
The MACODO Organization Model for
Context-driven Dynamic Agent Organizations

DANNY WEYNS, ROBRECHT HAESEVOETS, and ALEXANDER HELLEBOOGH
DistriNet Labs, Katholieke Universiteit Leuven, Belgium

Today’s distributed applications such as sensor networks, mobile multimedia applications, and intelligent
transportation systems pose huge engineering challenges. Such systems often comprise different components
that interact with each other as peers, as such forming a decentralized system. The system components and
collaborations change over time, often in unanticipated ways. Multi-agent systems belong to a class of decen-
tralized systems that are known for realizing qualities such as adaptability, robustness, and scalability in such
environments. A typical way to structure and manage interactions among agents is by means of organizations.
Existing approaches usually endow agents with a dual responsibility: on the one hand agents have to play roles
providing the associated functionality in the organization, on the other hand agents are responsible for setting up
organizations and managing organization dynamics. Engineering realistic multi-agent systems in which agents
encapsulate this dual responsibility is a complex task.

In this paper, we present an organization model for context-driven dynamic agent organizations. The model de-
fines abstractions that support application developers to describe dynamic organizations. The organization model
is part of an integrated approach, called MACODO: Middleware Architecture for COntext-driven Dynamic agent
Organizations. The complementary part of the MACODO approach is a middleware platform that supports the
distributed execution of dynamic organizations specified using the abstractions, as described in [Weyns et al. 2009].

In the model, the life-cycle management of dynamic organizations is separated from the agents: organizations
are first-class citizens, and their dynamics are governed by laws. The laws specify how changes in the system
(e.g. an agent joins an organization) and changes in the context (e.g. information observed in the environment)
lead to dynamic reorganizations. As such, the model makes it easier to understand and specify dynamic organi-
zations in multi-agent systems, and promotes reusing the life-cycle management of dynamic organizations. The
organization model is formally described to specify the semantics of the abstractions, and ensure its type safety.
We apply the organization model to specify dynamic organizations for a traffic monitoring application.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems; D.2.11 [Software Engineering]: Software Architectures—Domain-specific architectures

General Terms: Theory, Design
Additional Key Words and Phrases: Context, intelligent transportation systems, middleware, multi-agent system,
organization, role

1. INTRODUCTION

Decentralized systems are typically used in environments that contain a lot of dynamism,
and where resources have a high degree of physical distribution. Example application do-

Authors address: D. Weyns, R. Haesevoets, and A. Helleboogh, DistriNet Labs, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium (Email: danny.weyns@cs.kuleuven.be)
This research is supported by the DiCoMAS project that is funded by the Institute for the Promotion of Innova-
tion through Science and Technology in Flanders (IWT) and the GOA project that is funded by the Katholieke
Universiteit Leuven. Danny Weyns is funded by the Research Foundation Flanders (FWO).
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2009 ACM 0000-0000/2009/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, November 2009, Pages 1–0??.

2 · The MACODO Organization Model

mains are ad-hoc sensor networks, mobile multimedia applications, and intelligent trans-
portation systems [Roman et al. 2004; Want 2005; Wischhof et al. 2005]. In such situ-
ations, central control can be difficult to achieve or even be unfeasible. A decentralized
system realizes its goals by relying on local interactions between its components. In ad-
dition, adaptation is a key quality as changes in the environment in which the system is
situated typically affect the nature and structure of interactions among system components.
As such, interaction design is a major challenge for engineering decentralized systems.

Multi-agent systems belong to a class of decentralized systems that are known for realiz-
ing quality attributes such as adaptability, robustness and scalability in environments with a
lot of dynamism and a high degree of resource distribution. A typical way to structure and
manage interactions among agents is by means of organizations [Kendall 2000; Omicini
2001; Odell et al. 2003b; Zambonelli et al. 2003]. In an organization, agents work together
based on well-defined roles, each role being responsible for a particular functionality of
an organization. Changes in the environment in which the system is situated can trigger
an organization to dynamically reorganize [Dignum et al. 2004]. Dynamic reorganizations
include intra-organization adaptations such as assigning and revoking roles (e.g. an agent
that enters or leaves an e-market), and inter-organization adaptations such as merging and
splitting organizations (e.g. a mobile sensor network in which two groups of sensors get
connected to each other or disconnected from each other). Engineering an organization-
oriented multi-agent system is a challenging task. Most of the existing work on organi-
zations defines roles and organizations at the level of agents [Ferber and Gutknecht 1998;
Dignum et al. 2004; Sims et al. 2008]. As such, agents are endowed with a dual respon-
sibility: on the one hand agents have to play roles providing the associated functionality
in the organization, on the other hand agents are responsible for setting up and managing
the organizations, and for realizing dynamic reorganizations to deal with changes in the
environment. Engineering realistic multi-agent systems in which agents encapsulate this
dual responsibility is a complex task.

To support engineers of organization-oriented multi-agent systems, we present an orga-
nization model for context-driven dynamic agent organizations. The organization model is
part of an integrated approach, called MACODO: Middleware Architecture for COntext-
driven Dynamic agent Organizations. The complementary part of the MACODO approach
is a middleware platform that supports the distributed execution of dynamic organizations
specified using the abstractions, as described in [Weyns et al. 2009].

The organization model defines the MACODO abstractions that allow application de-
velopers to describe dynamic organizations. In the model, the life-cycle management of
dynamic organizations is separated from the agents: organizations are first-class citizens,
and their dynamics are governed by laws. The laws specify how changes in the system
(e.g. an agent joins an organization) and changes in the context1 (e.g. information ob-
served in the environment) lead to dynamic reorganizations. As such, the model makes it
easier to understand and specify dynamic organizations in multi-agent systems, and pro-
motes reusing the life-cycle management of dynamic organizations. The model is formally
described to specify the semantics of the abstractions, and ensure its type safety. We apply
the organization model to specify dynamic organizations for a traffic monitoring applica-
tion.

1In line with [Hirschfeld et al. 2008], we use the term context for “any information which is computationally
accessible and upon which behavioral variations depend.” In MACODO, the behavioral variations are organiza-
tion dynamics, and the computationally accessible information is the information in the environment that can be
observed and upon which organization dynamics depend.

ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 3

Overview. This paper is structured as follows. In section 2, we give an intuitive expla-
nation of the basic abstractions of the MACODO organization model using a traffic mon-
itoring scenario that we use as a running example in the paper. Subsequently, Section 3
gives the formal specification of the MACODO organization model and explains the se-
mantics of the model abstractions. In section 4, we discuss related work. Finally, we draw
conclusions in section 5.

2. BASIC ABSTRACTIONS OF THE MACODO ORGANIZATION MODEL

In this section, we give an intuitive explanation of the basic abstractions of the MACODO
organization model. First, we introduce the traffic monitoring application that we use as a
running example in the paper. Then we present a concrete scenario that we use to introduce
the basic abstractions of the MACODO organization model and organization dynamics.
The same scenario will be used to illustrate the formal specification of the MACODO
organization model in section 3.

2.1 Coordinated Monitoring of Traffic Jams

The monitoring application we consider fits in the domain of intelligent transportation
systems, a worldwide initiative to exploit information and communication technology to
improve traffic [ITS 2008; ERTICO 2008]. The system consists of a set of intelligent
cameras which are distributed evenly along the road. An example of a highway is shown
in figure 1. Each camera has a limited viewing range and cameras are placed to get an
optimal coverage of the highway with a minimum in overlap.

Fig. 1. An example of a highway with traffic cameras

Cameras are equipped with a data processing unit capable of processing the monitored
data, and a communication unit to communicate with other cameras. A camera is able to
measure two traffic variables within its viewing range: the current density, i.e. the number
of vehicles per length unit, and the average speed of the vehicles. These two variables can
be used to determine the current congestion level and decide whether there is a traffic jam
or not in the viewing range of a camera [Kerner 2004]. The congestion level has three
possible values: free flow, bound flow, and congestion.

The task of the cameras is to detect and monitor traffic jams on the highway in a decen-
tralized way, avoiding the bottleneck of a centralized control center. Possible clients of the
monitoring system are traffic light controllers, driver assistance systems such as systems
that inform drivers about expected travel time delays, systems for collecting data for long
term structural decision making, etc.

