
3

The MACODO Middleware for Context-Driven
Dynamic Agent Organizations
DANNY WEYNS, ROBRECHT HAESEVOETS, ALEXANDER HELLEBOOGH,
TOM HOLVOET, and WOUTER JOOSEN
DistriNet Labs, Katholieke Universiteit Leuven

One of the major challenges in engineering distributed multiagent systems is the coordination

necessary to align the behavior of different agents. Decentralization of control implies a style of

coordination in which the agents cooperate as peers with respect to each other and no agent has

global control over the system, or global knowledge about the system. The dynamic interactions

and collaborations among agents are usually structured and managed by means of roles and or-

ganizations. In existing approaches agents typically have a dual responsibility: on the one hand

playing roles within the organization, on the other hand managing the life-cycle of the organization

itself, for example, setting up the organization and managing organization dynamics. Engineering

realistic multiagent systems in which agents encapsulate this dual responsibility is a complex task.

In this article, we present a middleware for context-driven dynamic agent organizations. The

middleware is part of an integrated approach, called MACODO: Middleware Architecture for

COntext-driven Dynamic agent Organizations. The complementary part of the MACODO approach

is an organization model that defines abstractions to support application developers in describing

dynamic organizations, as described in Weyns et al. [2010].

The MACODO middleware offers the life-cycle management of dynamic organizations as a

reusable service separated from the agents, which makes it easier to understand, design, and

manage dynamic organizations in multiagent systems. We give a detailed description of the soft-

ware architecture of the MADOCO middleware. The software architecture describes the essential

building blocks of a distributed middleware platform that supports the MACODO organization

model. We used the middleware architecture to develop a prototype middleware platform for a traf-

fic monitoring application. We evaluate the MACODO middeware architecture by assessing the

adaptability, scalability, and robustness of the prototype platform.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-

ligence—Multiagent systems; D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures

General Terms: Design, Experimentation

This research is supported by the DiCoMAS project, which is funded by the Institute for the Pro-

motion of Innovation through Science and Technology in Flanders (IWT) and the GOA project,

which is funded by the Katholieke Universiteit Leuven. Danny Weyns is funded by the Research

Foundation Flanders (FWO).

Authors’ address: DistriNet Labs, Department of Computer Science, Katholieke Universiteit

Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium; email: danny.weyns@cs.kuleuven.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1556-4665/2010/02-ART3 $10.00

DOI 10.1145/1671948.1671951 http://doi.acm.org/10.1145/1671948.1671951

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:2 • D. Weyns et al.

Additional Key Words and Phrases: Context, middleware, organization, role, software architecture

ACM Reference Format:
Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet, T., and Joosen, W. 2010. The MACODO

middleware for context-driven dynamic agent organizations. ACM Trans. Autonom. Adapt. Syst.

5, 1, Article 3 (February 2010), 28 pages.

DOI = 10.1145/1671948.1671951 http://doi.acm.org/10.1145/1671948.1671951

1. INTRODUCTION
One of the major challenges in software engineering of distributed multiagent

systems is the coordination necessary to align the behavior of different agents.

Since coordination determines whether agents cooperate effectively, it has a

direct impact on the satisfaction of a multiagent system’s functional require-

ments. Furthermore, since coordination in a distributed setting is basically re-

alized by communication, coordination has a large impact on quality attributes

such as efficiency and resource usage. Decentralization of control implies a style

of coordination in which the agents cooperate as peers with respect to each other,

and no agent has global control over the system, or global knowledge about the

system. As a result, complex interactions are necessary to achieve consensus

since there is no single agent that can make a centralized decision. In the case

of mobile applications, agents have to take into account the distribution of the

nodes in physical space and other properties of the environment, which adds

extra complexity to the realization of coordination.

A typical way to structure and manage interactions among agents is by

means of organizations [Kendall 2000; Omicini 2001; Odell et al. 2003; Zam-

bonelli et al. 2003]. In an organization, agents work together based on well-

defined roles, each role being responsible for a particular functionality of an

organization. Changes in the environment in which the system is situated can

trigger an organization to dynamically reorganize [Dignum et al. 2004]. Dy-

namic reorganizations include intraorganization adaptations such as assign-

ing and revoking roles (e.g. an agent that enters or leaves an e-market), and

interorganization adaptations such as merging and splitting organizations (e.g.

a mobile sensor network in which two groups of sensors get connected to each

other or disconnected from each other). Engineering an organization-oriented

multiagent system is a challenging task. Most of the existing work on orga-

nizations takes an agent-centered perspective [Ferber and Gutknecht 1998;

Dignum et al. 2004; Sims et al. 2008], endowing agents with a dual responsi-

bility: on the one hand playing roles within the organization, on the other hand

managing the life-cycle of the organization itself, for example, setting up the or-

ganization and managing organization dynamics. Engineering realistic multia-

gent systems in which agents encapsulate this dual responsibility is a complex

task.

To support engineers of organization-oriented multiagent systems,

we present a middleware for context-driven dynamic agent organizations. The

middleware is part of an integrated approach, called MACODO: Middleware

Architecture for COntext-driven Dynamic agent Organizations. The comple-

mentary part of the MACODO approach is an organization model that defines

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:3

abstractions to support application developers in describing dynamic organiza-

tions, as described in Weyns et al. [2010].

The MACODO middleware encapsulates the life-cycle management of dy-

namic organizations as a reusable service, clearly separated from the function-

ality of agents playing roles within these organizations. Driven by changes in

the context,1 the middleware initiates, maintains, and adapts organizations

and actively advertises role positions to the agents, supporting the necessary

collaborations between agents needed in the current context. Separating life-

cycle management of dynamic organizations from the agents playing roles in

the organizations promotes reuse and makes it easier to understand, design,

and manage dynamic organizations in multiagent systems. We give a detailed

description of the software architecture of the MADOCO middleware. The soft-

ware architecture describes the essential building blocks of a distributed mid-

dleware platform that supports the MACODO organization model. We used

the middleware architecture to develop a prototype middleware platform for a

traffic monitoring application. We evaluate the MACODO middeware architec-

ture by assessing the adaptability, scalability and robustness of the prototype

platform.

Overview. This article is structured as follows. In Section 2, we introduce

the MACODO organization model and we illustrate it with a traffic monitoring

scenario that we use as a running example in the article. Section 3 describes

the MACODO software architecture. In Section 4, we describe the setup of the

experiments and we evaluate the MACODO prototype platform applied to the

traffic monitoring system. In Section 5, we discuss related work. Finally, we

draw conclusions and outline issues for future research in Section 6.

2. MACODO ORGANIZATION MODEL
In this section, we give an overview of the MACODO organization model. First,

we introduce the traffic monitoring application that we use as a running exam-

ple. Then we introduce the MACODO organization model. We use a concrete

scenario in the traffic monitoring application to illustrate the basic abstrac-

tions of the MACODO organization model. The same scenario will be used to

clarify several aspects of the MACODO software architecture in Section 3. In

Section 4 we discuss a prototype implementation of the traffic monitoring appli-

cation that we used to evaluate the MACODO programming abstractions and

the software architecture. For a complete formal specification of the MACODO

organization model we refer you to Weyns et al. [2010].

