
On the Problems with Evolving Egemin’s
Software Product Line

Bartosz Michalik, Danny Weyns
DistriNet Labs, Departement of Computer

Science
Katholieke Universiteit Leuven, Belgium

{bartosz.michalik,danny.weyns}@cs.kuleuven.be

Wim Van Betsbrugge
Resesarch & Development, Egemin Automation

Antwerp, Belgium
www.egemin.com

ABSTRACT
Egemin, an industrial manufacturer of logistic systems is
adopting a Software Product Line (SPL) approach to man-
age the development of their product portfolio. However,
due to the intrinsic complexity of the logistic systems and
lack of explicitly documented architectural knowledge evo-
lution of the products is error-prone. Faulty updates in-
crease maintenance costs and harm the company’s reputa-
tion. Therefore, Egemin searches for a systematic solution
that can improve their SPL evolution strategy.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance

General Terms
on-line, evolution, SPL, software produt line

Keywords
Evolution, SPL, software product line

1. INTRODUCTION
Egemin1 is an industrial manufacturer of logistic systems.

The company is adopting a Software Product Line (SPL)
approach. Their SPL evolved from previous separate solu-
tions. Over time Egemin widened its SPL scope by offering
customers new features. However, the heritage of previously
developed systems led to severe difficulties with the evolu-
tion of their SPL. In this paper, we report on the problems
analysis that resulted from a joint project between Egemin
and DistriNet Labs at K.U.Leuven.

The key problem Egemin encounters can be formulated
thus:

How to correctly and efficiently evolve the Soft-
ware Product Line in the context of incomplete
architectural knowledge?

1http://www.egemin.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLEASE ’11, May 22-23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0584-6/11/05 ...$10.00.

Egemin’s products are distributed systems deployed in
production environments, therefore correct and efficient up-
dates are key. A correctness of a system evolution means
that the maintainer has to perform an accurate sequence of
update steps to evolve the deployed system to the new ver-
sion when it is updated. Efficiency of the evolution refers
to the availability of the logistic system during the update.
Typically, a logistic system has to operate 24/7, therefore
minimal interruption of the running system should be en-
sured.

Managing the evolution of SPL and ensuring consistency
of the changes in all affected products are both recognized
as the key research challenges [10]. However, the evolu-
tion of SPL is a broad term so researches address different
aspects. Bosch discusses the evolutionary and revolution-
ary approaches for SPL adaptation in an organization [3].
CompAS [5] is a method to analyse evolution in a features
space. Krueger [8] discusses the 3-Tiered Methodology for
SPL evolution. The base tier provides basic infrastructure
for first-class variation management. The middle tier fo-
cuses on organizing the assets and the development teams
around the reusable components and subsystems. Evolution
is addressed in the top tier (Feature Based Portfolio Evolu-
tion) which manages the portfolio by features, not products.
Dhungana [4] proposes a decision-oriented solution for evolv-
ing model-based SPL. This solution is based on the use of
model fragments, and attempts to synchronize models with
asset base elements automatically. Clone Miner [2] is an
example of a tool that helps evolution at the code level. De-
spite these approaches, Babar [1] convincingly claims that
systematic and sufficient support of evolution is limited.

In this paper, we focus on the evolution of deployed prod-
ucts, in particular the execution of the maintenance tasks to
update deployed products.

The remainder of this paper is structured as follows. Sec-
tion 2 gives a brief overview of Egemin’s SPL. Section 3 out-
lines the problems with its evolution. Section 4 shows the
consequences of evolution of SPL with incomplete knowl-
edge. A discussion follows which outlines future work.

2. EGEMIN’S SPL SETTINGS
Egemin is a leading company that provides full life cy-

cle support for logistic systems. Such systems are used for
warehouse automation, e.g., for distributing manufactured
products to storage locations or as an interprocess system
between various production machines. A logistic system cus-
tomized and optimized for specific customer needs is a prod-
uct. Egemin maintains more than 200 logistic systems de-

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

Figure 1: Typical configuration of a product

ployed at their customers sites across Europe. This number
grows significantly each year.

A typical configuration of a logistic system is presented in
Figure 1. The software is deployed on four hosts. Each lo-
gistic subsystem comprises a service and a client that makes
use of the distributed logistic platform. The service offers
the functionality of the subsystem, the client offers a graph-
ical interface to access the service. The installation includes
a warehouse management system (E’wms R© - Egemin ware-
house management system) that is responsible for manag-
ing tasks in the system, and control software for various
transportation subsystems such as automated guided vehi-
cles (E’tricc R© - Egemin transport intelligent control center),
and cranes (E’car R© - Egemin crane automatic storage and
retrieval system). All subsystems consist of multiple inter-
related components that can communicate.

Logistic systems are long-lived (typically 10+ years). Dur-
ing this lifespan, product evolves as a result of SPL assets
evolution or because of changing customer requirements or
environmental settings. Examples of typical evolution sce-
narios, that can be observed in the Egemin’s maintainers
daily work, are:

S1 A security submodule of a logistic platform is updated
to remove a problem with the cipher mechanism found
in version v5.