Traffic jams can span the viewing range of multiple cameras and can dynamically grow
and dissolve. Because there is no central point of control, cameras have to collaborate and
distribute the aggregated data to the clients. By default each camera monitors the traffic

ACM Journal Name, Vol. V, No. N, November 2009.

4 · The MACODO Organization Model

within its viewing range. The traffic conditions in the viewing range make up its context.
When a traffic jam occurs, the camera has to collaborate with other cameras detecting the
same traffic jam. In the collaboration, the data each camera is monitoring is aggregated
in order to determine the position of the traffic jam on the basis of the head and tail of it.
One of the cameras will be responsible to report the traffic jam to the interested clients.
Cameras will enter or leave the collaboration whenever the traffic jam enters or leaves their
viewing range. Changes in the traffic conditions may require dynamic adaptations of mul-
tiple organizations. For example, when the traffic becomes congested in two neighboring
organizations, these organizations have to merge into a single organization. Likewise, an
organization has to split when the traffic jam is partially dissolved.

2.2 Basic Abstractions of the MACODO Organization Model

We introduce the basic abstractions of the MACODO organization model using the sce-
nario shown in figure 2. New introduced abstractions are indicated in teletype font.
Agents are the active entities in the system. In the traffic monitoring application, a soft-
ware agent is deployed on each camera. In the scenario, agent1 is deployed on camera
C1, agent2 on camera C2, etc. Each camera agent is capable of playing three different
roles: data observer, data pusher, and data aggregator. An agent can play multiple roles
simultaneously. A role describes a coherent set of capabilities that are required to
realize a particular functionality that is useful in a collaboration. The data observer role is
responsible for monitoring the two traffic variables (density and average speed) and decid-
ing whether the congestion level is high enough to be considered as a traffic jam. The data
pusher role is responsible for pushing the observed data to the data aggregator role, which
in turn is responsible for aggregating the data and distributing it to the interested clients,
such as traffic lights, driver assistance systems, etc. While there can be several agents play-
ing the role of data observer and data pusher (on each camera in the organization), there
can be at most one agent playing the role data aggregator in an organization.

An organization enables camera agents to collaborate in order to detect and moni-
tor traffic jams. At time T1, figure 2 shows two organizations in the scenario. Organization
org3 consists of agent3 and agent4 that collaborate to inform the interested clients of a
traffic jam that spans the viewing range of cameras C3 and C4. Organization org2 consists
of only agent2 that monitors the traffic in its viewing range.

Organizations attract agents by means of role positions. A role position specifies
a vacancy for a particular role in a particular organization. To start playing a particular
role, the agent must have the required capabilities to play the role in the role position.
When the agent’s capabilities match with the required capabilities of the role position, the
agent gets a role contract for the role position in the organization. A role contract is
a mutual agreement between the agent and the organization that allows the agent to play
the role of a role contract in that organization. An agent playing a role in an organization
receives services associated with the organization such as support for organization adap-
tations (see below). On the other hand, a role contract also implies responsibilities; for
example, the agent has to share relevant information for the organization with the organi-
zation, e.g. changes in the monitored traffic state.

Organizations dynamically adapt based on the changing context of the highway.
Context comprises information that can be observed in the environment that is rele-
vant for organization dynamics; examples are the traffic state monitored by the cameras
and the neighborhood of cameras that are involved in an organization. In MACODO, we
refer to operations that change the composition of organizations as laws. Currently, the
ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 5

Fig. 2. Scenario to illustrate the basic abstractions of the MACODO organization model.

model supports laws for joining, leaving, merging and splitting organizations.
A join law defines how an agent can join an organization. For example, at time T2 in the

scenario (figure 2), agent1 starts a new organization org1. This new organization opens a
role position for the role of data observer. Subsequently agent1 joins org1 by accepting this
role position. After the join, the role position is closed and agent1 has a role contract with
org1 allowing it to play the role of data observer in the organization. A leave law defines
how an agent can leave an organization. A leave law terminates a role contract between the
agent and the organization. Depending on the particular situation, the organization may or
may not open a new role position for the role in the terminated role contract.

A merge law defines how two organizations can merge. For example, at time T3 in the
scenario, the traffic state monitored by camera C2 becomes congested. As a result, at time
T4, the two neighbor organizations org2 and org3 merge together in a single organization
org23. Since an organization has only one agent in the role of data aggregator, one of
the contracts in this role will be terminated by the merge law. A split law defines how an
organization is split in two organizations. At time T5, the traffic state in the viewing range
of camera C4 is no longer congested. The split law will split off org4 from org23. The split
law reorganizes the role contracts of the involved agents ensuring that there will be at most

ACM Journal Name, Vol. V, No. N, November 2009.

6 · The MACODO Organization Model

one agent with a contract in the role of data aggregator in both resulting organizations.
Finally, we define a MACODO system as a system consisting of a set of agents and or-

ganizations that comply to the MACODO model. The scenario shows a MACODO system
for a traffic monitoring application consisting of four camera agents and a number of traffic
organizations.

3. FORMAL SPECIFICATION OF MACODO ORGANIZATION MODEL

In this section, we give a formal specification of the MACODO organization model. We
use Z as a specification language. Z is a standardized, highly expressive formal language
that is regularly used for describing and modeling computing systems, including multi-
agent systems [d’Inverno and Luck 2004]. Z is an accessible formal language that is based
on set theory and first order predicate calculus. We used the CZT tools [CZT 2008] to edit
and type check the specification.

The formal specification of the MACODO organization model consists of two main
parts. The first part introduces various sets and schemas to describe a data model that rep-
resents state in a MACODO system. The second part introduces a number of functions and
operation schemas to describe laws that represents the behavior of a MACODO system2.
The definitions of helper functions are omitted from the specification in this paper. For a
specification of these functions, we refer to the electronic appendix.

3.1 Data Model

The data model consists of three parts. In the first part, we introduce basic sets for names,
context, capabilities, and roles. The second part defines role positions, role contracts, and
agents. In the third part, we define organization context, organizations and MACODO
systems. In each part, we start with definitions. Then a specialization of the definitions for
the traffic monitoring case follows. Finally, we give concrete examples in the running case.

3.1.1 Names, Context, Capability, and Role.

Definitions. We start by defining basic sets of names for agents and organizations. Each
agent and organization in MACODO has a unique name that can be used to refer to a
particular agent or organization.

[AGENTNAME, ORGNAME]

The context of an agent is defined as:

CONTEXT [STATE]
statea : STATE
interactcandidatesa : P AGENTNAME

Context represents information in the environment of an agent that is relevant for the orga-
nizations in which the agent participates. We describe context as a state schema with the
name CONTEXT. Schemas model states as collections of state components. This schema
has two state components: statea and interactcandidatesa. The statea component stores the
actual state monitored by an agent in the environment. The type of the statea component
is application-specific and represented by a generic parameter, indicated by [STATE] in the
heading of the schema. The double bar indicates a generic schema definition. The generic

2We use the following name conventions: for set and schema names, all letters are uppercase; function names are
all lower case. For the running case, names of schemas are CamilCase.

ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 7

parameter allows the schema to be instantiated for different types of the statea component.
The interactcandidatesa component stores the names of agents with which an agent has a
physical or logical relation in the environment, relevant to the organizations in which the
agent participates. Note that component declarations are local to the schema. However, we
can use the schema name to refer to its content.

We define a basic set for capabilities of agents:

[CAPABILITY]

A capability refers to ability of an agent to perform tasks. Capabilities describe required
qualifications of an agent to participate in an organization. How an agent uses its capabili-
ties to achieve its goals is an issue private to the agent. We make abstraction of the concrete
structure of capabilities.

A role is defined as a set of capabilities:

ROLE == P CAPABILITY

A role describes a coherent set of capabilities that are required to realize a functionality
that is useful in an organization.

Specializations. We now give specializations of the definitions for the traffic monitoring
case. To represent context in the traffic monitoring system, we first define a type for traffic
state:

TrafficState ::= undefined | freeflow | boundflow | congested | differentiated

The traffic state is undefined when the actual traffic condition is not known. Free flow,
bound flow, and congested are regular traffic states. In a free flow state, vehicles can drive
at the maximum allowed speed. In a bound flow state this speed is limited. Finally, and
in a congested state, vehicles are standing still or can only drive at a minimum speed. The
traffic state differentiated is only used by organizations and is explained below.