2.1 Coordinated Monitoring of TrafÞc Jams
The monitoring application we consider fits in the domain of intelligent

transportation systems, a worldwide initiative to exploit information and

1In line with Hirschfeld et al. [2008], we use the term context for “any information which is compu-

tationally accessible and upon which behavioral variations depend.” In MACODO, the behavioral

variations are organization dynamics, and the computationally accessible information is the infor-

mation in the environment that can be observed and upon which organization dynamics depend.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:4 • D. Weyns et al.

Fig. 1. An example of a highway with traffic cameras.

communication technology to improve traffic [ITS 2008; ERTICO 2008]. The

system consists of a set of intelligent cameras distributed evenly along the

road. An example of a highway is shown in Figure 1. Each camera has a limited

viewing range and cameras are placed to get optimal coverage of the highway

with a minimum of overlap.

Cameras are equipped with a data processing unit capable of processing the

monitored data, and a communication unit to communicate with other cameras.

A camera is able to measure two traffic variables within its viewing range:

the current density—the number of vehicles per length unit—and the average

speed of the vehicles. These two variables can be used to determine the current

congestion level and decide whether there is a traffic jam in the viewing range

of a camera [Kerner 2004].

The task of the cameras is to detect and monitor traffic jams on the high-

way in a decentralized way, avoiding the bottleneck of a centralized control

center. Possible clients of the monitoring system are traffic light controllers,

driver assistance systems such as systems that inform drivers about expected

travel time delays, systems for collecting data for long term structural decision

making, and so forth.

Traffic jams can span the viewing range of multiple cameras and can dy-

namically grow and dissolve. By default, each camera monitors the traffic state

within its viewing range, which makes up its context. When a traffic jam occurs,

the camera has to collaborate with other cameras detecting the same traffic jam.

Because there is no central point of control, cameras have to aggregate the data

monitored by each of the cameras to determine the position of the traffic jam

on the basis of the head and tail of it. One of the cameras will be responsible

to distribute the aggregated data of the traffic jam to the interested clients.

Cameras will enter or leave the collaboration whenever the traffic jam enters

or leaves their viewing range.

2.2 Overview of the MACODO Organization Model
In this section we explain the basic abstractions MACODO offers to the applica-

tion developer to describe dynamic organizations. We use a graphical notation

and give an informal description of the abstractions. Weyns et al. [2010] gives

a detailed formal specification of the organization model.

Figure 2 shows an overview of the basic abstractions of the MACODO or-

ganization model. We explain the abstractions using the scenario shown in

Figure 3.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:5

Fig. 2. MACODO organization model.

Context. Context represents information in the environment of an agent

that is relevant for the organizations in which the agent participates. In this

scenario, context includes the actual traffic state in the viewing range of the

camera and the names of the agents on neighboring cameras. The traffic state

has three possible values: free flow, bound flow, and congestion. In a free flow

state, vehicles can drive at the maximum allowed speed. In a bound flow state

this speed is limited. Finally, in a congested state, vehicles are standing still or

can only drive at a minimum speed. For example, at time T1 in Figure 3, the

traffic state monitored by camera C2 is free flow, while the state monitored by

C3 is congestion. The neighbors of agent3 are agent2 and agent4.

Capability. A capability refers to ability of an agent to perform tasks. Capa-

bilities describe required qualifications of an agent to participate in an organi-

zation. How an agent uses its capabilities to achieve its goals is an issue private

to the agent. Examples of capabilities in the traffic monitoring case are observe
(monitor the local traffic conditions), aggregate (integrate the traffic state of

different cameras of an organization), and present (distribute information of

traffic jams to a client).

Role. A role describes a coherent set of capabilities that are required to

realize a functionality that is useful in an organization. In this scenario, each

camera agent is capable of playing three different roles: data observer, data

pusher, and data aggregator. An agent can play multiple roles simultaneously.

The data observer role is responsible for monitoring the two traffic variables

(density and average speed) and deciding whether the congestion level is high

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:6 • D. Weyns et al.

Fig. 3. Scenario to illustrate the basic abstractions of the MACODO organization model.

enough to be considered as a traffic jam. The data pusher role is responsible

for pushing the observed data to the data aggregator role, which in turn is

responsible for aggregating the data and distributing it to the interested clients.

While there can be several agents playing the role of data observer and data

pusher (on each camera in the organization), there can be at most one agent

playing the role data aggregator in an organization.

Role Position. Organizations attract agents by means of role positions. A

role position specifies a vacancy for a particular role in a particular organi-

zation. To start playing a particular role, the agent must have the required

capabilities to play the role in that role position. When the agent’s capabilities

match the required capabilities of that role position, the agent gets a contract

for that role position in the organization. At time T2 in the scenario, the or-

ganization org1 has an open role position for the data observer role. Later on,

agent1 gets a role contract for this role position.

Role Contract. A role contract is a mutual agreement between the agent

and the organization that allows the agent to play the role specified by the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:7

role contract in that organization. An agent playing a role in an organization

receives services associated with the organization such as support for organi-

zation adaptations (see below). On the other hand, a role contract also implies

responsibilities; for example, the agent has to share the relevant context for the

organization (e.g. changes in the monitored traffic state) with the organization.

As an example, at time T1, agent3 and agent4 have role contracts with orga-

nization org3 to play the role of data observer. Additionally, agent4 has a role

contract to play the role of data aggregator (indicated by the boxed letter A).

Agent. Agents are the active entities that can play roles in organizations.

A MACODO agent has a name, a set of capabilities, a context, and a set of

role contracts. These are the social assets of a MACODO agent. Social assets

comprise information that the agent uses to play the roles in its role contracts.

The agent shares this information with the organizations in which it is involved.

We make abstraction of the private structures of an agent which is out of the

scope of the MACODO organization model. In the traffic monitoring application,

a software agent is deployed on each camera. In this scenario, agent1 is deployed

on camera C1, agent2 on camera C2, and so forth.

OrgContext. Organization context comprises domain-specific information

that is relevant for organization dynamics. In this scenario, the organization

context consists of the overall traffic state monitored by the cameras in the orga-

nization and the names of neighboring organizations. For example, at time T2,

the traffic state of organization org1 is free-flow; the state of org3 is congested.

The traffic state is free-flow, bound flow, or congested when all the agents in

the organization monitor the corresponding traffic state. The traffic state of an

organization is undefined when the actual traffic condition is not known. The

traffic state is differentiated when different agents of the organization monitor

different traffic conditions. Two traffic organizations are neighbors if there ex-

ist two agents (1) each with a role contract in one of the organizations, and (2)

that are deployed on neighboring cameras. The neighbors are those organiza-

tions with which an organization may interact during organization dynamics.

