
Supporting Online Updates of Software Product Lines: A Controlled Experiment

Bartosz Michalik∗†, Danny Weyns∗‡, Nelis Boucké∗, Alexander Helleboogh∗
∗DistriNet Labs, Katholieke Universiteit Leuven, Belgium

†Institute of Computing Science, Poznan University of Technology, Poland
‡School of Computer Science, Physics and Mathematics, Linnaeus University, Campus Växjö, Sweden

Email: {bartosz.michalik,nelis.boucke,alexander.helleboogh}@cs.kuleuven.be, danny.weyns@lnu.se

Abstract—The evolution of Software Product Lines (SPL) is
challenging because stakeholders have to deal with both regular
evolution and the co-existence of different products. Our focus
of product evolution is on the tasks integrators have to perform
to update deployed SPL products with minimal interruption of
services. In case of Egemin, our industrial partner, the updates of
SPL products is further hampered as a consequence of outdated
and imprecise architectural knowledge of deployed products.
To facilitate the updates of products, we have developed the
architecture-centric approach which comprises two complemen-
tary parts: an update viewpoint and a supporting tool.

In this paper we present an evaluation of the architecture-
centric approach. The approach is compared with the Egemin’s
current update approach in a controlled experiment. In the
experiment 17 professionals were asked to perform 68 updates of
logistic systems. The results obtained from the experiment show
that the architecture-centric approach significantly improves the
correctness of updates and reduces the interruption of services
during updates of Egemin’s SPL products.

Keywords-SPL, software product line, on-line updates, experi-
mentation

I. INTRODUCTION

Improved productivity, enhanced quality, and reduced time
to market are reported benefits of Software Product Line (SPL)
adaptation [18]. Clements and Northrop [4] define an SPL
as a set of software-intensive systems (products) that share a
common, managed set of features satisfying the specific needs
of a particular market segment or mission and are developed
from a common set of core assets in a prescribed way.

Many companies have successfully adopted an SPL. Never-
theless, managing the evolution of a product line and ensuring
consistency of changes in the affected products remain key
research challenges in the field [15]. Integrators have to cope
with regular evolution, as well as with the co-existence of
different products. In addition, architecture documentation of
an SPL is often imprecise because the effort to manually
update this documentation is often counter productive [8].

In a recent R&D project in collaboration with Egemin1,
an industrial manufacturer of logistic systems, we faced the
problem with a lack of accurate architecture documentation in
the context of the evolution of the company’s SPL products.
Our particular focus on product evolution is on the update tasks
integrators have to perform to evolve one or more deployed
products of an SPL. Unfortunately, due to the inherent com-
plexity of logistic systems and the lack of explicit architecture
documentation of the deployed products, Egemin’s integrators

1http://www.egemin.com

are forced to use improvised update practices which not
infrequently result in erroneous updates. Restarting a system
in an incorrect configuration may lead to serious problems
with an industrial installation which harm the reputation of
the company. The problem grows with the number of managed
industrial installations. Currently, Egemin maintains more than
200 deployed products, which require in total about 300
update tasks per year. Therefore, the company searches for
a systematic solution that can improve their update practices.

To address this problem, we have developed an architecture-
centric approach [20] to support SPL products updates. Our
approach comprises two complementary parts: an update
viewpoint and a supporting tool. The viewpoint defines the
conventions for the construction and use of architectural views
to deal with the stakeholders’ update concerns, in particular
correctness and availability. The supporting tool assists in-
tegrators with reconstructing missing architecture knowledge
using data harvested from the deployed resources, and guiding
them with performing the updates. In order to demonstrate the
effectiveness of the architecture-centric approach, we designed
a controlled experiment in which 17 professionals (subjects)
perform 68 updates to logistic products (objects).

In this paper, we report on the evaluation of the approach
effectiveness with respect to two quality requirements inherent
to products updates. The first examined requirement is the
correctness of an update, which means that a deployed system
must be transformed to the new configuration without com-
promising its consistency. The second examined requirement
is availability of the system under update. Availability refers to
minimal interruption of services during updates which is key
for 24/7 industrial installations. Next to these quality require-
ments, we analyzed the confidence level of the integrators on
the correctness of updates. To reason about the effectiveness,
the proposed solution is compared with Egemin’s current
practices (baseline approach) in a controlled experiment.

The remainder of this paper is structured as follows. Sec-
tion II introduces the update problems with Egemin’s SPL
and briefly describes the proposed solution. In Section III, we
explain the design of the experiment. Section IV elaborates
on the analysis of the obtained results. Validity threats are
discussed in Section V. Finally, we present related work in
Section VI, and draw conclusions in Section VII.



II. CONTEXT

A. Egemin’s SPL
Egemin is an industrial manufacturer of logistic systems.

Egemin’s SPL evolved from previous separate solutions and
over time the company widened the SPL scope by offering
customers new features. A typical configuration of a logistic
system is presented in Figure 1. The software is deployed
on three hosts. Each logistic subsystem comprises a service
and a client that make use of the distributed logistic platform.
While a service offers the functionality of the subsystem, a
client offers a graphical interface to access the service. The
product includes a warehouse management system (E’wms® -
Egemin warehouse management system) that is responsible
for managing tasks in the system, and control software for
the automated guided vehicles (E’tricc® - Egemin transport
intelligent control center). The subsystems consist of multiple
interrelated components that can communicate.

v4

E'wms
Service

v5
LP

Host 1

v12

E'ttric
Service

v5
LP

Host 2

v4

E'wms
Client

v5
LP

v12

E'ttric
Client

Host 3

vY
X

Client/Service X
version Y vY

LP Logistic Platform
version Y

HostKey

Fig. 1. Typical configuration of a product.