Context for traffic agents is defined as an instantiation of the CONTEXT schema with a
domain-specific type TrafficState:

TrafficContext == CONTEXT[TrafficState]

The statea component now represents the actual state of the traffic in the viewing range of
the camera. The interactcandidatesa component represents the names of agents deployed
on neighboring cameras.

Examples. We illustrate the definitions with concrete examples, based on the scenario
shown in figure 2. The names of the agents and organizations in the scenario are:

cam1, cam2, cam3, cam4 : AGENTNAME
trorg1, trorg2, trorg3, trorg23, trorg4 : ORGNAME

In the scenario, we consider the following agent capabilities:

observ, recogn, calc, aggr, push, present : CAPABILITY
trafficcapabilities : P CAPABILITY

trafficcapabilities = {observ, recogn, calc, aggr, push, present}

We use an axiomatic definition to specify the capabilities. The part of the definition above
the line declares the variables, the part below the line defines predicates that constrain the

ACM Journal Name, Vol. V, No. N, November 2009.

8 · The MACODO Organization Model

variables. The predicate defines trafficcapabilities as the set of all the capabilities in the
traffic monitoring case.

In the scenario, the following roles are defined:

dataobserver, datapusher, dataaggregator : ROLE

dataobserver = {observ, recogn}
datapusher = {observ, calc, push}
dataaggregator = {observ, aggr, present}

Each role consists of a set of agent capabilities that are required to play that role in a traffic
monitoring organization.

At T1 in the scenario, the traffic context of the camera agents are:

TrafficContextT1

cont1, cont2, cont3, cont4 : TrafficContext

(cont1.statea = undefined ∧ cont1.interactcandidatesa = {cam2})
(cont2.statea = freeflow ∧ cont2.interactcandidatesa = {cam1, cam3})
(cont3.statea = congested ∧ cont3.interactcandidatesa = {cam2, cam4})
(cont4.statea = congested ∧ cont4.interactcandidatesa = {cam3})

This schema contains two parts. Above the line, components are declared and the predi-
cates below the line constrain their values. The index T1 in the schema name indicates that
the state of the schema holds at time T1 in the scenario (see figure 2). The traffic context
cont1 is the context of agent1, i.e. the agent with name cam1 (see figure 2), cont2 is the
context of agent2 with name cam2, etc. We assume that at time T1, agent1 knows that
agent2 is an interaction candidate (both agents are deployed on neighboring cameras), but
agent1 does not know the actual traffic state in its viewing range.

3.1.2 Role Position, Role Contract, and Agent.

Definitions. A role position is a vacancy for a particular role in a particular organization.
Role positions are defined as:

ROLEPOS
role : ROLE
orgname : ORGNAME

role 6= ∅

The predicate tells that each role position must contain at least one capability.

A role contract allows an agent to play a particular role in a particular organization. Role
contracts are defined as:

ROLECONT
roleposition : ROLEPOS
agentname : AGENTNAME

Agents are defined as:
ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 9

AGENT [STATE]
namea : AGENTNAME
capabilitiesa : P CAPABILITY
contexta : CONTEXT[STATE]
rolecontractsa : P ROLECONT

capabilitiesa 6= ∅
∀ rc : rolecontractsa •

rc.agentname = namea ∧ rc.roleposition.role ⊆ capabilitiesa

A name, a set of capabilities, a context, and a set of role contracts are social assets of a
MACODO agent. The social assets comprise information that the agent uses to play the
roles in its contracts. The agent shares this information with the organizations in which it
is involved. The generic parameter of CONTEXT (indicated by [STATE] in the heading of
the schema) allows the AGENT schema to be instantiated for different types of state. The
predicates state that an agent must have at least one capability. Furthermore, all the role
contracts in which the agent is involved have its name, and an agent can only play roles for
which it has the required capabilities. We make abstraction of the private structures of an
agent which is out of scope of the MACODO model.

We define a set of agents as:

AGENTS [STATE]
agents : P AGENT[STATE]

The AGENTS schema uses the same generic parameter for context as the AGENT schema.

Specializations. Agents in the traffic monitoring case are defined as an instantiation of the
AGENT schema with a domain-specific type TrafficState:

CameraAgent == AGENT[TrafficState]

The set of camera agents is defined as:

CameraAgents == AGENTS[TrafficState]

Examples. The role positions in the scenario at time T1 are (see figure 2):

TrafficRolePositionsT1

rolepos3, rolepos4, rolepos5, rolepos6, rolepos7, rolepos8 : ROLEPOS

(rolepos3.role = dataobserver ∧ rolepos3.orgname = trorg2)
(rolepos4.role = dataaggregator ∧ rolepos4.orgname = trorg2)
(rolepos5.role = dataobserver ∧ rolepos5.orgname = trorg3)
(rolepos6.role = datapusher ∧ rolepos6.orgname = trorg3)
(rolepos7.role = dataobserver ∧ rolepos7.orgname = trorg3)
(rolepos8.role = dataaggregator ∧ rolepos8.orgname = trorg3)

The role contracts at time T1 in the scenario are:
ACM Journal Name, Vol. V, No. N, November 2009.

10 · The MACODO Organization Model

TrafficRoleContractsT1

TrafficRolePositionsT1

rolecon3, rolecon4, rolecon5, rolecon6, rolecon7, rolecon8 : ROLECONT

(rolecon3.roleposition = rolepos3 ∧ rolecon3.agentname = cam2)
(rolecon4.roleposition = rolepos4 ∧ rolecon4.agentname = cam2)
(rolecon5.roleposition = rolepos5 ∧ rolecon5.agentname = cam3)
(rolecon6.roleposition = rolepos6 ∧ rolecon6.agentname = cam3)
(rolecon7.roleposition = rolepos7 ∧ rolecon7.agentname = cam4)
(rolecon8.roleposition = rolepos8 ∧ rolecon8.agentname = cam4)

The TrafficRoleContractsT1 schema includes the TrafficRolePositionsT1 schema. This in-
clusion indicates that all the declarations and predicates in TrafficRolePositionsT1 apply to
TrafficRoleContractsT1 as well. As an example, the first role contract in the list (rolecon3)
is an agreement between the organization with name trorg2 (see rolepos3 above) and the
agent with name cam2. In this contract the agent plays the role of dataobserver (see
rolepos3).

The state of the four camera agents at time T1 is defined as:

CameraAgentsT1

CameraAgents
TrafficContextT1

TrafficRoleContractsT1

∃ agent1, agent2, agent3, agent4 : CameraAgent •
agents = {agent1, agent2, agent3, agent4} ∧

agent1.namea = cam1 ∧ agent1.rolecontractsa = ∅ ∧
agent1.contexta = cont1 ∧ agent1.capabilitiesa = trafficcapabilities ∧
agent2.namea = cam2 ∧ agent2.rolecontractsa = {rolecon3, rolecon4} ∧
agent2.contexta = cont2 ∧ agent2.capabilitiesa = trafficcapabilities ∧
agent3.namea = cam3 ∧ agent3.rolecontractsa = {rolecon5, rolecon6} ∧
agent3.contexta = cont3 ∧ agent3.capabilitiesa = trafficcapabilities ∧
agent4.namea = cam4 ∧ agent4.rolecontractsa = {rolecon7, rolecon8} ∧
agent4.contexta = cont4 ∧ agent4.capabilitiesa = trafficcapabilities

The agent1 is not involved in any organization yet. The agent2 has a role contract for
dataobserver and dataaggregator in the organization with the name trorg2. The agent3
has a contract for dataobserver and datapusher, and agent4 has contracts for dataobserver
and dataaggregator both in the same organization with the name trorg3. Each of the four
agents has the complete set of capabilities in the traffic monitoring application.

3.1.3 Organization Context, Organization, MACODO System.

Definitions. Organization context represents all the relevant information upon which the
dynamics of the organization depend. Organization context includes the organization state
and a set of organization interaction candidates:

ORGCONTEXT [ORGSTATE]
orgstateo : ORGSTATE
interactcandidateso : P ORGNAME

ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 11

Organization state contains domain-specific information that is relevant for organization
dynamics. As such, we make abstraction of the internal structure of organization state and
use a generic parameter for the organization state in further definitions. Interaction can-
didates are the organizations with which an organization may interact during organization
dynamics. We give a concrete example below when we discuss the merge of two organi-
zations.