At time T1 in the scenario, the neighbor of organization org2 consists of the

name of organization org3. However at time T2, the interaction candidates also

include the name of organization org1.

Organization. An organization enables agents to collaborate. MACODO or-

ganizations have a name, an organization context, a set of role positions, and a

set of role contracts. We refer to the actual role positions of an organization as

open role positions. When an agent applies for an open role position and fulfils

the conditions, we say that the role position is closed. A role contract is then

created between the organization and the agent for that role position. A traffic

organization in the scenario enables camera agents to collaborate in order to

detect and monitor traffic jams. At time T1, Figure 3 shows two organizations.

Organization org3 consists of agent3 and agent4, which collaborate to inform

the interested clients of a traffic jam that spans the viewing range of cameras

C3 and C4. Organization org2 consists of only agent2, which monitors the traffic

in its viewing range.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:8 • D. Weyns et al.

Law. Laws describe the dynamic adaptation of organizations and define

how a MACODO system maintains a consistent state. In MACODO, organiza-

tion dynamics are directly or indirectly triggered by external events (e.g. an

agent stops playing a role) and changes in the context of the agents in the orga-

nizations (e.g. the traffic state in the viewing range of an agent that collaborates

in a traffic monitoring organization changes). There are different purposes why

organizations should adapt, reflected in two types of laws. A first type of laws

refers to intraorganization dynamics and basically describes how an agent can

join and leave an organization dynamically, which is important for open organi-

zations. A second type of laws describes interorganization dynamics, including

merging and splitting of organizations. These laws support dynamic restruc-

turing of a set of organizations, which is particularly relevant for collaborations

in mobile systems where organizations of agents may get connected and discon-

nected dynamically. We illustrate both types of laws in the traffic monitoring

scenario.

A join law defines how an agent can join an organization. For example, at time

T2 in the scenario, agent1 starts a new organization org1. This new organization

opens a role position for the role of data observer. Subsequently agent1 joins

org1 by accepting this role position. After the join, the role position is closed

and agent1 has a role contract with org1 allowing it to play the role of data

observer in the organization. A leave law defines how an agent can leave an

organization. A leave law terminates a role contract between the agent and the

organization. Depending on the particular situation, the organization may or

may not open a new role position for the role in the terminated role contract.

A merge law defines how two organizations can merge. For example, at time

T3 in the scenario, the traffic state monitored by camera C2 becomes congested.

As a result, at time T4, the two neighboring organizations, org2 and org3, merge

together in a single organization org23. Since an organization has only one

agent in the role of data aggregator, one of the contracts in this role will be

terminated by the merge law. A split law defines how an organization is split in

two organizations. At time T5, the traffic state in the viewing range of camera

C4 is no longer congested. The split law will split off org4 from org23. The split

law reorganizes the role contracts of the involved agents ensuring that there

will be at most one agent with a contract in the role of data aggregator in both

resulting organizations.

MACODO System. Finally, a MACODO system consists of a set of agents, a

set of organizations, and a set of laws that comply to the MACODO organization

model. The scenario shows a MACODO system for a traffic monitoring appli-

cation consisting of four camera agents and a number of traffic organizations,

with laws for joining, leaving, merging, and splitting organizations.

3. SOFTWARE ARCHITECTURE
In this section, we describe a software architecture that supports the MACODO

organization model. The software architecture captures the essential building

blocks of a distributed middleware platform to support the MACODO program-

ming abstractions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:9

We start by explaining the functional and quality requirements that under-

pin the MACODO software architecture (Section 3.1). Then we describe the

software architecture using several architectural views. We give an overview

of the different layers of the system (Section 3.2). We zoom in on the organi-

zation middleware layer and explain interorganization and intraorganization

dynamics (Section 3.3). We use the running scenario of the traffic monitoring

application introduced in Section 2 as an illustrative case.

3.1 Requirements
We discuss the main functional and quality requirements that are the drivers

for the MACODO software architecture.

3.1.1 Functional Requirements. Functionality is the ability of the system

to perform the tasks for which it is intended. The main functional require-

ment of the organization middleware is that it should provide the functional-

ity to support the MACODO organization model described in Section 2. This

functionality concerns various aspects of organization life-cycle management,

including:

—handling role positions and managing role contracts: which is necessary to

enable agents to join organizations and to update contracts in case of reorga-

nizations;

—enforcing laws; which includes checking the conditions when laws are appli-

cable as well as enforcing the correct application of the laws;

—maintaining the organization context in a distributed setting.

3.1.2 Quality Requirements. Quality is the degree to which a system meets

the nonfunctional requirements in the context of the required functionality. The

main quality requirements that drive the MACODO software architecture are

the following.

—Adaptability. The organization middleware should be capable of dynamically

reorganizing organizations in response to particular changes in the environ-

ment.

—Robustness. The organization middleware should be robust to node failures.

—Scalability. The organization middleware should scale linearly with the size

of the organizations in the system.

—Portability. It should be possible to add the organization middleware on top of

existing middleware. The organization middleware should augment, rather

than replace, existing middleware.

3.2 Layered View of a MACODO System
Figure 4 shows a layered view of the software architecture of a MACODO sys-

tem.

The layering is strict: each layer is only allowed to use services offered by

the layer directly beneath it.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:10 • D. Weyns et al.

Fig. 4. Layered view of a MACODO system.

Elements. We give an overview of the different layers in a MACODO system.

—Host Infrastructure Layer. The host infrastructure encapsulates common

middleware services and basic support for distribution, hiding the complexity

of the underlying hardware.

—Agent Middleware Layer. The agent middleware layer provides basic services

in multiagent systems. We used the model proposed in Weyns et al. [2007],

which includes basic support for perception, action, and communication. Per-

ception provides a service to agents for sensing the environment in which

they are situated. Action provides a service to act in the environment. The

communication service supports the exchange of messages in the distributed

setting.

—Organization Middleware Layer. The organization middleware layer provides

support for dynamic organizations. This layer encapsulates the management

of dynamic evolution of organizations and it provides role-specific services

to the agents for perception, action, and communication. The organization

middleware layer is the main focus of the software architecture described in

this section.

—Agent Layer. The agents in the agent layer use the organization middleware

to interact with the environment and each other through the roles they play

in the organizations.

Design Rationale. The key motivations for the layered architecture are the

following.

—Encapsulating the management of organizations. One of the core architec-

tural decisions is to separate the management of organizations from the

functionality provided by the agents. The distinction between an Agent Layer

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:11

and an Organization Middleware Layer defines this separation at an archi-

tectural level.

—Portability of the Organization Middleware Layer. The Organization Middle-

ware is a layer that is separated from the underlying Agent Middleware. This

increases the portability of the Organization Middleware across different ba-

sic middlewares.

3.3 Architecture of the Organization Middleware
The Organization Middleware offers support for the abstractions of the orga-

nization model. We describe the architecture of the organization middleware

using several architecture views. We start by explaining the components and

their interactions at one node (Section 3.3.1), and we zoom in on the component

responsible for organization management (Section 3.3.2). Next, we elaborate

on intra-organization dynamics (Section 3.3.3). Finally, we explain interorga-

nization dynamics (Section 3.3.4).

