
architecture. Based on this three-step methodology, a high-level
deployment improvement framework [22, 21] has been developed.

In this section, we provide an overview of the framework’s com-
ponents, the associated functionality of each component, and the
dependency relationships that guide their interaction. In particular,
we focus on the techniques employed for decentralization of the
approach.

4.1 Deployment Improvement Framework
Figure 5 shows the framework’s overall structure and the rela-

tionships among its six high-level components. Note that each of
the framework’s components can have an internal architecture that
is composed of one or more lower-level components. Furthermore,
the internal architecture of each component can be distributed (i.e.,
different internal low-level components may communicate across
address spaces). The arrows represent the flow of data among the
framework components. The deployment improvement framework
depicted in Figure 5 corresponds to a self-adaptive unit that is de-
ployed on each host. The framework manages a software system
running on top an implementation platform, which together corre-
spond to a local managed system.

Model. This component maintains the representation of the sys-
tem’s deployment architecture. The model is composed of four
types of parts: hosts, components, physical links between hosts,
and logical links between components. Each of these types could
be associated with an arbitrary set of parameters. For example,
each host can be characterized by the amount of available memory,
processing speed, battery power (in case a mobile device is used),
installed software, and so on. The selection of a set of parameters
to be modeled depends on the set of criteria (i.e., objectives) that
a system’s deployment architecture should satisfy. For example,
if minimizing latency is one of the objectives, the model should
include parameters such as physical network link delays and band-
width. However, if the objective is to improve a distributed sys-
tem’s security, other parameters, such as security of each network
link, need to be modeled.

Algorithm. Each objective is formally specified and can either
be an optimization problem (e.g., maximize availability, minimize
latency) or constraint satisfaction problem (e.g., total memory of
components deployed onto a host cannot exceed that host’s avail-
able memory). Given an objective and the relevant subset of the
system’s model, an algorithm searches for a deployment architec-
ture that satisfies the objective. An algorithm may also search for a
deployment architecture that simultaneously satisfies multiple ob-
jectives (e.g., maximize availability while satisfying the memory
constraints). In terms of precision and computational complexity,
there are two categories of algorithms for an optimization prob-
lem like this: exact and approximative. Exact algorithms produce
optimal results (e.g., deployments with minimal overall latency),
but are exponentially complex, which limits their applicability to
systems with very small numbers of components and hosts. On
the other hand, approximative algorithms in general produce sub-
optimal solutions, but have polynomial time complexity, which
makes them more usable.



Deployment Improvement Framework

Analyzer

Model

Effector

User InputMonitor

Algorithm

Implementation 

Platform

System Architect

Figure 5: Deployment improvement framework overview.

Analyzer. Analyzers are meta-level algorithms that leverage the
results obtained from the algorithm(s) and the model to determine
a course of action for satisfying the system’s overall objective. In
situations where several objective functions need to be satisfied, an
analyzer resolves the results from the corresponding algorithms to
determine the best deployment architecture. However, note that an
analyzer cannot always guarantee satisfaction of all the objectives.
Analyzers are also capable of modifying the framework’s behav-
ior by adding or removing low-level components from the frame-
work’s high-level components. For example, once an analyzer de-
termines that the system’s parameters have changed significantly,
it may choose to add a new low-level algorithm component that
computes better results for the new operational scenario. Analyz-
ers may also hold the history of the system’s execution by logging
fluctuations of the desired objectives and the parameters of inter-
est. System’s execution profile allows the analyzer to fine-tune the
framework’s behavior by providing information such as system’s
stability, work load patterns, and the results of previous redeploy-
ments.

Monitor. To determine the run time values of the parameters
in the model, a monitor is associated with each parameter. The
monitor is implemented in two parts: a platform-dependent part
that “hooks” into the implementation platform and performs the
actual monitoring of the system, and a platform-independent part
that interprets and may look for patterns in the monitored data. For
example, it determines if the data is stable enough to be passed on
to the model.