Organizations are defined as:

ORG [ORGSTATE]
nameo : ORGNAME
rolepositionso : P ROLEPOS
rolecontractso : P ROLECONT
orgcontexto : ORGCONTEXT[ORGSTATE]

∀ rp : rolepositionso • rp.orgname = nameo

∀ rc : rolecontractso • rc.roleposition.orgname = nameo

The predicates state that all role positions and role contracts in which an organization is
involved have its name. We refer to the actual role positions of an organization as open
role positions. When an agent applies for an open role position and fulfils the conditions,
we say that the role position is closed. A role contract is then assigned to the organization
and the agent for that role position (we formalize an agent that joins an organization in
section 3.2).

A set of organizations is defined as:

ORGS [ORGSTATE]
organizations : P ORG[ORGSTATE]

Finally, MACODO systems are defined as:

MACODOSYSTEM [STATE, ORGSTATE]
AGENTS[STATE]
ORGS[ORGSTATE]
uniquenameso : P ORGNAME

∀ a1, a2 : agents • a1.namea = a2.namea ⇔ a1 = a2
∀ o1, o2 : organizations • o1.nameo = o2.nameo ⇔ o1 = o2
uniquenameso = {n : ORGNAME | ∀ o : organizations • n 6= o.nameo}

A MACODOSYSTEM consists of a set of agents and a set of organizations. It has two
generic parameters which allows the instantiation of MACODO systems for domain-
specific types of context and organization state. The agents and organizations in a MA-
CODO system have unique names. uniquenameso provides a set of unique names for
future organizations that will participate in the MACODO system.

Specialization. Context for traffic organizations is defined as an instantiation of the
ORGCONTEXT schema with a domain-specific type of organization state, namely Traf-
ficState:

ACM Journal Name, Vol. V, No. N, November 2009.

12 · The MACODO Organization Model

TrafficOrgContext == ORGCONTEXT[TrafficState]

The organization state component of TrafficOrgContext represents the overall traffic state
monitored by the cameras in the organization. The traffic state of an organization is unde-
fined when the actual traffic condition is not known. The traffic state is free flow, bound
flow, or congested when all the agents in the organization monitor the corresponding traffic
state. The traffic state is differentiated when different agents of the organization monitor
different traffic conditions.

The interaction candidate component of TrafficOrgContext represents the names of the
neighboring organizations. We formally define organization neighborhood in the traffic
monitoring case below when we specify the TrafficMacodoSystem schema.

A traffic organization is defined as an instantiation of the ORG schema with a domain-
specific type of organization state, namely TrafficState:

TrafficOrg == ORG[TrafficState]

A set of traffic organizations is defined as:

TrafficOrgs == ORGS[TrafficState]

A traffic MACODO system is then defined as:

TrafficMacodoSystem
MACODOSYSTEM[TrafficState, TrafficState]

∀ o1, o2 : organizations •
o1 6= o2 ∧
o2.nameo ∈ o1.orgcontexto.interactcandidateso ⇔

o1.nameo ∈ o2.orgcontexto.interactcandidateso ∧
∃ a1, a2 : agents • a1 activein o1 ∧ a2 activein o2 ∧

a2.namea ∈ a1.contexta.interactcandidatesa ∧
a1.namea ∈ a2.contexta.interactcandidatesa

∀ a : agents • a.namea 6∈ a.contexta.interactcandidatesa

∀ o : organizations; rc : ROLECONT | rc ∈ o.rolecontractso •
({rp : o.rolepositionso | rp.role = dataaggregator} ∪
{rp : ROLEPOS | rp = rc.roleposition ∧

rp.role = dataaggregator}) ≤ 1

The TrafficMacodoSystem schema includes the MACODOSYSTEM schema. We use Traf-
ficState as case-specific types for the two generic parameters of the MACODOSYSTEM
schema. Comparing to a MACODOSYSTEM, a TrafficMacodoSystem defines an organiza-
tional neighborhood and introduces a number of additional constraints for camera agents
and traffic organizations. The first predicate says that if two organizations are neighbors
there exists an agent with a role contract in each organization that are neighbors of each
other. The activein function (omitted from the specification) is a helper function that de-
fines whether an agent has a role contract in an organization. The second predicate says a
camera agent cannot be a neighbor of itself. The third predicate says in each traffic organi-
zation there can only be one role contract or one open role position for the dataaggregator
role.

Examples. At time T1 (see figure 2) there are two traffic organizations in the scenario:
ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 13

TrafficOrgsT1

TrafficOrgs
TrafficRoleContractsT1

∃ org2, org3 : TrafficOrg • organizations = {org2, org3} ∧
org2.nameo = trorg2 ∧

org2.rolepositionso = ∅ ∧
org2.rolecontractso = {rolecon3, rolecon4} ∧
org2.orgcontexto.orgstateo = freeflow ∧
org2.orgcontexto.interactcandidateso = {trorg3} ∧

org3.nameo = trorg3 ∧
org3.rolepositionso = ∅ ∧
org3.rolecontractso = {rolecon5, rolecon6, rolecon7, rolecon8} ∧
org3.orgcontexto.orgstateo = congested ∧
org3.orgcontexto.interactcandidateso = {trorg2}

Organization org2 has no open role positions and shares two role contracts with agent2
(see TrafficRoleContractsT1). The traffic state of org2 is freeflow, and the organization
with name trorg3 is an interaction candidate of org2. Organization org3 has no open
role positions and shares two role contracts with agent3 and two contracts with agent4
(see TrafficRoleContractsT1). Its traffic state is congested, and the organization with name
trorg2 is an interaction candidate of org3.

The state of the TrafficMacodoSystem at time T1 is:

TrafficMacodoSystemT1

TrafficMacodoSystem
CameraAgentsT1

TrafficOrgsT1

The state of the traffic monitoring system at time T1 includes the state of the camera agents
at time T1 which includes the state of the four agents in the scenario as shown in figure 2,
and the state of the two organizations, org2 and org3 at time T1.

3.2 Laws

We now shift our attention to laws that represent behavior of a MACODO system. Laws
describe the dynamic adaptation of organizations and define how a MACODO system
maintains a consistent state. In MACODO, organization dynamics are directly or indi-
rectly triggered by external events (e.g. an agent stops playing a role) and changes in the
context of the agents in the organizations (e.g. the traffic state in the viewing range of an
agent that collaborates in a traffic monitoring organization changes). There are different
purposes why organizations should adapt, reflected in two types of laws. A first set of
laws refer to intra-organization dynamics and basically describe how an agent can join and
leave an organization dynamically, which is important for open organizations. A second
set of laws describe inter-organization dynamics, including merging and splitting of or-
ganizations. These laws support dynamic restructuring of a set of organizations which is
particularly relevant for collaborations in mobile systems where organizations of agents
may get connected and disconnected dynamically.

In this paper, we define two laws: one for inter-organization dynamics and one for intra-
ACM Journal Name, Vol. V, No. N, November 2009.

14 · The MACODO Organization Model

organization dynamics respectively. A join law describes how agents can join organiza-
tions, and a merge law describes how two organizations can merge. For an overview of
other laws, we refer to [Haesevoets et al. 2008]. A law is defined as an operation schema
that changes the state of MACODOSYSTEM. For each law, we start with definitions, fol-
lowed by specializations of these definitions for the traffic monitoring case, and a concrete
example in the scenario.

3.2.1 Join Law. Agents collaborate in organizations by playing roles. The participa-
tion of an agent in an organization is represented by a role contract. As the environment
of an agent changes, agents may want to adapt their participation in the existing organiza-
tions. This can be done by joining or leaving an organization. A join allows an agent to
start a role contract for an open role position in an organization. We specify the mechanism
of a join in a join law.