3.3.1 Component and Connector View of the Organization Middleware.
Figure 5 shows a component and connector view of the organization middle-

ware layer as deployed on each node. A node refers to a computer system that

is connected with other nodes in a network. A node in the traffic monitoring sys-

tem consists of an intelligent camera, comprising a camera sensor, a processing

unit, a memory unit, and a communication unit. We say that a node is involved

in an organization (and an organization is active on a node) if there is at least one

agent deployed on that node with a role contract in the organization. However,

one node can be involved in multiple organizations and each organization can

be distributed over multiple nodes. For the traffic monitoring case the situation

is more restricted since each node deploying one camera agent can only be in-

volved in one organization, however, this organization may span multiple nodes.

Elements. We explain the responsibilities of the various components and

their relationships. Central in the organization middleware are four local data

repositories. The data in these repositories represent the key abstractions from

the organization model. These repositories contain local data that is synchro-

nized with data on other nodes in the following manner.

—Organization Context Repository. Organization context contains a partial rep-

resentation of the organization state and interaction candidates of the orga-

nizations active on the node. For the traffic monitoring case, organization

context includes the current traffic state the organization is monitoring, and

the traffic state of the neighboring organizations (interaction candidates).

The ContextManagement interface enables components to inspect and mod-

ify the content of the Organization Context Repository.

—Role Positions Repository. The Role Positions Repository contains a represen-

tation of the open role positions available to the local agents. The Position-
Query interface enables components to inspect the role positions in the Role

Positions Repository. The PositionManagement interface enables components

to inspect and modify the role positions in the repository.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:12 • D. Weyns et al.

Fig. 5. Component and connector view of the organization middleware layer at one node.

—Role Contracts Repository. The Role Contracts Repository contains a repre-

sentation of the current role contracts of the organizations active on the node.

The ContractQuery interface supports inspecting the Role Contracts Repos-

itory, whereas the ContractManagement interface supports both inspecting

and modifying the contracts in the repository.

—Laws Repository. The Laws Repository contains a description of the laws

that manage intraorganization dynamics and interorganization dynamics.

The LawQuery interface supports inspecting the laws.

Sharing the repositories allows coordination among the Organization Con-

troller, Role Mediator, and the agents (via the Role Life Cycle Facade and Role

Facade components). An organization itself comprises the combined state of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:13

role positions, role contracts and context stored at the repositories on all the

nodes that are active in the organization.

Besides the repositories, the organization middleware comprises the follow-

ing components.

—Role Life Cycle Facade. The Role Life Cycle Facade is responsible for the life

cycle management of roles. Therefore, the Role Life Cycle Facade enables

agents to browse and select open role positions in the local Role Positions

repository using the AgentRoleManagement interface. As described in the or-

ganization model, the open role positions can be positions in an organization

where the agent already has a role contract, or positions in an organization

that the agent can join. When an agent selects a matching open role position,

the Role Life Cycle Facade forwards the request to the Organization Con-

troller, which removes the role position from the Role Positions Repository,

makes a role contract for the role position for the agent, and links the new

role contract with the organization by updating the Role Contracts Repos-

itory. Subsequently, the Role Life Cycle Facade is notified about the new

contract and activates a Role Facade component for the role contract to en-

able the agent playing the role. When an agent stops playing a role, the Role

Life Cycle Facade informs the Organization Controller, which terminates the

role contract, after which the Role Life Cycle Facade deactivates the corre-

sponding Role Facade component. Depending on the particular laws of the

organization, the Organization Controller may open a new role position for

the terminated role.

—Role Facade. A Role Facade provides a role-specific interface to an agent

(PlayRole), allowing the agent to play the role in accordance with the ca-

pabilities of that role. The Role Facade can be used to perceive and act in

the environment and interact with other agents playing roles in the orga-

nization. For example, in the traffic case a Role Facade for a data observer

role offers an interface for perceiving the local traffic state, whereas a Role

Facade for a data pusher offers an interface to transmit the perceived lo-

cal traffic state to a data aggregator. The Role Facade delegates agent re-

quests, such as the sending of messages to a specific role type, to the Role

Mediator.

—Role Mediator. The Role Mediator mediates agent activities. Examples of

mediation are sending a message to all agents that play a particular role in an

organization, and enforcing agents to follow particular interaction patterns

(protocols). To this end, the Role Mediator accesses the organization context

and role contracts repositories.

—Organization Controller. Besides starting and terminating role contracts (see

the discussion of the Role Life Cycle Facade), the Organization Controller

component has two main responsibilities. On the one hand, the Organiza-

tion Controller is responsible for enforcing the laws that define organization

dynamics. On the other hand, the Organization Controller is responsible for

dealing with distribution. We elaborate on the Organization Controller in the

following section.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:14 • D. Weyns et al.

Fig. 6. Component and connector view of the organization controller.

Design Rationale. The architectural design of the organization middleware

has the following motivations.

—First-class role positions, role contracts, organization context, and laws. The

repositories of the organization middleware represent the key abstractions

of the organization model as first-class citizens. This results in an easy to

understand and modular design. Moreover, the repositories guarantee low

coupling between the data accessors.

—Uniform access the middleware services. The Role Life Cycle Facade and Role

Facades provide uniform interfaces to the agents to access the middleware

services, according to the organization model we defined earlier. The facades

hide the underlying logic of the organization middleware, which consists of

the Organization Controller and Role Mediator, which are responsible for

different concerns (managing organization dynamics and mediating agents

actions respectively).

3.3.2 Component and Connector View of the Organization Controller.
Figure 6 zooms in on the internal structure of the Organization Controller.

An organization can span across a number of nodes. The Organization Con-
trollers are responsible for enforcing, in a distributed setting, the laws that

specify organization dynamics.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:15

Elements. The Organization Controller comprises the following compo-

nents.

—Local Organization Controller. A Local Organization Controller component

encapsulates the local management strategy of a node with respect to a par-

ticular organization. For an organization that spans across multiple nodes, a

Local Organization Controller component for that particular organization is

present on each node active in that organization. On the other hand, if a node

participates in multiple organizations, it maintains one Local Organization

Controller component for each of the organizations it is involved in. All Lo-

cal Organization Controller components of a particular organization need to

collaborate to manage the organization in a distributed setting—to correctly

enforce the laws (present in the Laws Repository) that specify the dynamics

of that organization. We elaborate on the specific collaboration mechanism

between the Local Organization Controllers in Section 3.3.3.