Effector. Just like monitors, effectors are also composed of two
parts: (1) a platform-dependent part that “hooks” into the platform
to perform the redeployment of software components; and (2) a
platform-independent part that receives the redeployment instruc-
tions from the analyzer and coordinates the redeployment process.
Depending on the implementation platform’s support for redeploy-
ment, effectors may also need to perform tasks such as buffering,
hoarding, or relaying of the exchanged events during component
redeployment.

User Input. Some system parameters may not be easily moni-
tored (e.g., security of a network link). Also, some parameters may
be stable throughout the system’s execution (e.g., CPU speed on a
given host). The values for such parameters are provided by the
system’s architect at design time. We are assuming that the archi-
tect is able to provide a reasonable bound on the values of system
parameters that cannot easily be monitored. Furthermore, the archi-
tect also must be capable of providing constraints on the allowable
deployment architectures. Examples of these types of constraints

Master HostSlave Host

Slave Framework Instance Master Framework Instance

Centralized Analyzer

Centralized Model

Master Effector

Centralized User 

Input
Master Monitor

Centralized Algorithm

Master Implementation 

Platform

System Architect

Slave Effector

Slave Monitor

Slave Implementation 

Platform

Figure 6: Deployment improvement framework distributed
centralized instantiation.

are location and collocation constraints. Location constraints spec-
ify a subset of hosts on which a given component may be legally
deployed. Collocation constraints specify a subset of components
that either must be or may not be deployed on the same host.

The framework described above has been realized using an in-
tegration of several tools, including Prism-MW [23], an architec-
tural middleware platform with monitoring and component migra-
tion capabilities, and DeSi [26], a software deployment modeling
and analysis environment. For the sake of brevity the details of
these tools are not provided. Interested reader may refer to [22, 23,
26].

4.2 Decentralization of the Framework
Figure 6 shows the framework’s instantiation in a distributed

centralized setting. Centralized systems have a master host (i.e.,
central host) that has complete knowledge of the distributed sys-
tem parameters. Master host contains a centralized model, which
maintains the global model of the distributed system. The central-
ized model is populated by the data it receives from master monitor
and centralized user input. The master monitor receives all of the
monitoring data from the slave monitors on other hosts. Once all of
the monitoring data from all of the slave hosts is received, the mas-
ter monitor forwards the monitoring data to the centralized model.
Each slave host contains a slave effector, which receives redeploy-
ment instructions from the master effector, and a slave monitor,
which monitors the slave host’s implementation platform and sends
the monitoring data back to the master monitor. Finally, the master
effector receives a sequence of command instructions from the cen-
tralized analyzer and distributes the redeployment commands to all
the slave effectors.

Figure 7 shows the framework’s instantiation for a decentralized
system. Unlike a centralized software system, a decentralized sys-
tem does not have a single host with the global knowledge of sys-
tem parameters. Each host has a local monitor and a local effector
that are only responsible for the monitoring and redeployment of
the host on which they are located. Each host has a decentralized
model that contains some subset of the system’s overall model, pop-
ulated by the data received from the local monitor and the decen-
tralized model of the hosts to which this host is connected. There-
fore, if there are two hosts in the system that are not aware of (i.e.,
connected to) each other, then the respective models maintained by
the two hosts do not contain each other’s system parameters. Each
host also has a decentralized algorithm (e.g., auctioning [21]) that
synchronizes with its remote counterparts to find a common solu-



Host 2

Deployment Improvement Framework Instance

Decentralized 

Analyzer 2

Decentralized Model 

2

Local Effector 2

Local User Input 1Local Monitor 2

Decentralized 

Algorithm 2

Host 2 Implementation 

Platform

Host 1

Deployment Improvement Framework Instance

Decentralized 

Analyzer 1

Decentralized Model 

1

Local Effector 1

Local User Input 1Local Monitor 1

Decentralized 

Algorithm 1

Host 1 Implementation 

Platform
System Architect 1 System Architect 2

Figure 7: Deployment improvement framework decentralized instantiation.

tion. Finally, in a similar way, the decentralized analyzer on each
host synchronizes with its remote counterparts to determine an im-
proved deployment architecture and effect it.