Logistic systems are long-lived; typically 10+ years. During
this lifespan, they evolve as a result of maturation of SPL
assets, changing customer requirements and environmental
settings. The goal of an evolution is to migrate the deployed
logistic system (as-is) to a new version (to-be).

To migrate a product, integrators in Egemin use installation
bundles containing new versions of various submodules that
comprise the update resources (e.g. executables and libraries).

Three representative examples of update scenarios, observed
in Egemin’s SPL, are:

• A security submodule of the logistic platform must be
updated to remove a problem with the cipher mechanism
found in version v5.

• A new crane device is bought from a 3rd party provider
by a customer and the control software of this device
must be integrated with the existing configuration.

• A new statistical module for E’wms, that improves
throughput, is offered to the clients. This module can be
integrated with E’wms from version v4 on.

As mentioned in the introduction, there are two important
quality requirements related to these scenarios:
R1. Correctness of the update: The integrator should perform

a correct sequence of update steps to bring the prod-
uct from the as-is to the to-be version. Update steps
include adding/removing/replacing resources and stop-
ping/starting processes. Restarting an incorrect configu-
ration may compromise the logistic system’s consistency.

R2. Availability of the system under update: The integrator
should minimize the total shutdown time of the various
logistic subsystems. Logistic systems typically have to
operate 24/7. Interruption of its services is costly and
should be kept minimal.

B. Problems with product updates

Egemin’s SPL adoption is an example of a Ploughed Fields
Adoption of a SPL [4], or Reenginering-driven SPL adoption
according to Schmid and Verlage’s classification [16]. The
SPL emerged from a set of products previously offered by
the company. As a consequence, Egemin’s SPL contains a lot
of legacy code which is not fully documented. Hence, only
a coarse-grained mapping between features and the software
artifacts is maintained.

The subsystems are developed by different teams that are
relatively independent. Moreover, most of the architectural
knowledge is personalized among engineers from the de-
velopment teams. In addition, due to ad-hoc updates, the
architectural description of deployed systems drifts from the
actual configuration thus the traceability between the SPL asset
base and the product’s components is imprecise. Therefore the
knowledge of deployed products and their execution environ-
ment required to perform update tasks is not available to the
integrators.

The lack of required knowledge of deployed products leads
to improvised update practices that are error-prone. Moreover,
uncertainty about the product configuration makes it difficult to
achieve the correctness (R1) and availability (R2) requirements
discussed above. To reduce the risk of incorrect updates, the
integrators team consists of highly skilled engineers from the
different development teams. This increases the cost of updates
and diverts the most experienced employees from their daily
tasks. Despite the costs, the approach does not guarantee
correctness of the update. Being aware of the consequences
of their current update approach, Egemin searches for a
systematic solution to improve the updates of their products.

C. Architecture-centric Approach

The architecture-centric approach we developed for support-
ing online updates of SPL products comprises two comple-
mentary parts: an update viewpoint and a supporting tool. The
viewpoint defines the architectural conventions for handling
the updates of the SPL products. The tool reifies the viewpoint
concepts for a particular SPL, supporting integrators with
performing product updates.

1) Update Viewpoint: The ISO/IEC 42010 standard [11]
defines an architecture viewpoint as “a work product estab-
lishing the conventions for the construction, interpretation and
use of architecture views to frame specific system concerns.”
As such, the update viewpoint establishes the conventions for
defining and using update views to deal with the correctness
and availability concerns of SPLs.

The viewpoint defines four model kinds that deal with the
previously mentioned concerns. As-Is (M1) and To-Be (M2)
Product Deployment models allow stakeholders to browse the



structure of a deployed product (as-is) and the future product
(to-be) respectively. The Update Procedure Model (M3) shows
the update steps that integrators have to perform to update a
deployed product, dealing with the availability and correctness
concerns. Finally, the Update Inconsistencies Model (M4)
shows inconsistencies of the product, dealing with the cor-
rectness concern.

The four model kinds are based on an integrated meta-
model that defines the conceptual entities, their attributes and
the relationships that comprise the vocabulary of these model
kinds. Moreover, the integrated meta-model offers the basis for
an architectural repository that we use to harvest the relevant
information from which the models are derived (we further
discuss this in following subsection). The detailed description
of the update viewpoint is presented in our previous work [20].

2) Supporting Tool: The construction of the architecture
models for supporting updates of the SPL products consists
of four phases: (i) harvesting relevant architecture knowledge;
(ii) storing the harvested knowledge; (iii) analyzing architec-
tural knowledge; (iv) visualizing the architectural models in a
comprehensive way for the stakeholders.

We developed a prototype tool to facilitate the update
process for Egemin SPL. A coarse-grained architecture of the
tool is presented in Figure 2. There are four main building
blocks that encapsulates the functions required to implement
the previously mentioned phases.

Fig. 2. Coarse-grained architecture the tool.

The Architectural Knowledge Collector. This module com-
prises a number of plugged-in harvester components that
perform the actual knowledge gathering. The knowledge col-
lector provides a common infrastructure to configure and
manage this data collection. A harvester is a small subprogram
that extracts architectural knowledge from specific sources.
There are three harvesters used for the Egemin’s products
line that collect information about components, their static
and dynamic dependencies, versions, and installation bundles.
Egemin products are based on the .Net platform, therefore, the
required knowledge is harvested from .Net assemblies, XML
configuration files, and MSI installation bundles.