Definitions. We define a law for an agent joining an organization:

JOINORG [STATE, ORGSTATE]
∆MACODOSYSTEM[STATE, ORGSTATE]
orgupdatesjoin[STATE, ORGSTATE]
org? : ORG[ORGSTATE]
agent? : AGENT
rc? : ROLECONT

agent? ∈ agents ∧ org? ∈ organizations
rc?.roleposition ∈ org?.rolepositionso

rc?.agentname = agent?.namea

rc?.roleposition.role ⊆ agent?.capabilitiesa

∃ jorg : ORG •
jorg.nameo = org?.nameo ∧
jorg.rolepositionso = org?.rolepositionso \ {rc?.roleposition} ∧
jorg.rolecontractso = org?.rolecontractso ∪ {rc?} ∧
jorg.orgcontexto = updateorgcontextjoin(org?.orgcontexto, agent?.contexta) ∧

∃ jagent : AGENT •
jagent.namea = agent?.namea ∧
jagent.rolecontractsa = agent?.rolecontractsa ∪ {rc?} ∧
jagent.contexta = agent?.contexta ∧
jagent.capabilitiesa = agent?.capabilitiesa ∧

∃ interactcandidates, jinteractcandidates : P ORG •
interactcandidates = {ic : organizations |

ic.nameo ∈ jorg.orgcontexto.interactcandidateso} ∧
jinteractcandidates =

updateinteractcandidatesjoin(interactcandidates, jorg.nameo) ∧
organizations′ = organizations \ {org?} \ interactcandidates ∪

{jorg} ∪ jinteractcandidates ∧
agents′ = agents \ {agent?} ∪ {jagent}

The delta symbol tells us that JOINORG is an operation schema that changes the state of
MACODOSYSTEM. The operation schema declares the input variables org?, agent?, and
rc? that represent the organization and the agent involved in the join, and the role contract
of the join. We use the convention of adding a question mark to the names of input variables
ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 15

in operation schemas. The primed components in the predicate denote the changes after
the operation.

The join law schema includes a schema called orgupdatesjoin[STATE, ORGSTATE]
(omitted from the specification) which defines two abstract helper functions: a first func-
tion updateorgcontextjoin which updates a given context of an organization with a given
context of an agent; and a second function updateinteractcandidatesjoin which updates the
interaction candidates of a given set of organizations by adding an interaction candidate
with a given organization name.

The conditions for an agent to join an organization are:

(1) The given agent and organization are part of the set of agents and organizations of the
MACODOSYSTEM.

(2) The organization involved in the join holds an open role position, which is the role
position of the role contract involved in the join.

(3) This role contract is on the name of the agent involved in the join.
(4) The agent has the required capabilities to play the role of the role contract.

Additional conditions are application-specific. We give a concrete example of a join law
for the traffic monitoring case below.

The results of applying a join law are:

(1) The organization’s role position associated with the join is closed.
(2) The role contract of the join is added to the set of role contracts of the organization

and the agent involved in the join.
(3) The context of the organization is updated.
(4) The context of other organizations, whose interaction candidates change due to the

join are updated.

The update of the context of the joining organization and its interaction candidates is
application-specific. As explained above, to join an organization, an agent must have the
required capabilities to play the role in the role contract, i.e. condition (3) above. However,
the decision of how the agent uses its capabilities to achieve its goals is a concern private
to that agent and thus out of scope of the organization dynamics in MACODO.

The name of the organization and the agent as well as the context and capabilities of the
agent are invariant to the join.

Specializations. A join law for the traffic monitoring case is defined as:

TrafficJoinOrg
JOINORG[TrafficState, TrafficState]
trafficorgupdatesjoin

rc?.roleposition.role = dataobserver
org?.orgcontexto.orgstateo = undefined
org?.rolecontractso = ∅

The schema includes the trafficorgupdatesjoin schema which is an application-specific in-
stance of the orgupdatesjoin schema (omitted in the specification), adding domain-specific
constraints to the helper functions defined for JOINORG. In particular, the helper function
updateinteractcandidatesjoin updates the context of the given set of traffic organizations by
adding a new organization, with the given organization name, to the interaction candidates

ACM Journal Name, Vol. V, No. N, November 2009.

16 · The MACODO Organization Model

in their context. The updateorgcontextjoin function updates the traffic state of the organi-
zation involved in the join and the interaction candidates. For the updated organization
state holds: (1) the updated organization state is equal to the given agent state if the given
organization state is undefined, (2) the updated organization state is not changed if the give
organization state and the given agent state are equal, and (3) the updated organization state
is differentiated if the given organization state is undefined and the given organization state
and the given agent state differ. The organizations in which the neighbors of the joining
agent are active become the interaction candidates of the organization involved in the join
(since the set of interaction candidates of a traffic organization before a join is empty).

Besides the basic conditions defined by JOINORG, the join law for traffic monitoring
requires that:

(1) The role in the role contract of the join is dataobserver.

(2) The traffic state of the organization involved in the join is undefined.

(3) The organization is not yet involved in any role contract.

In other words, a camera agent can only join a traffic organization that is not involved in
a contract yet, and initially the agent has to play the role of data observer. As such, in
the traffic monitoring case an organization can only be extended by merging with other
existing organizations, and not by agents that directly join the organization.

The results of a join are are similar to the JOINORG schema:

(1) The role position for the dataobserver role associated with the join is closed.

(2) The role contract in the role of dataobserver is added to the set of role contracts of the
organization and the agent involved in the join.

(3) The organization state of the organization is updated with the traffic state of the camera
agent involved in the join.

(4) The set of neighbors (interaction candidates) of the organization is updated.

(5) The organizations that as a result of the join become a new neighbor (interaction can-
didate) of the organization involved in the join are also updated with a new neighbor
(i.e. the organization involved in the join).

The name of the organization, and the name, the capabilities, and the context of the agent
are invariant to the join.

Examples. We illustrate the join in the traffic monitoring scenario by showing how agent1
joins a new organization org1 at time T2 (see figure 2). We start by specifying how a
new traffic organization can be started, and then how agent1 starts org1. Subsequently, we
specify how agent1 joins the new organization at time T2.

ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 17

StartNewTrafficOrg
∆TrafficMacodoSystem
sagent? : CameraAgent
norg? : TrafficOrg
rp : ROLEPOS

sagent? ∈ agents ∧
{observ, recogn} ⊆ sagent?.capabilitiesa ∧

norg?.nameo ∈ uniquenameso ∧
rp.role = dataobserver ∧ rp ∈ norg?.rolepositionso

norg?.rolecontractso = ∅ ∧
agents′ = agents ∧
organizations′ = organizations ∪ {norg?}

A new organization can only be started by an agent that belongs to the TrafficMacodoSys-
tem and that has the capabilities to play the role of dataobserver. To add a new organi-
zation to a TrafficMacodoSystem, this organization should offer an open role position for
the dataobserver role. The operation schema to start the new traffic organization org1 by
agent1 is defined as follows:

TrafficStartOrgT12

∆TrafficMacodoSystemT1

StartNewTrafficOrg

∃ agent1 : CameraAgent •
sagent? = agent1 ∧ agent1.namea = cam1 ∧

∃ org1 : TrafficOrg •
norg? = org1 ∧ org1.nameo = trorg1

Now we specify how agent1 joins org1:

TrafficJoinOrgT2

∆TrafficStartOrgT12

TrafficJoinOrg

∃ agent1 : CameraAgent •
agent? = agent1 ∧ agent1.namea = cam1 ∧

∃ rc : ROLECONT; org1 : TrafficOrg •
rc? = rc ∧

rc.roleposition.orgname = org1.nameo ∧
rc.agentname = agent1.namea ∧

org? = org1 ∧ org1.nameo = trorg1

The join operation changes the state of TrafficMacodoSystemT12. As a result of the Traf-
ficJoinOrg law, the open role position with the role of dataobserver in org1 is closed and a
role contract with this role is established between agent1 and org1.

3.2.2 Context Update. Once an agent participates in an organization, changes in its
context will result in an update of the context of the organization. We define the abstract
event of a context update of an agent as follows:

ACM Journal Name, Vol. V, No. N, November 2009.

18 · The MACODO Organization Model

CONTEXTUPDATE
agentname : AGENTNAME

How and when an agent updates its context is private to the agent and is outside the scope
of the MACODO model. The following schema defines a context update of an organization
implied by a context update of an agent with a role contract in this organization:

ORGCONTEXTUPDATE [STATE, ORGSTATE]
∆ORG[ORGSTATE]
orgupdates[STATE, ORGSTATE]
event? : CONTEXTUPDATE
agent? : AGENT[STATE]

event?.agentname = agent?.namea

∃ rc : ROLECONT •
rc.agentname = agent?.namea ∧ rc ∈ rolecontractso

orgcontext′o = updateorgcontext(orgcontexto, agent?.contexta)

The orgupdates[STATE, ORGSTATE] schema defines a generic function updateorgcontext
that updates a given context of an organization with a given context of an agent (omitted
in the specification). As a result of an update of its context, an organization may open new
role positions or close positions. Such implications are application-specific. The context
change may also satisfy the conditions for triggering a particular law such as splitting the
organization, or merging with another organization.