5. REFERENCE MODEL FOR DECEN-
TRALIZED SELF-ADAPTATION

Reflecting on our experiences with the two case studies has
helped us to gain a better understanding of decentralized self-
adaptive systems. In particular, it has illuminated several necessary
extensions to the commonly employed principles and frameworks.
We generalize the lessons we have learned in terms of a widely ap-
plicable reference model depicted in Figure 8. This model brings
together concepts from computational reflection [20], MAPE [17],
and feedback-control loop [33], and extends them with the addi-
tional constructs necessary for decentralization.

A self-adaptive system comprises one or more local self-adaptive
systems. For instance, the traffic monitoring system is an example
of a self-adaptive system. The software deployed on a camera is
a local self-adaptive system. A local self-adaptive system consists
of a set of local managed systems and a set of self-adaptive units.
For example, the main system in the traffic monitoring case and
host implementation platform in the deployment improvement sys-
tem are examples of a local managed system. On the other hand,
self-healing subsystem and deployment improvement framework
software are examples of a self-adaptive unit.

A self-adaptive unit is a self-contained entity that adapts the local
managed system using several meta-level computations, which use
a set of meta-level models. Below we explain meta-level models
and meta-level computations in detail.

5.1 Meta-Level Models
We distinguish between four types of meta-level models: system

model, concern model, working model, and coordination model.
The system model represents (parts of) the system that is man-

aged by the self-adaptive unit. The system can be either a local
managed system or a self-adaptive unit. The latter is applicable
to self-adaptive units that deal with higher level concerns (i.e., a
meta-metal-level model). The decentralized model in the deploy-
ment improvement system that maintains a representation of the
local system’s deployment architecture is an example of a system
model. In the traffic monitoring case, the dependency model con-
tains data that corresponds to a system model, i.e., the elements that

represent the components of the main system and the cameras on
which those components depend.

The concern model represents the objectives (goals) of a self-
adaptive unit. The concern model in the deployment improve-
ment system is represented either as an optimization problem (e.g.,
maximize availability), or a constraint satisfaction problem (e.g.,
keep components’ memory usage within the boundaries of the
host’s available memory). In the traffic monitoring system, the
self-healing concern is represented as rules of the form event–
condition–action set. Event is a failure of a camera, condition is a
local dependency on the failing camera, and action set are the set of
repair actions required to recover from the failure. The self-healing
manager uses data from the dependency model and the repair strat-
egy to derive the event–condition–action set rules.

A working model represents the data structures and information
shared between the meta-level (MAPE) computations. These mod-
els are typically domain-specific. Examples of working models in
the deployment improvement system are the temporary represen-
tations of candidate deployment architectures that are evaluated by
an analyzer, and the redeployment instructions produced by the an-
alyzer and used by the effector (see Figure 7).

A coordination model is a key model in decentralized self-
adaptive systems that distinguishes them from their centralized
counterparts. A coordination model represents the data required
by a meta-level computation to coordinate with meta-level com-
putations of other self-adaptive units. For example, in the simple
scenario shown in Figure 7, each of the decentralized analyzers, de-
centralized models, and decentralized algorithms maintains a rep-
resentation of its peers. Moreover, the coordination model may
contain data about ongoing negotiations. For instance, a decen-
tralized analyzers from Figure 7 may use an auction mechanism
to find an agreeable deployment solution with its counterparts, and
the status of the ongoing interaction is captured in the coordination
model. In the traffic monitoring case, each self-healing manager
maintains a representation of the cameras that its node has a depen-
dency on, as specified in the dependency model. These dependen-
cies mimic the organizational structure of the agents that deal with
the domain functionality. In general, the data maintained in a coor-
dination model may range from a set of simple references to peer
computations to a complex organization model that computations
use to coordinate. We further elaborate on coordination activity
below.



Figure 8: Reference model for decentralized self-adaptive systems.