Architecture Knowledge Repository. The repository is popu-
lated with the data collected by the harvesters. The repository
stores architecture knowledge that complies to the integrated

meta-model defined by the update viewpoint [20]. We used the
Eclipse Modeling Framework2 as a basis for the repository.

Analyzer & Model Builder. The analyzer uses the collected
data to provide models M3 and M4 of a product. Model
M3 results from the comparison of the as-is and to-be mod-
els [19]. Model M4 is obtained by verifying whether there
are any unresolved dependencies between system resources.
In addition, company-specific rules can be defined that are
checked during the analysis. E.g., one of the rules defined for
Egemin’s SPL requires that the version of a given assembly
should be identical at all locations of a logistic system. The
model builder visualizes models M1-M4 using the data stored
in the repository and obtained from the analysis. We have
used Eclipse graphics libraries34 for the implementation of
this module.

GUI & Workflow Controller. This module provides the end-
user interface for using the tool and browsing the models.
Figure 3 shows a snapshot of the GUI, in which the Update
Procedure model (M3) for a concrete project is shown. The
top-left box shows the different locations on which the product
is deployed. The box on the right hand side shows the instal-
lation bundles (product installers) that have to be deployed
on the selected location. The most important information is
presented in the bottom box, which shows an update script
that lists the subsequent steps to realize the update.

An integrator can access the other models using the naviga-
tion bar visible in the top of the figure. The As-Is Product
Deployment model enables the integrator to navigate the
structure of the currently deployed product and examine the
dependencies between assemblies. The To-Be Product Deploy-
ment model allows the integrator to browse the structure of the
installation packages that must be used in the update. Finally,
the Update Inconsistencies model provides the information
about missing assemblies and version problems of the current
installation.

An interaction with the tool starts with the configuration
of the harvesters. During the configuration, the locations of a
deployed product and installation bundles have to be indicated.
Next, an integrator can run a harvesting process and navigate
through the presented models. The harvesting step can be
executed several times during an update, for example, to
monitor the progress of the update.

III. DESIGN OF THE EXPERIMENT

To evaluate the effectiveness of the architecture-centric
approach for online updates and support the transfer of the
tool to Egemin’s practice, we decided to perform a controlled
experiment. For the design of the experiment, we followed the
guidelines provided by Wohlin et al. [21]. The evaluation is
an in-vitro supervised experiment with a paired comparison
design, where supervision has been performed by the authors
of this paper. In this paper, we give a rigorous overview of

2http://www.eclipse.org/emf
3JFace (http://wiki.eclipse.org/index.php/JFace)
4SWT (http://www.eclipse.org/swt)



Fig. 3. Snapshot of the tool. An example of the Update Procedure model for Kimberly Clark configuration.

the experiment. For a complete description of the experiment
with all the detailed results, we refer the reader to [14].

A. Goal

The goal of this study is to evaluate the effectiveness of
the architecture-centric approach with regard to the correct-
ness (R1) and availability (R2) requirements. Additionally,
we aim to investigate the integrators’ confidence level on the
correctness of updates with the tool in comparison to Egemin’s
current update practice.

B. Questions

To evaluate the effectiveness of the architecture-centric ap-
proach and assess the integrators’ confidence level on the
correctness of updates, we want to answer the following
concrete questions:
Q1 Is there a difference in correctness of the updates between

the architecture-centric and the baseline approaches?
Q2 What is the difference in availability of the system under

update when the architecture-centric and the baseline
approaches are used?

Q3 Is the integrators’ confidence affected by the approach that
is used to perform updates?

C. Tasks Description

During the experiment, subjects have to update logistic
systems derived from the Egemin’s SPL. The goal of an
update is to bring a system from its current (as-is) state to the
expected new state (to-be). To update the system a subject has
to stop and start relevant services, and remove, replace and
add resources (.Net assemblies and executables). During an
update, either the architecture-centric approach or the baseline
approach is used.

The updates are performed on variants of the Kimberly
Clark (KC) logistic system. The system is installed in the
standard location (Program Files/Egemin) and is operational.
The KC logistic system consists of an E’tricc service, an

E’wms service, an E’pia service (logistic platform), and the
associated clients (see Figure 1).

For the purpose of the experiments we have defined three
kinds of the update scenarios:
S0 Learning scenario kind - these are easy scenarios which

require simple changes that affect one of the subsystems.
The aim of the learning scenarios is to familiarize subjects
with the system under update and the usage of our tool.

SA Simple scenario kind - in these scenarios, the E’wms
or E’tricc services and corresponding client screens are
object of the update. The number of changes is limited.
To perform the correct update two processes must be
restarted.

SB Complex scenario kind - in these scenarios, the whole
logistic system is affected by the update. Most of the
running processes have to be restarted to perform the
update correctly.

The concrete scenarios were prepared by Egemin’s senior
architect, who did not participate in the experiment as a
subject. The proposed scenarios are similar to the updates
Egemin integrators perform in practice. We asked the subjects
to perform two updates for each scenario kind, one with
the architecture-centric approach, the other with the baseline
approach. We prepared pairs of similar scenarios to ensure
objectivity and avoid interference between treatments.

D. Selected Variables
In order to analyze the impact of the used approach on

the update process we considered the following depended
variables:
I1 Correctness of an update - a variable that expresses the

result of an update, i.e., an update is correct when a subject
performed all the required file modifications for a given
scenario. For the analysis, we use a binary metric that
indicates whether the update is performed correctly or not.