—Organization Control Dispatcher. The Organization Control Dispatcher is

responsible for providing services to support the Local Organization Con-

trollers. These services comprise communication services to enable Local Or-

ganization Controllers on different nodes to collaborate, as well as repos-

itory access services to enable Local Organization Controllers to manage

the organization state (role positions, role contracts, organization context)

present in the repositories. At regular times (e.g. on a periodic basis and/or

when a particular message is received via the ControlSync interface or via

the RoleManagement interface), the Organization Control Dispatcher dis-

patches control to the corresponding Local Organization Controller by in-

voking the GetCommands interface. The Local Organization Controller can

then issue commands that invoke services offered by the Organization Con-

trol Dispatcher (reading or writing to the repositories or sending messages

to organization controllers’ other nodes).

—Controller Manager. The organizations that a particular node is active in,

change over time. The Controller Manager is responsible for instantiating

and terminating Local Organization Controller components accordingly.

Design Rationale. The main drivers for the design of the Organization Con-

troller are the following.

—Scalability. The middleware has a basically decentralized structure, which

supports scalability. For each node that is involved in an organization, a

Local Organization Controller is instantiated. These controllers together are

responsible for dealing with organization dynamics.

—Adaptability of the synchronization strategy. The design of the Organization

Controller is independent of the strategy of Local Organization Controllers

to manage consistency in a distributed setting. Since the Organization Con-

troller makes no assumptions regarding a particular synchronization strat-

egy, different strategies can easily be plugged in. In the next section we show

how Organization Controllers use a master/slave strategy to manage organi-

zation dynamics. But any other strategy would have been possible.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:16 • D. Weyns et al.

Fig. 7. Master and slave node interaction between the controllers of organization org23 at T4 in

the running scenario (see Figure 3).

3.3.3 Intraorganization Dynamics. To make the system scalable and ro-

bust, we have chosen a decentralized approach at the interorganization level

(see Section 3.3.4). However, to simplify synchronization issues, we have used

a master/slave principle at the intraorganization level. The master/slave prin-

ciple is a control model, that locally centralizes the control of each organization

and the state required for this control.

Figure 7 illustrates the collaboration strategy between the Local Organiza-

tion Controllers at the intra-organization level. The Local Organization Con-

troller components collaborate using a master/slave strategy. For each organi-

zation, one of the Local Organization Controllers is selected as master, whereas

the other Local Organization Controllers of that organization are slaves. The

master is responsible for managing the dynamics of that organization in a cen-

tralized manner, by synchronizing with all slaves.

The master is the central point of control of an organization and needs ac-

cess to the state required for this control. The required state consists of the

organization context, the current role positions and role contracts, data which

is spread over the different repositories of all nodes active in the organization.

The repositories of slaves only contain a partial representation of the organiza-

tion context, role positions and role contracts of the organization. This partial

representation consists of data that is generated by the local agents on the

slave nodes of the organization. Master nodes of an organization, however, re-

quire a complete representation to manage the dynamics of the organization.

Therefore, whenever the local state changes, slave controllers send their partial

representation (local organization context) to their master node (see Figure 7).

This allows the master nodes to maintain a complete representation of the

organization state and context.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:17

Fig. 8. Merging organizations at the architectural level (messages confirming the safe state have

been omitted).

Each Organization Controller has access to a number of application-specific

laws, contained in the Laws repository (see figure 5). As described in the orga-

nization model, these laws define when, for example, an agent joins or leaves an

organization. The master controller uses these laws to handle organization dy-

namics based on a complete representation of the current organization context,

role positions, and role contracts of the organization. This complete representa-

tion is accessible in the local repositories on the master node of the organization.

When the master controller adapts an organization according to a law, it up-

dates the organization context, role positions, and role contracts. The master

propagates the changes to the slave nodes (control), as shown in Figure 7. In

the next section, we explain how the master controller interacts with the slave

controllers when the master/slave topology changes, due to interorganization

dynamics.

3.3.4 Interorganization Dynamics. We now explain how laws are enforced

that define interorganization dynamics, such as merging. Enforcing these laws

requires information about more than one organization. Consequently, master

Local Organization Controllers of multiple organizations need to collaborate.

We use a concrete scenario from the traffic monitoring case in Figure 3 to explain

how two organizations merge. At time T3, both organizations org2 and org3 are

monitoring congestion, satisfying the conditions for the organizations to merge.

Figure 8 shows the master/slave nodes in the scenario at time T3, and the

interactions between the controllers of the nodes involved in the merge. As ex-

plained in the Section 3.3.3, a master controller acquires a complete representa-

tion of its organization context, role positions, and role contracts, by regular up-

dates of slave controllers sending their local representation of the organization

context, role positions, and role contracts. From the complete representation of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:18 • D. Weyns et al.

its organization, a master controller derives a reduced representation that is

regularly exchanged with the master nodes of neighboring organizations (*.or-
ganization context) (see Figure 8). In the case of the traffic example, this reduced

representation contains the current traffic state of the organization.

In the scenario, at T3, the condition of the merge law is satisfied for both

organizations. As a result, the master controller of both organizations will ini-

tiate a merge negotiation (1. merge negotiation). During this negotiation the

controllers will select the new master of the merged organization.2 In the sce-

nario, the master controller of org3 is chosen as new master. Next, to ensure a

safe state, the newly chosen master signals to terminate the current activities

within both organizations (2. terminate). The safe state includes bringing all

critical role interactions to a stop. After the safe state has been reached, the

newly chosen master notifies all other nodes of the new organization (3. new or-
ganization). This information includes the identity of the new master, a list of

the other nodes in the organization and the updated role positions and role

contracts. The result of the merge in the scenario is shown at time T4 in

Figure 3. The division of master/slave nodes resulting from the merge at T4

are shows in Figure 7.

3.4 Adding Robustness to Node Failures
One of the quality requirements of the MACODO software architecture is ro-

bustness to node failures. The software architecture as presented so far does

not include support for dealing with node failures. In a realistic distributed

setting, we must consider failures as an essential part of the dynamic envi-

ronment. Failures will bring the system in an inconsistent state and probably

disrupt its services. To make the system capable of dealing with failure dy-

namics, we have extended the system with a self-healing subsystem. For the

architecture description of the self-healing subsystem we refer to the electronic

appendix.

4. EVALUATION
To evaluate the validity of the middleware architecture, we used the MACODO

organization model and software architecture to develop a prototype middle-

ware platform for a traffic monitoring application. The evaluation focuses on

three main quality requirements of the middleware architecture: adaptability,

scalability, and robustness. Since we use a simulation for evaluation purposes,

portability was evaluated.

In the first part, we evaluate the adaptability of the system. We use a Manhat-

tan scenario and show that organizations dynamically merge and split accord-

ing to the laws for organization dynamics. Since the main cost of organization

dynamics is a communication overhead, we also look at the communication cost

to manage the dynamics. In the second part, we evaluate scalability of the sys-

tem. We study scalability with respect to the number of cameras deployed in the

system and the traffic density. Our particular interest is in the communication

2The selection is based on a standard election protocol [Malpani et al. 2000].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:19

Fig. 9. Simulated camera nodes deployed on a traffic and communication network simulator.

Fig. 10. Manhattan scenario.

cost since this is the main concern with respect to scalability in the middleware.

For the evaluation of robustness, see the electronic appendix.