5.2 Meta-Level Computations
Meta-level computations are the typical feedback control loop

computations found in self-adaptive systems–monitor, analyze,
plan, and execute–enhanced with support for decentralized coordi-
nation. The reference model explicitly separates coordination from
computation. Coordination is dealt with by coordination mecha-
nisms that use coordination models.

In general, a coordination mechanism allows resolution of co-
ordination problems arisen from dependencies [24]. Coordination
mechanisms can be as simple as a priority-based synchronization
mechanism to a complex market mechanism. [7] proposes a ba-
sic taxonomy of coordination mechanisms based on the types of
dependencies that underlie coordination problems (e.g., managing
dependencies between multiple tasks and multiple resources). In
decentralized self-adaptive systems, the choice for a particular co-
ordination mechanism depends on the type of computations that
have to coordinate and the characteristics and requirements of the
domain at hand. Below we provide concrete examples of coordina-
tion mechanisms for the different types of meta-level computations.

Monitor computation monitors the system that is managed by
the self-adaptive unit and possibly aspects of the system’s envi-
ronment. The system can be either a local managed system or
another lower-level self-adaptive unit. Monitor uses the observed
data to update the system model and may trigger analyze compu-
tations when particular conditions hold. In the traffic monitoring
case, the self-healing manager monitors the main system to keep
the dependency model up to date. To keep track of the status of re-
mote cameras with dependencies, each self-healing manager uses
a heartbeat generator that broadcasts alive messages. Heartbeat
is the coordination mechanism used by self-healing managers to
realize coordinated monitoring. In the deployment improvement
system, the local monitor on each host keeps track of the managed
system via the local implementation platform’s probes and gauges,
and populates the corresponding decentralized model. In addition,
the decentralized models that are directly connected to one another
(e.g., within close proximity) realize coordinated monitoring by ex-
changing data. Deployment models may share data using a vari-
ety of coordination mechanisms, such as gossiping and proximity

broadcasting.
Analyze computation assesses the collected data to determine the

system’s ability to satisfy its objectives. Plan computation con-
structs the actions necessary to achieve the system’s objectives.
Analyze computations may trigger plan computations, e.g., when
a particular analysis determines violation of system’s objectives.
Analysis and planning in the traffic monitoring case is trivial: the
self-healing manager checks the alive messages of cameras with
dependencies and when a camera fails, it triggers the repair actions
to adapt the main system. Since only local adaptations are needed,
there is no need for coordinated analysis or planning. In the deploy-
ment improvement system, a decentralized algorithm uses differ-
ent coordination mechanisms (e.g., auctioning, voting) to analyze
possible reconfigurations. Decentralized analyzer performs coor-
dinated planning; i.e., analyzers of connected hosts synchronize to
determine an improved deployment architecture for the managed
system.

Finally, triggered by plan, execute computation carries out
changes on the managed system. In the traffic monitoring case,
the self-healing manager executes the repair actions to bring the
main system to a consistent state. In the deployment improvement
system, the local effectors deal with the low-level migration and in-
stallation of software components via the facilities provided by the
implementation platform. While not explicitly depicted in Figure 7,
the effectors coordinate with one another by requesting migration
of the required software components (i.e., as specified in the new
configuration selected by decentralized analyzer) from their peers.

6. CONCLUSION AND CHALLENGES
AHEAD

Over the last decade, research on self-adaptive systems has ma-
tured to encompass a set of foundational principles, techniques, and
implementation frameworks. Self-adaptive systems have been built
for a variety of concerns in different domains. Still, state-of-the-art
self-adaptive frameworks lack support for a growing class of sys-
tems in which central control is not an option. Based on a thorough
study of existing approaches and reflecting on our own experiences,
we derived a set of key capabilities required for engineering de-



centralized self-adaptive systems, and illustrated them in two cases
studies.

We generalized the lessons learned in the fyorm of a high-level
reference model. This model reifies the basic constructs of self-
adaptive systems and extends them with additional constructs to
support the engineering of decentralized self-adaptive systems. The
key constructs to support decentralization of control are coordina-
tion mechanism and coordination models. Reflective computations
in a decentralized setting coordinate at every stage to share knowl-
edge, analyze the realization of goals, derive plans, and synchro-
nize the execution of adaptations. Coordination mechanisms pro-
vide the means to resolve conflicts arisen from dependencies be-
tween nodes in a decentralized setting. Coordination models cap-
ture the runtime data required for coordination.