I2 Number of unique process shutdowns - the number of
processes that are stopped at least once during a given



update task. For the analysis, we use the difference between
the optimal and the actual number of unique shutdowns as
a metric.

I3 Number of process shutdowns - the total number of the
process shutdowns that are performed during the update
task. For the analysis, we use the difference between
optimal and actual number of shutdowns as a metric.

I4 Time: duration of an update (expressed in minutes) - the
time measured between the moment a subject finishes
reading a scenario and the moment the update is completed.

I5 Confidence level - a questionnaire-based self-assessment of
a subject’s confidence about the correctness of an update.
We used a Likert 5-point scale [12] in the questionnaires.

I6 File modifications ratio - the number of file modifications
made during an update task. In the statistical analysis, we
use the ratio between optimal and actual number of file
modification as a normalized metric.

In addition, we defined two independent variables: an ap-
proach (architecture-centric or baseline) and the complexity
level of the scenario. For the experiment output analysis, we
used only the data collected from the simple and complex
scenarios.

E. Subjects

Seventeen highly qualified professional volunteered in the
experiment. That includes six integrators from Egemin and
eleven experienced research fellows from the DistriNet group.

F. Preparation and Materials

We performed a pilot experiment with three researchers
from the DistriNet group. The pilot participants were not
involved as subjects in the actual experiment. The goals of the
pilot study were: (i) to discover all possible problems related
to the execution of the update tasks; (ii) to get some indicators
for the complexity and the time needed to complete the tasks;
(iii) to examine the clarity of the update scenario descriptions
and the questionnaires.

The findings from the pilot study helped us to improve
the materials and the experimentation procedure. First, we
removed some ambiguities from the scenario descriptions
and questionnaires. Second, as we discovered that switching
scenarios was time consuming and could lead to mistakes,
we decided to create automation scripts to prepare the update
tasks. Third, we have standardized and written down the
guidance for supervisors.

As previously mentioned, we prepared a presentation to
introduce the SPL update problem to the subjects. The first part
of this presentation explains the logistic system, the installation
structure, and the quality requirements for a product update.
The second part introduced the tool. The interested reader can
access the presentation, and the update scenario descriptions
at the project web-page5.

In addition, we prepared six virtual images of the dif-
ferent variants of the KC system to ease the setup of the

5http://people.cs.kuleuven.be/bartosz.michalik/evoline/

experiments. We developed a simple tracing tool, that runs in
the background, to automatically count file modifications and
track time stamps of events. Finally, we provided the scenario
descriptions and notebooks for subjects. The questionnaires
for all updates were handled via an on-line application.

G. Execution

To collect the data, we have organized 17 experiment
meetings. In each meeting, one subject and one supervisor
participated. During the meeting of 2.5 hours, a subject has to
perform six different, supervised updates to a logistic system.
The supervisor prepared the experiment materials and setups,
took note of the subjects actions relevant to the experiment,
and assisted the subject when required.

The following description of the experiment is common for
all 17 subjects. At the beginning of the meeting the subject
is given an introductory presentation about Egemin’s logistic
system, the architecture-centric approach for performing up-
dates, and the tool. Next, the subject is asked to perform the
updates described in two learning scenarios. The objective of
this phase is to familiarize the subject with both, the logistic
system’s structure and the tool. Prior to the execution of an
update, the supervisor prepares the environment, starts and
configures the tool. The subject then receives the description
of the first update scenario and is asked to perform the update
using the tool. After completion of the update, the subject
fills out a task related questionnaire. The questionnaire covers
task difficulty, level of confidence and additional comments.
This procedure is repeated for the second update scenario.
However, this time the subject uses the baseline approach. An
identical questionnaire is used for the second scenario. During
the execution of the learning scenarios, the subject can consult
the supervisor whenever needed.

After completion of both learning scenarios, the controlled
part of the experiment begins. Subjects perform four different
update tasks using both approaches for simple and complex
scenarios. A subject performs a random sequence of scenarios,
such as: (i) the second simple scenario using the architecture-
centric approach, (ii) the first complex scenario using the
baseline approach, (iii) the second complex scenario using the
architecture-centric approach, (iv) and the first simple scenario
using the baseline approach ; or any other combination.

In the controlled part of the experiment, the following steps
are applicable to each of the update tasks:
a) The subject reads the description of an update scenario.
b) The supervisor prepares the update setup. This step in-

cludes starting the logistic subsystems and the tracing tool.
Next, he configures the update tool and performs an initial
harvesting. This step applies only to the scenarios in which
the tool is used.

c) The subject performs an update of the logistic system. The
supervisor keeps track of the relevant actions of the subject.

d) The subject fills out the scenario questionnaire.
e) Relevant data is collected for further analysis, including the

state of the logistic system after completion of the update
task.



In the final step the subject fills out an evaluation question-
naire for the complete experiment.

H. Data Analysis

Three data sources are important in our study: the supervi-
sion reports, automatically collected data, and survey results.

Relevant data include logs of the subjects actions with
timestamps, including the number of process shutdowns and
restarts, automatically collected logs of file modifications and
scenario errors, and data of on-line surveys about the level of
confidence of the update correctness.

We decided to treat all subjects as a single group based
on the results of several Kolmogorov-Smirnov tests [9]. Then,
we have checked whether there is no relationship between
the observed variables using graphical methods and Person’s
correlation matrices. Next, we checked whether the data comes
from a normally distributed population using the Sharpio-
Wilk’s test [17]. As we have not observed any relevant
dependency between the variables and the collected data was
not normally distributed according to performed tests, we
decided to use the Wilcoxon signed-rank test [10] for further
inferential analysis.