Specializations. For the traffic monitoring case, the update of the context of an organiza-
tion resulting from a context update of a camera agent is defined as:

TrafficOrgContextUpdate
ORGCONTEXTUPDATE[TrafficState, TrafficState]
trafficorgupdates

The schema includes the trafficorgupdates schema that specializes the orgupdates schema.
The concrete updateorgcontext function updates the traffic state of the traffic organization
with the given state of the camera agent following the same rules as for an agent joining an
organization (see the specification of the join law above). The organization’s interactions
candidates are invariant to the context update of a camera agent. However, a context update
may trigger a law for splitting the organization or merging with a neighboring organization.

An example of a context change in the traffic monitoring case happens between T2 to T3
when the traffic state in the viewing range of agent 3 change to traffic jam (see figure 2).
As a result of the context change, the conditions for a merge between traffic organizations
org2 and org3 are satisfied. We explain the merge of the traffic organizations next.

3.2.3 Merge Law. Given the application domain it can be interesting to merge organi-
zations in certain circumstances. In the traffic monitoring case, for example, two organiza-
tions observing the same traffic jam should be merged in one organization. The concrete
mechanisms of a merge are defined in a merge law.

Definitions. A law for merging two organizations is defined as:
ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 19

MERGEORGS [STATE, ORGSTATE]
∆MACODOSYSTEM[STATE, ORGSTATE]
orgupdatesmerge[ORGSTATE]
org1?, org2? : ORG[ORGSTATE]

org1? ∈ organizations ∧ org2? ∈ organizations
∃morg : ORG[ORGSTATE] •

morg.nameo ∈ uniquenameso ∧
morg.rolepositionso = mergepositions(org1?, org2?, morg.nameo) ∧
morg.rolecontractso = mergecontracts(org1?, org2?, morg.nameo) ∧
morg.orgcontexto = updateorgcontextmerge(

org1?.orgcontexto, org2?.orgcontexto) ∧
∃ cagents, magents : P AGENT •

cagents = {a : agents | a activein org1? ∨ a activein org2?} ∧
magents = {a : AGENT | ∃ ca : cagents •

a.namea = ca.namea ∧
a.capabilitiesa = ca.capabilitiesa ∧
a.rolecontractsa =

{mrc : morg.rolecontractso | mrc.agentname = a.namea} ∪
{orc : ca.rolecontractsa |

orc 6∈ org1?.rolecontractso ∧ orc 6∈ org2?.rolecontractso} ∧
a.contexta = ca.contexta} ∧

∃ interactcandidates, minteractcandidates : P ORG[ORGSTATE] •
interactcandidates = {ic : organizations | ic.nameo ∈

(org1?.orgcontexto.interactcandidateso ∪
org2?.orgcontexto.interactcandidateso)} ∧

minteractcandidates =
updateinteractcandidatesmerge(interactcandidates,

{org1?.nameo, org2?.nameo}, morg.nameo) ∧
organizations′ = organizations \ {org1?, org2?} \ interactcandidates ∪

{morg} ∪ minteractcandidates ∧
agents′ = agents \ cagents ∪ magents

The merge law includes the orgupdatesmerge schema that groups a number of abstract helper
function (omitted in the specification). The updateorgcontextmerge function returns the up-
dated context of a merged organization given the context of the merging organizations. The
updateinteractcandidatesmerge function updates the interaction candidates of a given set of
organizations, taken into account the given names of the merging organizations and the
name of the merged organization. The mergecontracts and mergepositions functions re-
spectively merge the role contracts or role positions of two organizations, and update these
contracts or positions with a given organization name. We can instantiate these functions
for a particular application, by including this schema in an application-specific schema,
adding domain-specific constraints.

We explain the merge law in three steps, corresponding to the three main parts of the
schema: first we explain the results for the organizations, then we explain the results for the
agents involved in the merge, finally, we explain the results for the interaction candidates
of the involved organizations.

In order to merge, the merging organizations have to belong to the MACODO system. For
ACM Journal Name, Vol. V, No. N, November 2009.

20 · The MACODO Organization Model

the merged organization, the following holds:

(1) The organization has a new unique name.
(2) The open role positions of the merged organization are on its name.
(3) The open role contracts of the merged organization are on its name (which is implied

by the definition of organization).
(4) The context of the organization is updated given the context of the merging organiza-

tions.

After the merge, all role positions and role contracts of the merging organizations no longer
exist in the MACODO system.

The agents involved in the merge are active in one of the merging organizations, i.e. they
have one or more role contracts with one of the merging organizations. For each of the
agents involved in the merge, the following holds:

(1) The agent may possibly share one or more role contracts with the merged organization
(i.e. the role contracts on its name).

(2) The agents’ role contracts with other organizations are not changed.

The name of the agents, their capabilities, and contexts are invariant to a merge.

The interaction candidates of the merging organizations are updated given the removal of
the merging organizations and the addition of the merged organization to the MACODO
system. The update of the interaction candidates is application-specific; we give an exam-
ple for the traffic monitoring case below.

Specializations. The merge of two traffic organizations is defined as:

TrafficMergeOrgs
MERGEORGS[TrafficState, TrafficState]
trafficorgupdatesmerge

org1?.orgcontexto.orgstateo = org2?.orgcontexto.orgstateo = congested
org1?.nameo ∈ org2?.orgcontexto.interactcandidateso

We specialize the helper functions of the merge law, by including the orgupdatesmerge

schema in an application-specific schema trafficorgupdatesmerge, adding domain-specific
constraints to these helper functions (omitted in the specification). In particular, the merge-
contracts function merges the role contracts of two organizations by removing all but one
role contract for the role of data aggregator and updating the remaining role contracts with
the given organization name. Furthermore, a number of additional helper functions are
used (omitted in the specification). The aggregatorcontracts function returns the role con-
tracts of a given organization in the role of data aggregator. The selectaggregatorcontract
function takes a set of role contracts (in the role of data aggregator) as input and returns as
output a selected role contract. Finally, updateorgcontracts is a helper function to update
a given set of role contracts with a given organization name.

Besides the basic conditions defined by MERGEORGS, the merge law for traffic moni-
toring requires that:

(1) The traffic state of the merging organizations is congested.
(2) The merging organizations are neighbors.
ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 21

After the merge operation, the context of the merged organization is updated, as well as the
context of the former neighbors of the merging organizations. The context of the camera
agents involved in the merge is not changed by the merge.

Examples. We specify how traffic organizations org2 and org3 merge at time T4. We
assume that the traffic state monitored by the camera of agent2 has been changed to con-
gested at time T3.

TrafficMergeOrgsT4

∆TrafficMacodoSystemT3

TrafficMergeOrgs

∃ org1 : TrafficOrg; org2 : TrafficOrg •
org1? = org1 ∧ org2? = org2 ∧
org1.nameo = trorg2 ∧ org2.nameo = trorg3

The merge operation changes the state of the TrafficMacodoSystemT3. Applying the Traf-
ficMergeOrgs law results in merge of the organizations org2 and org3.

4. RELATED WORK

Discussion of related work focuses on two research areas of multi-agent organizations.
We start by looking at research on organizational abstractions, role-based approaches and
organization models. Then we discuss related work on formal methods for organizations.

4.1 Organizational Abstractions for Multi-Agent Systems

Roles and organizations are generally acknowledged as valuable abstractions to design
interactions in multi-agent systems [Demazeau and Rocha Costa 1996; Jennings 2000;
Tambe et al. 2000; Gasser 2001]. An interesting overview of different organizational
paradigms in multi-agent systems is given in [Horling and Lesser 2004].