4.1 Experimental Setting
Before we go into the evaluation details, we explain the experimental setting

of the evaluation. Figure 9 gives a high-level overview of the prototype applica-

tion. In comparison with the layered architecture shown in Figure 4, the host

infrastructure and the underlying hardware, including cars, cameras, and com-

munication infrastructure are replaced by a simulator that is based on Bolay

[1999]. The simulator consists of two parts: a traffic simulator and a communi-

cation network simulator.

The traffic simulator simulates the traffic situation on a single-lane road

network and offers virtual cameras to observe the traffic. The simulator enables

adapting to the car in-flow and adding and removing obstacles on the road to

introduce congestion. A snapshot of this simulator is shown in Figure 10.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:20 • D. Weyns et al.

Roads are represented by grey bars, cars by white dots, and cameras by

squares next to the roads. The M above a square represents a master node

in an organization. A white camera is observing normal traffic and belongs to

a single-member organization. Gray shaded cameras are observing congested

traffic. Cameras with the same coloring belong to the same organization.

The communication network simulator simulates a LAN network. It allows

introducing custom message delays and monitoring the communication traffic

as a function of time. To get an approximation of the distributed system, nodes

are implemented as separate threads.

4.2 Adaptability
In this section, we evaluate the adaptability of the system. We show how dy-

namic traffic situations in an urban setting lead to dynamic organizations

that merge and split, and we look at the communication cost to manage the

dynamics.

Dynamic Organizations. During this experiment, we use the Manhattan

network, with unidirectional roads, as shown in Figure 11(a). The traffic direc-

tion of the roads is indicated by an arrow. Vehicles travel through the network

in a random manner. A total of 24 cameras are evenly deployed along the road,

each monitoring a part of the road network.

During the experiment, an obstacle first occurs on the crossing of the 1st and

4th streets, (see Figure 11(a)). As a result, a traffic jam arises in both streets.

Camera 4 and camera 21 have spotted the congestion and are now in the same

organization, with camera 4 as master node. Next, an obstacle occurs at the

crossing of the 3rd and 6th streets (see Figure 11(b). Camera 10 and camera

15 have merged their organizations to monitor the resulting congestion. This

congestion, however, grows further into the viewing ranges of other cameras,

as shown in Figure 11(c). Corresponding to the merge law, the organization of

camera 10 and camera 15 is expanded accordingly.

In Figure 11(d) the obstacle at the crossing of the 3rd and 6th streets has

been removed. As a result, the congestion starts to dissolve in the front, while

it continues to grow at the end. Camera 10 and camera 15, however, no longer

observe any congestion. Based on the split law, the organization of the previous

step is split up. Camera 10 and camera 15 are now each in a single-member

organization, while camera 5 and camera 14, and camera 11 and camera 20

are in two separate organizations. Finally, Figure 11(e) shows how the conges-

tion in the north east has completely vanished and only cameras 4 and 21 are

still merged in one organization. This experiment shows how dynamic traffic

situations lead to dynamic organizations, as described by the laws.

Communication Cost. Figure 12 shows the bandwidth usage during the

previous experiment. The increased bandwidth usage in intervals A and B is

caused by the merging of camera 4 and camera 21, and the merging of camera

10 and camera 15 (see Figures 11(a) and 11(b)). Since only two cameras were

involved in each merge, the network overhead is limited. Interval D shows the

communication cost for the merging of organizations that took place between

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:21

Fig. 11. Manhattan scenario.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:22 • D. Weyns et al.

Fig. 12. Bandwidth usage in the Manhattan scenario.

Figures 11(b) and 11(c). The higher bandwidth usage is caused by the fact that

more cameras were involved. During interval E, the obstacle on the crossing

of the 3rd and 6th streets was removed. The increased network load is caused

by the splitting of the organizations to reach the state shown in Figure 11(d).

Finally, interval F shows the network usage to reach the situation shown in

Figure 11(e). The measurements show that the bandwidth usage correlates

with the changes in the traffic situations.

4.3 Scalability
To evaluate the scalability of the organization middleware we measure the

communication costs for managing organization dynamics. Communication cost

is an important criterion with respect to quality of service of a middleware and a

determining factor with respect to scalability [Issarny et al. 2007]. We evaluate

scalability with respect to the number of vehicles in the network (traffic density)

and the number of deployed cameras.

Scalability and Traffic Density. Increasing traffic density leads to an in-

crease in the number and size of congestions. As a result, more and larger

organizations have to be merged and split. In this experiment we evaluate the

effect of increasing density by measuring the network load to split and merge

organizations as a function of the size of the organizations.

We use a Y-shaped intersection as shown in Figure 13(a). An obstacle is

introduced on each lane. As a result, two traffic jams appear. Eventually the

traffic jams merge at the intersection, as shown in Figure 13(b). Next, the

obstacles in the two lanes are removed. As a result, the traffic jam starts to

dissolve.

We measure the network load when the two organizations merge and when

the merged organization splits after the obstacles are removed. Figure 14(a)

shows the communication costs to merge the two organizations and Figure 14(b)

shows the communication cost to split the merged organization after the ob-

stacles are removed. The experiments are repeated for an increasing num-

ber of cameras of the initial organizations on both lanes. The results indicate

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:23

Fig. 13. Merge with 4 nodes.

Fig. 14. Effects of traffic density, showing the average of 30 measurements for each organization

size and a 95% confidence interval.

that the network load scales linearly with respect to the size of the initial

organizations.

Scalability and the Number of Cameras. In this experiment, we evaluate

the influence of the number of cameras deployed in the road network on the total

network load in three different scenarios. In scenario (a), Figure 15(a), seven

cameras are deployed on a highway and an obstacle is introduced between

camera 5 and camera 6. In the experiment, a stream of vehicles enters an

empty highway, causing a traffic jam. When the traffic jam reaches the end of

the highway, the obstacle is removed and the input of vehicles is stopped. The

scenario ends when all vehicles have left the highway. Figure 16(a) shows the

total bandwidth usage during this scenario.

In scenario (b), seven additional cameras are deployed in the road network,

as shown in Figure 15(b). These cameras, however, are deployed to the right of

the cameras of scenario (a). Everything else is kept the same as in scenario (a).

Figure 16(b) shows the total bandwidth usage during this scenario. Comparing

this result with the result of scenario (a), indicates a sublinear relation between

the communication cost and the number of load-free cameras (not observing

congestion) deployed on the road network.

In scenario (c), shown in Figure 15(c), an on-ramp is added to the road topol-

ogy of scenario (b), generating a second stream of vehicles. Two obstacles are

now added simultaneously, instead of one. Figure 16(c) shows the total band-

width usage during this scenario, and also the bandwidth of cameras 1 to 6

and cameras 7 to 16. The results show that communication between cameras

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:24 • D. Weyns et al.

Fig. 15. Scalability scenarios.

Fig. 16. Bandwidth use in scalability scenarios.

remains localized, indicating that the system scales well with respect to multi-

ple traffic jams in different parts of the road network.