In all our statistical tests, we accept a 5% probability of
committing type-I-error. To analyze the collected data we used
the open source R package6.

IV. RESULTS AND DISCUSSION

In the following section, we provide answers to the ques-
tions from Section III-B. The discussion is supported with the
analysis of the data collected during the controlled updates.

A. Q1. Update Correctness

To address question Q1 we use the Correctness of an update
metric (I1).

TABLE I
DESCRIPTIVE STATISTICS FOR THE UPDATE CORRECTNESS.

correct incorrect

SA
architectural 17 0

baseline 14 3

SB
architectural 17 0

baseline 3 14

I1 - Correctness of an Update: Table I shows the fre-
quencies of correct and incorrect updates for simple SA

and complex SB scenarios. All updates supported with the
architecture-centric approach were performed correctly. For
baseline supported scenarios 82% of simple and 18% of
complex tasks were correct.

We used two statistical tests to check the relevance of the
observed results:
H0−simple: There is no difference in the correctness of up-

dates between the baseline and architecture-centric ap-
proaches for simple scenarios.

6http://www.r-project.org/

H0−complex: There is no difference in the correctness of
updates between the baseline and architecture-centric
approaches for complex scenarios.

The statistical tests reveal that the measured difference is
statistically significant for complex scenarios (p − value =
0.000105). For simple scenarios the hypothesis cannot be
rejected (p− value = 0.07446).

Discussion: Correctness of updates is one of the most
important requirements for integration tasks. It is important
to notice that the update tool does not automate the resources
manipulation phase. With both approaches, all resource manip-
ulations had to be performed manually. Therefore, the chance
of mistakes in an update task due to an incidental resource
modification are similar for both approaches. The data analysis
reveals that the usage of the architecture-centric approach im-
proves the correctness of the updates, in particular for complex
scenarios in which the updates affect multiple subsystems.
Whereas all tool supported updates were performed correct,
only three participants were able to perform all updates correct
using the baseline approach.

B. Q2. Logistic System Availability

The number of unique process shutdowns (I2), total process
shutdowns (I3), and the time for performing updates (I4) are
used to address question Q2.

I2 - Number of Unique Process Shutdowns: For simple
scenarios (SA), 65% of the subjects performed all required
shutdowns with the baseline approach. Nevertheless, the mean
value for this metric is 0.41 as shown in the Table II. In
contrast, the number of unique process shutdowns is optimal
for all simple updates performed with the architecture-centric
approach.

For complex scenarios (SB), the value for metric I2 de-
creases for both approaches. We observed that 41% of the
subjects performed the optimal number of unique shutdowns
using the baseline approach, whereas 96% of them performed
the optimal number of shutdowns using the architecture-centric
approach. In addition, the average number of shutdowns for
baseline is 0.94, which means that in almost all update tasks
the subjects performed unnecessary shutdowns. To compare,
the average value for the architecture-centric updates is 0.06.

TABLE II
DESCRIPTIVE STATISTICS ON UNIQUE PROCESS SHUTDOWNS.

mean median std.dev range

SA
architectural 0.00 0.00 0.00 0.00

baseline 0.41 0.00 0.62 2.00

SB
architectural 0.06 0.00 0.24 1.00

baseline 0.94 1.00 1.03 3.00

We statistically tested the significance of the results with
the following hypotheses:
H0−simple: There is no difference in the number of unique

shutdowns between the baseline and architecture-centric
approaches for simple scenarios.



H0−complex: There is no difference in number of unique
shutdowns between the baseline and architecture-centric
approaches for complex scenarios.

The results show that the difference in the number of shut-
downs are significant for both simple (p− value = 0.01313)
and complex (p− value = 0.002367) scenarios.

I3 - Number of Process Shutdowns: Table III shows the dif-
ferences in the average number of shutdowns and the variation
of results between the approaches both for simple (SA) and
complex (SB) scenarios.

In addition, with the baseline approach, the subjects per-
formed the exact number of process shutdowns for updating
the products in 41% of the simple and 24% of the complex
scenarios. The usage of the update tool resulted in 88% and
82% of exact shutdowns respectively.

TABLE III
DESCRIPTIVE STATISTICS ON PROCESS SHUTDOWNS.

mean median std.dev range

SA
architectural 0.18 0.00 0.53 2.00

baseline 1.47 1.00 2.03 6.00

SB
architectural 0.24 0.00 0.56 2.00

baseline 3.12 3.00 2.96 11.00

Although the difference in number of shutdowns between
the approaches is clearly visible, we tested the observations
with following hypotheses:

H0−simple: There is no difference in number of shutdowns
between the baseline and architecture-centric approaches
for simple scenarios.

H0−complex: There is no difference in number of shutdowns
between the baseline and architecture-centric approaches
for complex scenarios.

The statistical tests reveal that the difference between the
methods is significant for both simple (p− value = 0.01051)
and complex (p− value = 0.0007364) scenarios.

I4 - Time: The overall time spent on the updates is summa-
rized in Figure 4. When an intervention of the supervisor was
needed (e.g. to restore the initial state of the system, which
we allowed in the experiment), we excluded this time from
the total update time. The average time spent on baseline
updates is 11 minutes for simple scenarios (SA) and 23
minutes for complex scenarios (SB). Similarly, the average
times of architecture-centric updates are 7.5 and 14.5 minutes
respectively. The variability (in SB) of the results with the
baseline approach is approximately four times the variability
of the results with the architecture-centric approach.