Classical multi-agent systems are typically designed from an agent-centered perspective,
in terms of agents mental states. This is reflected in traditional agent development frame-
works such as JADE [Bellifemine et al. 2001]. The main interest is the effect of interaction
on the internal architecture of the agents. Today, however, it is widely recognized that
relying on the agent’s individual architecture only is insufficient to model interactions in
multi-agent systems. A lot of research has been focusing on separating the internal design
of agents from the design of societies [Cabri et al. 2002; Ferber et al. 2004]. To achieve
such separation of concerns, many authors have advocated role-based and organization-
centered approaches to develop agent societies, claiming effective engineering of multi-
agent systems needs high-level agent-independent concepts and abstractions that explicitly
define the organization in which agents live [Dignum 2004]. These concepts range from
first-class organizational abstractions and rules [Zambonelli et al. 2001], norms and insti-
tutions [Dignum and Dignum 2001; Esteva et al. 2001], to the explicit representation of
social structures [Parunak and Odell 2002]. We discuss a number of representative exam-
ples of role-based approaches and existing organization models.

ROPE [Becht et al. 1999] presents a role-based programming environment for agents,
recognizing roles as first-class entities. Recurring cooperation and coordination patterns
are captured in cooperation processes, represented by a set of interconnected roles. Roles
describe the required cooperative behavior and capabilities of agents and act as an abstrac-
tion of the agents within an cooperation process. This allows to decouple the organization

ACM Journal Name, Vol. V, No. N, November 2009.

22 · The MACODO Organization Model

of the agents in a multi-agent system from the structure of cooperation processes, enhanc-
ing the separation of concerns. Changes in the agent organization, such as role assignment,
do not affect the cooperation process specification and vice versa.

Another example is XRole [Cabri et al. 2002], which also advocates the use of roles to
enhance the separation of concerns between agents and their interactions. A role level in
a three-level model acts as a intermediary between the application and the environment
needs. Roles are defined as the behavior and set of capabilities expected for the agent that
plays such role. From the environment point of view, a role imposes a defined behavior
to the entity that assumes it. From the application point of view, a role allows a set of
capabilities, which can be exploited by agents to carry out their tasks.

In [Odell et al. 2003a] the term role defines a normative repertoire of behavior and
other features contextualized according to the group in which the role is being played.
The concept of role assignment allows roles to be dynamically assigned to agents and can
represent an agent assigned to a specific role as well as an open role position in a specific
group. As most of the other existing work on roles there are no explicit concepts for what
we call role position. In our work, a separate concept of role position corresponds to a
“vacancy” for a role. By using these concepts, we are able to separate the realization of the
behavior of an agent associated with a role and the management of organization dynamics.

OperA (Organizations per Agents) [Dignum 2004] describes multi-agent systems at a
conceptual level using three types of interrelated models. Each model describes a different
dimension of the multi-agent system concerning organizational, social or interactive as-
pects. Within the social model, social contracts specify the capabilities and responsibilities
of agents within the society. The concept of social contract is similar to our concept of role
contract and provides a “window” to the agent, through which other agents know what to
expect and how to interact with the agent.

AGR (Agent Group Role) [Ferber and Gutknecht 1998] presents a “generic” meta-
model of multi-agent systems in which agents, playing roles, are organized into groups.
Groups partition organizations and roles represent functional positions of agents in a group.
In [Ferber et al. 2005], the AGR model is extended to AGRE with the E standing for envi-
ronment. Groups are now grouped together into worlds. These worlds offer primitives for
agents to join a particular group and to play a particular role.

Whereas most of the discussed approaches recognize separation of concerns in terms of
agent design versus organization design, our work goes a step further by offering first-class
organization concepts to support a middleware for dynamic organizations.

4.2 Formal Methods for Organizations

Formal models are generally recognized as valuable artifacts within the design and de-
velopment of agent organizations, supporting formal analysis and facilitating develop-
ment [Esteva et al. 2001]. We discuss a number of representative examples.

OperA has a formal model based on temporal and deontic logic, building a semantic
theory around OperA models. This model allows to verify whether role objectives can be
achieved or whether roles are sufficient to realize society objectives.

[Grossi et al. 2007] focus on the structural aspects of organizations, presenting a formal
framework which allows to measure, compare and evaluate organizations. The authors
distinguish three dimensions in organizational structure: power, coordination and control.
Representing these dimensions as multi-graphs and giving the edges formal semantics us-
ing description logic, they can study and analyze properties of organizations, such as mea-
suring the completeness and connectedness of single dimensions, or measuring the overlap
ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 23

and cover between different dimensions. These properties give way for structural evalua-
tion in terms of robustness, flexibility and efficiency of organizations.

Similarly, [Popova and Sharpanskykh 2009] present a formal framework to represent and
reason about organizations, enabling formal verification and validation, but also automated
analysis and simulation of organizational scenarios. Instead of graphs, a variant of order-
sorted predicate logic is used to express temporal relations and dynamics in a number of
related views on organizations. Dynamics are viewed from an agent-centric perspective,
such as agents adapting their believes in correspondence to what is observed.

Both of the above approaches focus on the verification and analysis of organizational
structures. Although [Popova and Sharpanskykh 2009] do consider the environment, both
approaches lack explicit support to model relations between the environment and organiza-
tional changes and dynamics. The model presented in this paper directly relates organiza-
tion dynamics to context changes in the environment. Dynamics are not merely described
but are specified as desired behavior of organizations as first-class entities.

The concepts of agent ability and capability are widely used in multi-agent systems, re-
ferring to an agents’ ability to act in an organization and the capabilities required to act in
an organization. A number of formal models underpinning these concepts have been pro-
posed, such as [van der Hoek and Wooldridge 2005] using cooperation logic, [Cholvy et al.
2006] based on situation calculus, and logic for agent organizations (LOA) [Dignum and
Dignum 2009] as an extension to temporal logic. Such formalizations allow to represent
and reason about strategic powers of agents and coalitions in terms of agent abilities and
capabilities in a game-theoretic setting. Concepts in these approaches often have a more
fundamental and theoretic meaning. In our approach, we used the concept of capability to
enable the middleware to reason about the management of organizations.

[da Rocha Costa and Dimuro 2008] study social dynamics in organizations by com-
bining a time-variant population-organization model (PopOrg) with a system of exchange
values. This allows modeling structural dynamics in a multiagent system as a set of trans-
formations on the systems overall population-organization structure. In contrast to our
approach, it does not explicitly specify dynamics in terms of organizational evolution, but
rather allows to represent changes within the social structure of PopOrg models.

5. CONCLUSIONS

In this paper, we presented the MACODO organization model. The complementary part of
the MACODO approach is a middleware platform that supports the distributed execution
of dynamic organizations specified using the abstractions of the MACODO organization
model, as described in [Weyns et al. 2009].

The contributions of this paper are:

• A formal model that defines the programming abstractions MACODO offers to the ap-
plication developer to describe dynamic organizations. In the model, the life-cycle man-
agement of dynamic organizations is separated from the agents: organizations are first-
class citizens, and their dynamics are governed by laws.

• The model is formally described to specify the semantics of the abstractions, and ensure
its type safety.

• The application of the organization model to model dynamic organizations for a traffic
monitoring application.

Modeling organizations as first-class citizens separated from the agents makes it easier
to understand and specify dynamic organizations in multi-agent systems, and promotes

ACM Journal Name, Vol. V, No. N, November 2009.

24 · The MACODO Organization Model

reusing the life-cycle management of dynamic organizations.
In ongoing research we apply MACODO to the domain of collaborative business pro-

cesses, such as supply chain management and collaborative health care institutions [DiCo-
Mas 2008]. Collaboration between different business units requires the coordination and
allocation of various people and equipment at different locations. A particular focus of this
research is on middleware support for secure and dynamic organizations.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/jn/2009-V-N/p1-URLend.

REFERENCES

BECHT, M., GURZKI, T., KLARMANN, J., AND MUSCHOLL, M. 1999. Rope: Role oriented programming
environment for multiagent systems. In COOPIS ’99: Proceedings of the 4th IECIS International Conference
on Cooperative Information Systems. IEEE Computer Society, Washington, DC, USA, 325–333.

BELLIFEMINE, F., POGGI, A., AND RIMASSA, G. 2001. JADE: a FIPA2000 Compliant Agent Development
Environment. In Proceedings of the Fifth International Conference on Autonomous agents. ACM New York,
NY, USA, 216–217.