5. RELATED WORK
A vast body of research exists on roles and organizations for multiagent sys-

tems. Here we focus on two particular areas of interest. We start by looking at

approaches that support organization dynamics. Then we discuss related work

on managing organizations and their dynamics using organization infrastruc-

tures and middleware.

5.1 Approaches that Support Organization Dynamics
Dynamics are part of any realistic environment. To deal with dynamics, changes

in the environment and requirements should be reflected in dynamic organi-

zational structures. Several approaches have been proposed to support such

dynamics, focusing at different stages in the life-cycle of multiagent systems,

ranging from design and specification to analysis and concrete run-time sup-

port. We discuss a number of representative approaches.

Dignum et al. [2004] explore how and why organizations change and how

reorganization can be done dynamically, with minimal interference from the

system designer. A classification is given of reorganization situations, based

on the focus of the reorganization, the authority to modify the organization,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:25

and the decisions taken to reorganize. With respect to the latter, two possible

approaches are identified. First, the decision to change the organization can be

the responsibility of one role in the organization. This corresponds to a mas-

ter/slave relationship between agents and is called role-based control. Second,

some roles are collectively responsible for a change decision. Changes are then

achieved by collaboration among the agents. This is called shared control. In

MACODO, the organization middleware initiates organization changes based

on the dynamic contextual conditions.

AGR(E) models (Agent Group Role-Enviroment) [Ferber and Gutknecht

1998; Ferber et al. 2005] offer run-time support for dynamics at the organi-

zational level. Although the the authors of AGR(E) are strong proponents of

an organization-centered perspective on multiagent system design, an agent-

centric perspective is taken on the dynamic evolution of groups. This is illus-

trated by MadKit [Gutknecht et al. 2001], a modular agent infrastructure based

on the AGR organizational model. MadKit relies on specialized agents, called

kernels, and system agents, for the management of groups, roles, and distri-

bution. It is the responsibility of individual application agents to decide which

group they want to join or leave and which role they want to play. This differs

from our approach in which the dynamic evolution of organizations is actively

managed and driven by the organization middleware instead of the agents

themselves. Additionally, AGR(E) offers no explicit support to model evolu-

tional changes at the interorganization level. Our model on the other hand

allows modelling interorganizational evolution by means of laws.

McCallum et al. [2008] use the notion of influence to study change and dy-

namics of agent organizations. The authors argue, that if influence can be exam-

ined at the organizational level, instead of at the level of the agents involved,

engineers can better understand an organization’s robustness to structural,

behavioral, and population changes. The authors present a formal model of or-

ganizational change (MOChA) as a means to specify and check the impact of

influence on the operation of an organization. This formalization of influence

is not specific to the presented model, and is adaptable to any organizational

model in which explicit relationships among roles of agents are formed. As the

MOChA model, the model presented in this article is concerned with organi-

zation dynamics. However, our model is targeted at a middleware architecture

that supports the life-cycle management of dynamic organizations as a reusable

service, clearly separated from the functionality of agents playing roles within

these organizations.

In DeLoach et al. [2008], the authors propose a metamodel for multiagent

organizations that defines the requisite knowledge of a system’s organizational

structure to reorganize at runtime, enabling it to achieve its goals effectively in

the face of a changing environment. The reorganization is realized by the agents

themselves. Their approach shares its runtime support for organizational evo-

lution based on environmental change with the work presented in this article.

The authors introduce the concept of a reorganization algorithm that has some

similarities with the concept of law. Instead of taking an agent-centric view

on the realization of the reorganization algorithms, the work presented in this

article, relies on an organization middleware to realize the execution of laws.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:26 • D. Weyns et al.

5.2 Organization Infrastructures and Middleware
In traditional agent-centric approaches, agents are considered as autonomous

entities pursuing individual goals. To guarantee the desired system behavior, a

number of infrastructures and middleware approaches have been proposed that

manage organizations according to predefined policies and norms. We discuss

a number of representative examples.

In Omicini and Ricci [2003], a TuCSoN node serves as an organization

node, hosting programmable tuplespaces (tuple centers) as coordination ar-

tifacts/services available to agents. Each node has a special tuple center that

hosts the description of the organization, which can be dynamically inspected

and changed by agents. This allows agents, for example, to add or delete roles

from the organization. However, it is only possible to make changes on the

intraorganizational level this way. Reorganizations on the interorganizational

level are not explicitly supported. In Omicini et al. [2008], the authors present

the agents & artifacts (A & A) metamodel. In this model, agents are the proac-

tive entities in charge of achieving the system goals, whereas artifacts are the

reactive entities encapsulating services that enable agents to work together.

Artifacts provide an abstraction that could be used to design and implement a

MACODO middleware platform.

TeamCore [Pynadath and Tambe 2003] provides an automated infrastruc-

ture that allows human operators to integrate heterogeneous teamwork be-

tween software agents and humans. TeamCore proxies encapsulate general

teamwork functionality such as coordination actions, shielding human develop-

ers from low level coordination details. The concept of TeamCore proxy is similar

to our concept of roles as first-class entities and the concept of role facade, en-

capsulating reusable organizational services. TeamCore also supports dynamic

plan alteration. TeamCore proxies can make local decisions to use alternative

predefined plans, based on the current capabilities of agents and humans.

AMELI [Esteva et al. 2004] proposes a domain-independent distributed in-

frastructure to mediate agent interactions in multiagent systems, enforcing in-

stitutional rules. The proposed infrastructure consists of three layers: an agent

layer, a social or AMELI layer, and a communication layer. The authors refer to

the AMELI layer as an agent-based middleware because this layer is realized

using using four types of agents: institution managers, transition managers,

scene managers, and governors. Governors act as access points to the infras-

tructure for external agents, which is somewhat similar to role facades.

ORA4MAS (Organizational Artifacts for Multi-Agent Systems) [Hübner

et al. 2009] presents a middleware approach in which an organization infras-

tructure offers a set of organizational services. Access to these services is me-

diated by organizational proxies, which control and enforce organizational con-

straints. This mediation can be done by regimentation (preventive mechanism)

or enforcement (reactive mechanism) of norms. Regimentation is realized by

artifacts, while enforcement is detected by artifacts but evaluated by the agents.

The basic middleware idea behind ORA4MAS is similar to the middleware ap-

proach presented in this article. In contrast to the work presented in this article,

ORA4MAS does not provide explicit concepts to describe organizational evolu-

tion, such as laws.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

The MACODO Middleware Organizations • 3:27

Most of the approaches discussed in this section rely on a set of specialized

agents to realize the middleware services, such as kernel agents in MadKit,

managers and governors in AMELI, and organizational agents in ORA4MAS.

Except for a high-level conceptual architecture, a comprehensive description of

the software architecture of the infrastructure or middleware is often lacking.