To check the significance of the observed results we per-
formed two statistical tests:

H0−simple There is no difference between both update ap-
proaches in the time needed to complete the simple
update tasks.

H0−complex There is no difference between both approaches
in the time needed to complete the complex update tasks.

●

●● ●

●

●

●

architectural SA baseline SA architectural SB baseline SB

0
20

40
60

80

T
im

e 
(in

 m
in

.)

Fig. 4. Plots of the updates durations for simple SA and complex SB

scenarios.

The results (p − value = 0.02759 for H0−simple and p −
value = 0.08153 for H0−complex) show that the differences
in update times is only significant for simple scenarios.

Discussion: The number of unique process shutdowns ex-
presses how accurate the subjects were in stopping the right
processes during the update tasks. The number of process shut-
downs can be used to estimate the total unavailability of the
given subsystems. Both metrics accommodate the processes
that had to be stopped to perform the update correctly but
remained running. The fact that such a process was not stopped
indicates an incorrect update. Such a situation occurred in 41%
of the complex and 6% of the simple updates for the baseline
approach.

The difference between the approaches is clearly visible
in both metrics. We identified two possible explanations for
these differences. First, we observed several “modify and
verify” cycles with baseline updates. In other words, a subject
modified the system and then checked correctness of the
applied changes by simple end-user tests. This is a risky
strategy, while running the system in an incorrect configuration
may lead to data loses or worse. Second, we observed that
subjects had a tendency to shut down more process as needed
to perform an update with the baseline approach. Although,
we observed superfluous shutdowns in case of architecture-
centric updates too, these shutdowns were rare in comparison
to the baseline updates.

We use the time metric to measure the duration of updates.
Although, the architecture-centric updates at average took
less time than the baseline updates, the difference is relevant
only in case of the simple scenario. Due to the experimental
settings, the time needed for the subsystems to restart was
an order of magnitude smaller than in real system updates.
Therefore, the number of process shutdowns seems to be a
better estimator of the availability of the production system
under update.



C. Q3. Confidence Level
We decided to check the confidence level in two ways:

first directly by asking the subjects questions via question-
naires (I5), and send indirectly by looking at the file modifi-
cation the subjects made during updates (I6).

I5 - Confidence Level: Confidence level is a metric that
characterizes the belief of a subject that the performed update
was correct. The 5-point Likert scale was used to examine
the subjects’ level of agreement with the statement “I am sure
that I performed the update correctly”. Results are presented
in Figure 5. The bars indicate the number of responses for
the different levels of agreement. The actual correctness of
the updates is marked with two colors. The brighter part of a
bar represents the number of incorrect updates, whereas darker
part represents the number of correct updates. For example, for
complex scenarios (SB) performed with the baseline approach,
three subjects state that they are confident that update were
performed correctly. However, only one of subjects was right.

SA A NA D SD

architectural SA

0
2

4
6

8
10

12

SA A NA D SD

incorrect
correct

baseline SA

0
2

4
6

8
10

12

SA A NA D SD

architectural SB

0
2

4
6

8
10

12

SA A NA D SD

baseline SB

0
2

4
6

8
10

12

Fig. 5. Level of confidence about update correctness (SD - strongly agree,
A - agree, NA - I am not sure, D - disagree, SD -strongly disagree). The
actual correctness of updates is marked in colors (brighter - incorrect, darker -
correct).

We checked the significance of the difference in the level
of confidence using the following hypotheses:
H0−simple There is no difference in the subjects’ level of

confidence about the simple updates correctness between
the architecture-centric and baseline approaches.

H0−complex There is no difference in the subjects’ level
of confidence about the complex updates correctness
between the architecture-centric and baseline approaches.

The statistical tests confirm significance of the differences
between the approaches for both scenario kinds (simple:
p− value = 0.002724; complex: p− value = 0.0002168).

I6 - File Modifications Ratio: The file modification ratio
expresses the relation between the optimal and the actual
number of the file modifications for a given update task. The
results for both approaches are plotted in Figure 6. The average
value of the file modifications ratio for the architecture-centric
approach is 1.02 for both simple (SA) and complex scenarios
(SB). The value for the baseline approach is 10.04 for simple
and 9.71 for complex scenarios. A high diversity of the file
modification results is visible for update tasks performed with
the baseline approach.

●●

●

●

●●●

●

architectural SA baseline SA architectural SB baseline SB

0
10

20
30

40
50

F
ile

 M
od

ifi
ca

tio
ns

 R
at

io

Fig. 6. Plots of the file modifications ratio for the two evaluated approaches
both for simple (SA) and complex (SB) scenarios.

We used two hypotheses to test the significance of the
differences in file modifications ratios:
H0−simple There is no difference in number of file mod-

ifications between the architecture-centric and baseline
approaches for simple scenarios.

H0−complex There is no difference in number of file mod-
ifications between the architecture-centric and baseline
approaches for complex scenarios.

The results, p−value = 0.000274 for simple and p−value =
0.0004596 for complex scenarios, shows that the hypothesis
can be rejected for both cases.

Discussion: The results show that subjects are confident
about the update correctness in updates performed with the
tool (16 confirmatory answers for simple SA and 14 for
complex SB scenarios). These results are aligned with the
actual correctness of the updates, and further confirmed by the
participants comments. For instance, one of the participants
reported that the tool “tells exactly what to do and where to
find the files”. The analysis of file modification ratio supports
this finding. The results show that the subjects are guided by
the instructions from the update tool, as the number of file
modifications is optimal or close to optimal for all updates.