CABRI, G., LEONARDI, L., AND ZAMBONELLI, F. 2002. Separation of concerns in agent applications by roles.
In ICDCSW ’02: Proceedings of the 22nd International Conference on Distributed Computing Systems. IEEE
Computer Society, Washington DC, USA, 430–438.

CHOLVY, L., GARION, C., AND SAUREL, C. 2006. Ability in a Multi-Agent Context: a Model in the Situation
Calculus. In Computational Logic in Multi-Agent Systems. Lecture Notes on Computer Science. Springer,
23–36.

CZT. 2008. Community Z Tools. http://czt.sourceforge.net/.
DA ROCHA COSTA, A. AND DIMURO, G. 2008. Semantical Concepts for a Formal Structural Dynamics of

Situated Multiagent Systems. In Coordination, Organizations, Institutions, and Norms in Agent Systems III.
Lecture Notes on Computer Science. Springer, 139–154.

DEMAZEAU, Y. AND ROCHA COSTA, A. 1996. Populations and organizations in open multi-agent systems. In
Proceedings of the 1st National Symposium on Parallel and Distributed AI.

DICOMAS. 2008. Distributed Collaboration using Multi-Agent System Architectures.
http://distrinet.cs.kuleuven.be/research/projects/showProject.do?projectID=DiCoMas.

DIGNUM, V. 2004. A Model for Organizational Interaction: Based on Agents, Founded in Logic. SIKS Disser-
tation Series.

DIGNUM, V. AND DIGNUM, F. 2001. Modelling Agent Societies: Co-ordination Frameworks and Institutions.
In Progress in Artificial Intelligence. Lecture Notes on Computer Science. Springer, 7–21.

DIGNUM, V. AND DIGNUM, F. 2009. A Logic for Agent Organizations. In Handbook of Research on Multi-
Agent Systems: Semantics and Dynamics of Organizational Models, V. Dignum, Ed. Information Science
Reference, 220–240.

DIGNUM, V., DIGNUM, F., AND SONENBERG, L. 2004. Towards Dynamic Reorganization of Agent Societies.
Proceedings of Workshop on Coordination in Emergent Agent Societies at ECAI, 22–27.

D’INVERNO, M. AND LUCK, M. 2004. Understanding Agent Systems. SpringerVerlag.
ERTICO. 2008. Intelligent Transportation Systems for Europe, http://www.ertico.com/.
ESTEVA, M., RODRÍGUEZ-AGUILAR, J., SIERRA, C., GARCIA, P., AND ARCOS, J. 2001. On the Formal

Specifications of Electronic Institutions. In Agent Mediated Electronic Commerce. Lecture Notes on Computer
Science. Springer, 126–147.

FERBER, J. AND GUTKNECHT, O. 1998. A Meta-Model for the Analysis and Design of Organizations in Multi-
Agent Systems. Third International Conference on Multi Agent Systems, 128–135.

FERBER, J., GUTKNECHT, O., AND MICHEL, F. 2004. From Agents to Organizations: an Organizational View
of Multi-Agent Systems. In Agent-Oriented Software Engineering IV. Lecture Notes on Computer Science.
Springer, 443–459.

ACM Journal Name, Vol. V, No. N, November 2009.

D. Weyns, R. Haesevoets, A. Helleboogh · 25

FERBER, J., MICHEL, F., AND BAEZ, J. 2005. AGRE: Integrating environments with organizations. In First
International Workshop on Environments for Multi-Agent Systems. Lecture Notes in Computer Science, vol.
3374. Springer-Verlag, New York, NY, USA, 48–56.

GASSER, L. 2001. Perspectives on organizations in multi-agent systems. In Mutli-agents systems and applica-
tions. Springer-Verlag New York, Inc., New York, NY, USA, 1–16.

GROSSI, D., DIGNUM, F., DIGNUM, V., DASTANI, M., AND ROYAKKERS, L. 2007. Structural Aspects of the
Evaluation of Agent Organizations. In Coordination, Organizations, Institutions, and Norms in Agent Systems
II. Lecture Notes on Computer Science. Springer, 3–18.

HAESEVOETS, R., WEYNS, D., AND HOLVOET, T. 2008. A formal specification of an organization model
and management model for context-driven dynamic organizations. In Technical Report, CW535. Katholieke
Universiteit Leuven. http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW535.pdf.

HIRSCHFELD, R., COSTANZA, P., AND NIERSTRASZ, O. 2008. Context-oriented programming. Journal of
Object Technology 7, 3, 125–151.

HORLING, B. AND LESSER, V. 2004. A survey of multi-agent organizational paradigms. Knowledge Engineer-
ing Review 19, 4, 281–316.

ITS. 2008. Intelligent Transportation Society of America, http://www.itsa.org/.
JENNINGS, N. R. 2000. On agent-based software engineering. Artificial Intelligence 177, 2, 277–296.
KENDALL, E. 2000. Role modeling for agent system analysis, design, and implementation. IEEE Concur-

rency 8, 2, 34–41.
KERNER, B. 2004. The Physics of Traffic : Empirical Freeway Pattern Features, Engineering Applications, and

Theory. Springer, Berlin.
ODELL, J., PARUNAK, H., AND FLEISCHER, M. 2003a. The Role of Roles in Designing Effective Agent

Organizations. In Software Engineering for Large-Scale Multi-Agent Systems. Lecture Notes in Computer
Science, Vol. 2603. Springer, 27–38.

ODELL, J., PARUNAK, H. V. D., AND FLEISCHER, M. 2003b. The Role of Roles. Journal of Object Technol-
ogy 2, 1, 39–51.

OMICINI, A. 2001. SODA: Societies and infrastructures in the analysis and design of agent-based systems.
In 1st International Workshop on Agent-Oriented Software Engineering, Limerick, Ireland. Lecture Notes in
Computer Science, Vol. 1957. Springer-Verlag, 185–193.

PARUNAK, H. AND ODELL, J. 2002. Representing Social Structures in UML. In Agent-Oriented Software
Engineering II. Lecture Notes on Computer Science. Springer, 1–16.

POPOVA, V. AND SHARPANSKYKH, A. 2009. A Formal Framework for Organization Modeling and Analy-
sis. In Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models,
V. Dignum, Ed. Information Science Reference, 141–171.

ROMAN, G., JULIEN, C., AND PAYTON, J. 2004. A Formal Treatment of Context-Awareness. In FASE’04: 7th
International Conference on Fundamental Approaches to Software Engineering. Springer, 12–36.

SIMS, M., CORKILL, D., AND LESSER, V. 2008. Automated organization design for multi-agent systems.
Autonomous Agents and Multi-Agent Systems 16, 2, 151–185.

TAMBE, M., PYNADATH, D. V., AND CHAUVAT, N. 2000. Building dynamic agent organizations in cyberspace.
IEEE Internet Computing 4, 2, 65–73.

VAN DER HOEK, W. AND WOOLDRIDGE, M. 2005. On the Logic of Cooperation and Propositional Control.
Artificial Intelligence 164, 1-2, 81–119.

WANT, R. 2005. System Challenges for Pervasive and Ubiquitous Computing (Intel). In ICSE ’05: Proceedings
of the 27th international conference on Software engineering. ACM, New York, NY, USA, 9–14.

WEYNS, D., HEASEVOETS, R., HELLEBOOGH, A., HOLVOET, T., AND JOOSEN, W. 2009. MACODO: Mid-
dleware Architecture for Context-Driven Dynamic Agent Organizations. ACM Transactions on Autonomous
and Adaptive Systems y, x, nn–nn.

WISCHHOF, L., EBNER, A., AND ROHLING, H. 2005. Information Dissemination in Self-organizing Intervehi-
cle Networks. IEEE Transactions on Intelligent Transportation Systems 6, 1, 90–101.

ZAMBONELLI, F., JENNINGS, N., AND WOOLDRIDGE, M. 2001. Organizational Abstractions for the Analysis
and Design of Multi-Agent Systems. In Agent-Oriented Software Engineering. Lecture Notes on Computer
Science. Springer, 407–422.

ZAMBONELLI, F., JENNINGS, N., AND WOOLDRIDGE, M. 2003. Developing Multiagent Systems: The Gaia
Methodology. ACM Transactions on Software Engineering and Methodology 12, 3, 317–370.

ACM Journal Name, Vol. V, No. N, November 2009.