6. CONCLUSIONS
In this article, we presented the MACODO middleware. The complementary

part of the MACODO approach is an organization model that defines abstrac-

tions that support application developers in describing dynamic organizations,

as in Weyns et al. [2010]. Contrary to most existing approaches in which agents

have the dual responsibility of playing roles and managing organization dynam-

ics, the MACODO middleware takes the burden of the life-cycle management of

dynamic organizations. This separation of concerns promotes reuse, and makes

the design and management of dynamic organizations in multiagent systems

easier.

The contributions of this article are the following.

(1) The description of the MACODO software architecture. The software archi-

tecture describes the essential building blocks of a distributed middleware

platform that supports the MACODO organization model.

(2) A prototype middleware platform based on MACODO software architec-

ture for a traffic monitoring application. We used the prototype platform

to evaluate the feasibility of the MACODO middleware architecture by

demonstrating the adaptability, scalability and robustness of the prototype

platform.

The main tracks for future research are: (1) to extend the prototype to a full-

fledged reusable middleware platform that implements the MACODO software

architecture and supports application developers with the MACODO abstrac-

tions defined in the organization model, and (2) to apply the MACODO approach

in the domain of collaborative business processes, such as supply chain man-

agement and collaborative health care institutions [DiCoMas 2008].

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital

Library.

REFERENCES

BOLAY, K. 1999. Cellular automaton traffic simulators based on the work of Nagel-Schreckenberg

(1992), Takayasu (1993), Helbing and Schreckenberg (1999).

http://rcs www.urz.tu-dresden.de/∼helbing/RoadApplet/.

DELOACH, S., OYENAN, W., AND MATSON, E. 2008. A capabilities-based model for adaptive organi-

zations. Auton. Agents Multi-Agent Syst. 16, 1, 13–56.

DICOMAS. 2008. Distributed collaboration using multi-agent system architectures.

http://distrinet.cs.kuleuven.be/projects/dicomas/.

DIGNUM, V., DIGNUM, F., AND SONENBERG, L. 2004. Towards dynamic reorganization of agent so-

cieties. In Proceedings of the Workshop on Coordination in Emergent Agent Societies at ECAI.

22–27.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

3:28 • D. Weyns et al.

ERTICO. 2008. Intelligent transportation systems for Europe. http://www.ertico.com/.

ESTEVA, M., ROSELL, B., RODRIGUEZ-AGUILAR, J., AND ARCOS, J. 2004. AMELI: An agent-based mid-

dleware for electronic institutions. In Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems. Vol. 1. IEEE Computer Society, 236–243.

FERBER, J. AND GUTKNECHT, O. 1998. A meta-model for the analysis and design of organizations in

multi-agent systems. In Proceedings of the 3rd International Conference on Multi-Agent Systems.

128–135.

FERBER, J., MICHEL, F., AND BAEZ, J. 2005. AGRE: integrating environments with organizations. In

Proceedings of the 1st International Workshop on Environments for Multi-Agent Systems. Lecture

Notes in Computer Science, vol. 3374. Springer-Verlag, 48–56.

GARLAN, D., CHENG, S., HUANG, A., SCHMERL, B., AND STEENKISTE, P. 2004. Rainbow: architecture-

based self-adaptation with reusable infrastructure. Comput. 37, 10, 46–54.

GUTKNECHT, O., FERBER, J., AND MICHEL, F. 2001. Integrating tools and infrastructures for generic

multi-agent systems. In Proceedings of the 5th International Conference on Autonomous Agents.

ACM.

HIRSCHFELD, R., COSTANZA, P., AND NIERSTRASZ, O. 2008. Context-oriented programming. J. Object
Tech. 7, 3, 125–151.

HÜBNER, J., BOISSIER, O., KITIO, R., AND RICCI, A. 2009. Instrumenting multi-agent organisations

with organisational artifacts and agents. Auton. Agents Multi-Agent Syst. 1–32.

ISSARNY, V., CAPORUSCIO, M., AND GEORGANTAS, N. 2007. A perspective on the future of middleware-

based software engineering. In Proceedings of the Conference on the Future of Software Engineer-
ing (FOSE). IEEE Computer Society. 244–258.

ITS. 2008. Intelligent Transportation Society of America. http://www.itsa.org/.

KENDALL, E. 2000. Role modeling for agent system analysis, design, and implementation. IEEE
Concurrency 8, 2, 34–41.

KERNER, B. 2004. The Physics of Traffic : Empirical Freeway Pattern Features, Engineering Ap-
plications, and Theory. Springer, Berlin.

KRAMER, J. AND MAGEE, J. 2007. Self-managed systems: an architectural challenge. In Proceedings
of the International Conference on Software Engineering. 259–268.

MALPANI, N., WELCH, J., AND VAIDYA, N. 2000. Leader election algorithms for mobile ad hoc net-

works. In Discrete Algorithms and Methods for Mobile Computing and Communications. ACM.

MCCALLUM, M., VASCONCELOS, W., AND NORMAN, T. 2008. Organisational change through influence.

Auton. Agents Multi-Agent Syst. 17, 2, 1–33.

ODELL, J., PARUNAK, H. V. D., AND FLEISCHER, M. 2003. The role of roles. J. Object Tech. 2, 1, 39–51.

OMICINI, A. 2001. SODA: societies and infrastructures in the analysis and design of agent-based

systems. In Proceedings of the 1st International Workshop on Agent-Oriented Software Engineer-
ing. Lecture Notes in Computer Science, Vol. 1957. Springer-Verlag, 185–193.

OMICINI, A. AND RICCI, A. 2003. Reasoning about organisation: shaping the infrastructure. AI* IA
Notizie 16, 2, 7–16.

OMICINI, A., RICCI, A., AND VIROLI, M. 2008. Artifacts in the A&A meta-model for multi-agent

systems. Auton. Agents Multi-Agent Syst. Special Issue on Foundations, Advanced Topics and

Industrial Perspectives of Multi-Agent Systems. 17, 3, 432–456.

PYNADATH, D. AND TAMBE, M. 2003. An automated teamwork infrastructure for heterogeneous

software agents and humans. Auton. Agents Multi-Agent Syst. 7, 1, 71–100.

SIMS, M., CORKILL, D., AND LESSER, V. 2008. Automated organization design for multi-agent sys-

tems. Auton. Agents Multi-Agent Syst. 16, 2, 151–185.

WEYNS, D., HEASEVOETS, R., AND HELLEBOOGH, A. 2010. The MACODO organization model for

context-driven dynamic agent organizations. ACM Trans. Auton. Adapt. Syst. (To appear).

WEYNS, D., OMICINI, A., AND ODELL, J. 2007. Environment as a first-class abstraction in multiagent

systems. Auton. Agents Multi-Agent Syst. 14, 1, 5–30.

ZAMBONELLI, F., JENNINGS, N., AND WOOLDRIDGE, M. 2003. Developing Multiagent Systems: The

Gaia Methodology. ACM Trans. Softw. Engin. Method. 12, 3, 317–370.

Received May 2008; revised December 2008, June 2009; accepted December 2009

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 3, Publication date: February 2010.