Our experiences with the development of decentralized self-
adaptive systems, as well as the generalization of the lessons
learned in the form of a reference model, have helped us to identify
several key challenges in this area. The challenges we have have
identified span the interest of numerous research communities, in-
cluding software engineering, multi-agent systems, artificial intelli-
gence, self-organizing systems, and theory. We thus believe there is
a need for an inter-disciplinary approach to challenges posed here.
In particular, we believe software engineering community is in a
unique position to bridge the gap between these communities—a
task that we have begun to undertake in this paper, and more gener-
ally pursue in the organization of a workshop series targeted at this
problem [34].

Partial Knowledge. The types of analysis and planning performed
in this setting needs to deal with the reality that partial knowledge
is the norm, rather than the exception. Even in a collaborative set-
ting, sharing complete knowledge between decentralized adapta-
tion managers constrains the scalability of the systems, as outlined
in [12]. Moreover, a number of commonly employed quantita-
tive decision making techniques, such as non-linear programming
from operations research and queueing network models from per-
formance analysis, are not directly applicable, since they rely on
the availability of system-wide knowledge. The lack of complete
knowledge forces each self-adaptive unit to make sub-optimal so-
lutions. While through carefully designed algorithms, it may be
possible to develop algorithms that converge to (near-)optimal so-
lutions, in practice, engineering real-world solutions in this manner
has shown to be extremely difficult for some of the reasons outlined
below.

Uncertainty. Any self-adaptive system situated in a dynamic, es-
pecially physical, environment has to deal with uncertainty. This
is due to the fact that physical environments are by definition un-
predictable, hence at any point in time the environment model of a
self-adaptive system may become inconsistent with the actual en-
vironment, and a self-adaptive system may have no control over
other processes that influence the environment. The situation is ex-
acerbated in decentralized self-adaptive systems, where there is no
central authority, and the system’s organization itself may fluctuate
dynamically as a result of self-adaptive units that join and leave the
system. Artificial self-organizing systems have shown to be partic-
ularly robust to dynamic operating conditions [31, 25]. Exploiting
principles from this field is a promising direction to deal with un-
certainty in decentralized self-adaptive systems.

Conflicting Goals. In decentralized self-adaptive systems, each
self-adaptive unit may pursue its own goals. These systems often
share logical and physical resources, and thus their goals may con-
flict with one another. In such setting, either the self-adaptive units
cooperate with one another to achieve a fair solution, or compete
with one another to maximize personal gain. Numerous engineer-

ing questions in either case arise: How to model, relate, and in-
corporate individual goals to reason about a system-wide solution?
Which conflict resolution mechanism is more suitable for a partic-
ular type of quality concern? How to trust individual self-adaptive
units to play fairly and not selfishly? The body of work on market
mechanisms and negotiation [15] from the field of multi-agent sys-
tems is a promising starting point to tackle the complex problems
of conflicting goals. Reinforcement learning techniques [16] could
also be useful for developing self-adaptive units that over time learn
the best approach to adapt and negotiate with one another. In fact,
learning may also be employed to address other issues, such as un-
certainty (e.g., through learning the emerging properties) and par-
tial knowledge (e.g., through inducing more knowledge based on
the available information).

Overhead. As evident in our reference model, the centerpiece of
decentralized self-adaptation is coordination. Coordination may
occur at different phases and levels. However, coordination in a
distributed setting results in additional communication and compu-
tation that is of utmost significance from a software engineering
perspective. For instance, to deal with partial knowledge, self-
adaptive units may choose to coordinate through sharing of local
information with one another, while to deal with conflicting goals,
self-adaptive units may choose to coordinate through negotiation
or voting protocols. Clearly, in both cases one has to consider two
issues: (1) the computing inefficiency as a result of resources uti-
lized for coordination, and (2) the timeliness impact of making and
effecting adaptation decisions due to such coordination efforts.