In contrast, the lack of required knowledge during updates
with the baseline approach affects the level of confidence
about the update correctness. The subjective opinions about
the correctness of the update are diverged and in some cases



different from the actual state. For example, in a simple
scenario one of the subjects was strongly convinced about
the correctness of an update, but in reality it was performed
incorrectly. In a production settings this can lead to the
inoperative system configuration, or in extreme case, to the
damages of an industrial installation.

V. THREATS TO VALIDITY

In this section validity threats are discussed. We use the
classification described by Wohlin et al. [21].

A. Internal Validity

1) Instrumentation: It can happen that an artifact used in
the experiment may affect the observed results. To avoid this
risk we ran three pilot experiments to check the suitability of
the materials for the experiments. As we explained above, we
use the insights from the pilot to adjust some of the material
for the experiment. However, not all elements that can affect
the results might be eliminated. Some subjects reported that
the software running at a virtual machine was too slow. This
might affect some of the observed results (e.g. metric I4).
However, this issue will have a similar effect for all performed
updates.

2) Maturation: In the study we used two experiments
with paired design, where subjects performed four controlled
updates. Therefore, the risk that the learning effect influences
results of the treatments is high. To mitigate this risk we
introduced the learning scenarios and randomized the order
of the update tasks for all subjects.

B. External Validity

1) Interaction of Setting and Treatment: According to the
taxonomy proposed by Zelkovitz [22] our experiment is an
example of synthesis. The goal of the synthesis is to replicate
a simple version of the technology to be able to measure the
selected properties.

In our experimental settings we have used a real logistic
system, but were unable to reconstruct the complete indus-
trial installation. People might react differently when no real
customers are involved or faulty updates to logistic machines
cannot cause real damage. We tried to anticipated this threat
by explaining the subjects that minimal shutdowns and cor-
rectness were key requirements for the updates.

In addition, the experiment did not allow the test person to
interact with other people. In practice, integrators may contact
colleagues during updates. Note that both approaches received
an equal treatment. Moreover, it is known that fixing errors by
calling colleagues only helps in a small number of cases.

C. Construct Validity

1) Mono-operation Bias: In the experiments we used only
one logistic system, although with different variants. This
introduces a risk that the Egemin’s logistic systems were
under-represented. However, the system used in the experi-
ment contains most important subsystems Egemin’s SPL. In
addition, we examined the effectiveness of the approaches at

two complexity levels that represent the majority of update
scenarios of industrial installations.

D. Conclusion Validity

1) Reliability of Treatment Implementation: The subjects
were supervised by different experimenters. Being aware of
this fact, we have defined a detailed experimentation procedure
which was followed in all experiments. In addition, we have
automated the setup of an experimentation environment and
by tracking several of the observed variables. Finally, three
experimenters participated in the pilot experiments.

VI. RELATED WORK

Despite the successes of SPL adoption, empirical verifica-
tion of SPL related theories and processes is rather limited.
Similarly to other domains [22], most of the findings result
from case studies. Linden et al. [13] uses several industrial case
studies to illustrate the benefits of SPL. Pöhl [15] summarizes
experience reports related to SPL adoption in 15 organizations.

Case studies are also widely used in research, addressing
an architecture-oriented view on SPLs. Bosh [3] reports on
two industrial case studies involving Swedish organizations.
The information from architects’ reviews were analyzed to
understand the state of the practice and identify issues related
to the SPL architecture. Two other case studies are provided
by Deelstra et al. [6], who report on product derivation issues
of Thales Nederland B.V. and Robert Bosch GmbH SPLs. A
simple case study on a product line of calculators was used to
study the application of Maintainability Index to the SPLs [2].

In this paper we report on a controlled experiment with an
architecture-centric approach to address update problems in
the context of SPL evolution. Although our work is rooted in
SPL, in this paper we focus on the updates of single products
derived from a SPL.

A controlled experiment on migration of the COBOL
software to the web is presented by Colosimo [5]. In the
experiment, the effectiveness of the migration supported by
the MELIS tool is compared to the more traditional approach.
The focus of our work is similar to this paper. We compare the
effectiveness of the product updates between the architectural
and baseline approaches. We contribute with a comparative
experiment which was performed in a professional settings,
with respect to both, the subject and object of the experiment.

The architectural approach presented in this paper is in-
spired by research in the Software Architecture Reconstruction
(SAR) domain. The general overview of SAR approaches in
provided by Ducasse and Pollet [7]. However, differently from
most code based approaches(e.g. [1]) we use the meta-data to
build architectural models.

VII. CONCLUSIONS

Based on the findings of the experiment, we conclude that
the proposed architecture-centric approach is a significant im-
provement comparing to Egemin’s traditional update practices.
The automatic constructed of the architecture models of de-
ployment products is sufficient to correctly migrate Egemin’s



products. We also observe a significant improvement in the
availability of services during product updates.

By running the experiment and providing the results, we
were able to convince the decision makers at Egemin that
the update process can be successfully improved with the
architectural approach.

The proposed solution has a potential to reduce the costs of
the product updates. First, all subjects performed the updates
correctly using the tool. This eliminates the potential costs
of repairs which are required in case errors are revealed
after updates. Second, the subjects were able to perform
these updates without consulting their colleagues. One of
the Egemin integrators mentioned that ”even the customer
could perform updates this way [using the tool]”. Third, the
presented analysis of the data shows that subjects trust the
architectural knowledge provided by the tool. Moreover, 15
of them reported that they have a strong preference for the
architectural approach. With the architectural approach, the
size of the integration team, as well as involvement of the key
engineers in the updates can be reduced significantly.