Guarantees. Providing system-wide assurances in both self-
adaptive and decentralized software is challenging. The situation
is exacerbated when one considers self-adaptive software that is
also decentralized. The difficulty of guaranteeing the system’s be-
havior is a byproduct of some of the challenges mentioned earlier,
e.g., lack of knowledge, and uncertainty. On top of providing as-
surances for the system’s behavior (e.g., timeliness), in some cases
ensuring that even a solution can be eventually converged on is
challenging. For instance, in many market-based algorithms, if a
sensible mechanism design is not employed, no particular solution
converges. Moreover, another related issue of concern is unwanted
(unaccounted for) emergent behavior. For instance, consider that
applying the deployment improvement framework to a highly un-
stable system may result in continuous redeployment of the system,
which may degrade the system’s QoS instead of improving it, and
the lack of a central authority makes it extremely difficult to de-
tect such situations. Assurances could take on various forms: Is
the system guaranteed to achieve a particular set of objectives? Is
it guaranteed for the system to achieve those objectives within a
certain time limit? Inspiring starting points to deal with guaran-
tees in decentralized self-adaptive systems are formal verification
of negotiation protocols [32], Law-Governed Interactions [27], and
controlling emergent behavior [30].

Systematic Engineering. Finally, in our experiences we have ob-
served significant trade-offs among the design decisions that ad-
dress the challenges listed above. For instance, selecting the right
mechanism for coordination often depends on the level of overhead
that can be tolerated, while the level of overhead depends on the
level of guarantees desired. A systematic approach to engineering
such systems calls for a better understanding of such trade-offs. To
that end, a number of challenging questions need to be addressed:
How could we apply the principles of software architecture to the
organization of such systems? How the different ways of organiz-
ing such systems (e.g., peer-to-peer vs. hierarchical) relate to archi-
tectural styles? Is it possible to develop a catalog of organization
patterns that promote specific properties? What is the impact of or-



ganization patterns on coordination mechanisms utilized in lower
levels? We believe the following studies [13, 14, 18, 28] are steps
in the right direction.

Acknowledgements
This work is partially supported by grant CCF-0820060 from the
National Science Foundation. Danny Weyns is funded by the Re-
search Foundation Flanders (FWO).

7. REFERENCES
[1] J. Andersson et al. Reflecting on self-adaptive software

systems. In Workshop on Software Engineering for Adaptive
and Self-Managing Systems, Vancouver, BC, May 2009.

[2] J. Andesson et al. Modeling dimensions of self-adaptive
software systems. In Betty H. C. Cheng et al., editors, LNCS
Hot Topics on Software Engineering for Self-Adaptive
Systems. Springer, 2009.

[3] Y. Brun et al. Engineering self-adaptive systems through
feedback loops. In Software Engineering for Self-Adaptive
Systems, volume 5525, pages 48–70. Lecture Notes in
Computer Science Hot Topics, 2009.

[4] B. Cheng et al. Software engineering for self-adaptive
systems: A research road map. In Betty H. C. Cheng et al.,
editors, LNCS Hot Topics Software Engineering for
Self-Adaptive Systems. Springer, 2009.

[5] S. Cheng et al. Evaluating the effectiveness of the rainbow
self-adaptive system. In Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMSŠ09),
Vancouver, BC, Canada, 18-19 May 2009.

[6] G. Coulson et al. A generic component model for building
systems software. ACM Trans. Comput. Syst., 26(1):1–42,
2008.

[7] K. Crowston. A taxonomy of organizational dependencies
and coordination mechanisms. Working paper series, MIT
Center for Coordination Science, 1994.

[8] S. Dobson et al. A survey of autonomic communications.
TAAS, 1(2):223–259, 2006.

[9] J. Dowling and V. Cahill. The k-Component architecture
meta-model for self-adaptive software. In Int’l Conf. on
Metalevel Architectures and Separation of Crosscutting
Concerns, pages 81–88, London, UK, 2001. Springer-Verlag.