Nevertheless, the proposed solution, as well as its evaluation
have some limitations. The tool used in the experiment is a
prototype, therefore some improvements are necessary before
it can be used in a production environment. One of the most
obvious improvements is (semi-)automation of the update
steps. In addition, we have only examined the applicability
of the solution for Egemin products. Although, we designed
the tool with the extensibility to other domains in mind, the
version of the tool used in the experiment is tailored to address
the specific needs of Egemin. The cost of the architecture-
centric approach adoption is twofold. First, the proposed meta-
model might require some modifications to be applicable to
another domains. Second, even without modification of the
meta-model, the domain specific harvesters must be developed
to allow for the data collection. Therefore, at this stage, the
conclusions we draw cannot be generalized beyond Egemin’s
SPL context.

Although we successfully applied the architecture-centric
approach to Egemin’s SPL, several research challenges remain.
First, the extensibility of the approach could be evaluated in
a repeated experiment with a different SPL. Second, we plan
to formally proof the correctness of the algorithms we use for
deriving the update steps and checking consistency.

ACKNOWLEDGMENTS

We are grateful to professor Victor R. Basili for his valuable
comments on the experiment design. We thank Kurt de Vocht
for the inspiring discussions and his support in preparing the
update scenarios. Finally, we thank the Egemin employees and
our colleagues from DistriNet labs for their participation in the
experiment.

REFERENCES

[1] S. Ajila and A. Kaba. Evolution support mechanisms for
software product line process. Journal on Systems and Software,
81(10):1784–1801, 2008.

[2] G. Aldekoa, S. Trujillo, G. Sagardui, and O. Diaz. Quantifying
maintainability in feature oriented product lines. In Software
Maintenance and Reengineering, 2008. CSMR 2008. 12th Eu-
ropean Conference on, pages 243 –247, 2008.

[3] J. Bosch. Product-line architectures in industry: a case study.
In Software Engineering, 1999. Proceedings of the 1999 Inter-
national Conference on, pages 544 –554, May 1999.

[4] P. C. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineering.
Addison-Wesley, August 2001.

[5] M. Colosimo, A. D. Lucia, G. Scanniello, and G. Tortora. Eval-
uating legacy system migration technologies through empirical
studies. Information and Software Technology, 51(2):433 – 447,
2009.

[6] S. Deelstra, M. Sinnema, and J. Bosch. Product derivation in
software product families: a case study. Journal of Systems and
Software, 74(2):173 – 194, 2005. The new context for software
engineering education and training.

[7] S. Ducasse and D. Pollet. Software architecture reconstruction:
A process-oriented taxonomy. IEEE Trans. on Software Engi-
neering, 35(4):573 –591, 2009.

[8] J. Estublier, I. A. Dieng, and T. Leveque. Software product line
evolution: the selecta system. In Proceedings of the 2010 ICSE
Workshop on Product Line Approaches in Software Engineering,
PLEASE ’10, pages 32–39, New York, NY, USA, 2010. ACM.

[9] J. Gibbons and S. Chakraborti. Nonparametric statistical
inference, volume 168. CRC Press, 2003.

[10] M. Hollander and D. Wolfe. Nonparametric statistical methods.
Wiley-Interscience, 1999.

[11] ISO/IEC. Systems and software engineering - architecture
description. ISO/IEC standard, draft D8, August 2010.

[12] R. Likert. A technique for the measurement of attitudes.
Archives of Psychology, 22(140):1–55, 1932.

[13] F. J. Linden, K. Schmid, and E. Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line
Engineering. Springer, 1 edition, July 2007.

[14] B. Michalik, N. Boucke, D. Weyns, and A. Helleboogh.
Empirical Evaluation of EvoLine. Katholieke
Universiteit Leuven, 2011. TR. Available via
http://people.cs.kuleuven.be/danny.weyns/EvoLineEvaluation.pdf.

[15] K. Pohl, G. Böckle, and F. Van Der Linden. Software prod-
uct line engineering: foundations, principles, and techniques.
Springer-Verlag New York Inc, 2005.

[16] K. Schmid and M. Verlage. The economic impact of product
line adoption and evolution. Software, IEEE, 19(4):50 – 57,
jul/aug 2002.

[17] S. Shapiro and M. Wilk. An analysis of variance test for
normality (complete samples). Biometrika, 52(3-4):591, 1965.

[18] F. van der Linden, K. Schmid, and E. Rommes. Software
product lines in action: the best industrial practice in product
line engineering. Springer-Verlag New York Inc, 2007.

[19] D. Weyns and B. Michalik. Codifying Architecture Knowledge
to Support Online Evolution of Software Product Lines. In Shar-
ing and Reusing Architectural Knowledge, 2011. SHARK’11.
ICSE Workshop on. ACM, 2011.

[20] D. Weyns, B. Michalik, A. Helleboogh, and N. Boucké. An
architectural approach to support online updates of software
product lines. In P. Kellenberger, editor, 2011 Ninth Working
Conference on Software Architecture. IEEE, June 2011.

[21] C. Wohlin, P. Runeson, and M. Höst. Experimentation in
software engineering: an introduction. Springer Netherlands,
2000.

[22] M. V. Zelkowitz. An update to experimental models for vali-
dating computer technology. Journal of Systems and Software,
82(3):373 – 376, 2009.