[10] G. Edwards et al. Architecture-driven self-adaptation and
self-management in robotics systems. In Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, Vancouver, BC, May 2009.

[11] D. Garlan et al. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. IEEE Computer,
37(10):276–277, October 2004.

[12] I. Georgiadis, J. Magee, and J. Kramer. Self-Organising
Software Architectures for Distributed Systems. In 1st
Workshop on Self-Healing Systems, New York, 2002. ACM.

[13] C.S. Hayden et al. A catalog of agent coordination patterns.
In Annual Conf. on Autonomous Agents, pages 412–413,
New York, NY, USA, 1999. ACM.

[14] B. Horling and V. Lesser. A Survey of Multi-Agent
Organizational Paradigms. The Knowledge Engineering
Review, 19(4):281–316, 2005.

[15] N.R. Jennings et al. Automated Negotiation: Prospects,
Methods and Challenges. Group Decision and Negotiation,
10(2):199–215, 2001.

[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[17] J.O. Kephart and D.M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[18] M. Kolp et al. Multi-agent architectures as organizational
structures. Autonomous Agents and Multi-Agent Systems,
13(1):3–25, 2006.

[19] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Int’l Conf. on Software
Engineering, May 2007.

[20] P. Maes. Concepts and experiments in computational
reflection. In OOPSLA, Orlando, FL, Oct 1987.

[21] S. Malek et al. A decentralized redeployment algorithm for
improving the availability of distributed systems. In 3rd Int’l
Conf. on Component Deployment, Grenoble, France, 2005.

[22] S. Malek et al. A framework for ensuring and improving
dependability in highly distributed systems. Architecting
Dependable Systems III, LNCS, October 2005.

[23] S. Malek et al. A style-aware architectural middleware for
resource-constrained, distributed systems. IEEE
Transactions on Software Engineering, 31(3):256–272, 2005.

[24] T.W. Malone and K. Crowston. Toward an interdisciplinary
theory of coordination. ACM Computing Surveys,
26(1):87–119, 1994.

[25] M. Mamei and F. Zambonelli. Field-based coordination for
pervasive multiagent systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

[26] M. Mikic-Rakic et al. A tailorable environment for assessing
the quality of deployment architectures in highly distributed
settings. LNCS, pages 1–17, 2004.

[27] N. Minsky. On conditions for self-healing in distributed
software systems. Autonomic Computing Workshop, 2003.

[28] A. Oluyomi et al. A comprehensive view of agent-oriented
patterns. Autonomous Agents and Multi-Agent Systems,
15(3):337–377, 2007.

[29] P. Oreizy et al. Architecture-based runtime software
evolution. In Int’l Conf. on Software engineering, Kyoto,
Japan, May 1998.

[30] H. V. D. Parunak and S. Brueckner. Engineering swarming
systems). In Methodologies and Software Engineering for
Agent Systems. Springer, 2004.

[31] H. V. D. Parunak and S. Brueckner. Analyzing Stigmergic
Learning for Self-Organizing Mobile Ad-Hoc Networks
(MANET’s). In Engineering Self-Organising Systems,
Methodologies and Applications, Lecture Notes in Computer
Science, Vol. 3464. Springer, 2005.

[32] T. W. Sandholm. An implementation of the contract net
protocol based on marginal cost calculations. In 12th
International Workshop on Distributed Artificial Intelligence,
pages 295–308, Hidden Valley, Pennsylvania, 1993.

[33] M. Shaw. Beyond objects: A software design paradigm
based on process control. ACM SIGSOFT Software
Engineering Notes, 20(1):27–38, January 1995.

[34] SOAR: Workshop Series on Self-Organizing Architectures.
http://distrinet.cs.kuleuven.be/events/
soar/2010/.

[35] F. Tisato et al. Architectural reflection: Realising software
architectures via reflective activities. In Second International
Workshop on Engineering Distributed Objects. Springer,
2001.

[36] D. Weyns et al. The MACODO middleware for
context-driven dynamic agent organizations. TAAS,
5(1):3.1–3.29, 2010.