S2 For reasons of performance, a collision avoidance com-
ponent of the E’ttric subsystem is split into two parts
starting from version v13.

S3 A new crane device is bought from a 3rd part provider
by a customer and the control software of this device
must be integrated with the existing configuration.

S4 A new statistical module for E’wms is offered to the
clients that improves throughput. The module can be
integrated with E’wms from versions v4 on.

S5 Customers want to evolve their operating systems
which may affect their deployed installations.

The goal of system evolution is to migrate the logistic
system from its current version to the new version in a series
of update steps. These steps include component additions,
removals and replacements, as well as stops and restarts
of affected processes. The required changes have different
impact on a running configuration. For instance, only the
server part of the E’ttric module needs to be updated in

scenario S2, whereas the implementation of scenario S5 may
require a full system restart.

Unfortunately, without a detailed architecture knowledge
about the product under update performing the evolution is
error-prone. In the next sections, we pinpoint the problems
of Egemin’s SPL evolution and discuss the consequences of
imprecise knowledge for the evolution tasks.

3. EGEMIN’S EVOLUTION PROBLEMS
Egemin’s deployed products were derived at different mo-

ments in time and composed from variants of the same com-
ponent. Therefore, knowledge about the exact configuration
of a product is critical to ensure a correct and efficient evo-
lution process. In fact, during the evolution of Egemin’s
products maintainers have varying information needs.

In scenario S1 the key issue is to identify the products that
include the buggy security component and its dependencies
with other components. Scenario S2 requires changes in the
component structure of a deployed system. Therefore main-
tainers must have proper knowledge to integrate the new
components in a correct way. With the right update strat-
egy the interruption of the running system can be reduced
significantly. Scenario S3 emerges from a customer require-
ment. The main issue is to determine how the new software
components have to be integrated with the running system.
Additionally, the integration of the new feature in the SPL
may be considered. In scenario S4, a new feature is offered to
Egemin’s customers. Therefore, SPL-wide knowledge about
existing installations is required to identify the customers
for which the feature could be useful. Finally, in scenario S5
the runtime platform evolves. The impact of this change on
the deployed systems has to be determined and addressed
accordingly.

Unfortunately, in the current situation precise documen-
tation of the deployed systems and traceability between de-
ployed and assets base components is not available.

The Egemin’s SPL is an example of a Ploughed Fields
Adoption of SPL Development [6]. The SPL emerged from
a set of products previously offered by the company. As
a consequence, Egemin’s SPL contains a lot of legacy code
which is not fully documented. Moreover, only a coarse-
grained mapping between features and the code artifact is
maintained.

Egemin maintains more than 200 of deployed products,
which generates more than 300 of the maintenance tasks
each year. The subsystems are developed by different teams
that work relatively independently. Moreover, most of the

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

Assets
base

Product 1

Product 2

1

2

Product 3

Key

Evolution

Influence

3

3

x Step

Figure 2: Evolution in Egemin’s SPL

architectural knowledge is personalized among team engi-
neers. Therefore the knowledge of deployed products and
their execution environment required to perform evolution
tasks is not available to the maintainers team. Knowledge
about the traceability between the SPL asset base and the
product’s components is also imprecise.

There are two evolution stages (see Figure 2) of Egemin’s
SPL in which accurate knowledge about a product under
update is required.

One stage is SPL-wide evolution. During this stage prod-
ucts that are affected through the change have to be identi-
fied (step 2 in Figure 2). Knowledge about dependencies be-
tween deployed (customer optimized) assets and asset base
(generic) components help to identify the affected products.
For example, when a new statistical module is developed
(S4) it should be offered only to the customers with the
proper version of the E’ttric subsystem.

However, to evolve the product, the new components must
be integrated with currently deployed product. This is a
product-specific evolution (step 3 in Figure 2). The focus of
this evolution’s stage is to determine the correct and effi-
cient sequence of update steps. It can happen that in the
realization of scenario S1, a single component replacement is
required in one product, while in another product, multiple
subsystems have to updated. Precise knowledge about the
deployed components and their interrelations is a prerequi-
site to evolve the product correctly.

In the following section we discuss the consequences of
SPL evolution in the context of incomplete knowledge.

4. CONSEQUENCES OF IMPRECISE
KNOWLEDGE

The problems with evolution of their SPL are known by
Egemin. Lack of accurate knowledge of the deployed prod-
ucts of the SPL results in poor analysis with respect to
product-wide evolution. Lack of the required knowledge of
deployed products leads to ad-hoc update practices that are
error-prone. Moreover, uncertainty about the product con-
figuration make it difficult to achieve the availability and

correctness requirements discussed in Section 2. Restarting
a system in incorrect configuration may lead to the incon-
sistency and in extreme cases even to serious damage to
industrial installations. That can harm the company’s rep-
utation.

To reduce the risk of incorrect update, maintainers team
consist of highly skilled engineers from all production teams.
Nevertheless, maintainers typically follow a defensive update
approach which implies unnecessary shutdowns. This results
in the higher cost of the update and deflects the experienced
employees from their daily tasks. Moreover, this approach
does not guarantee correctness of the update.

5. TOWARDS A SOLUTION
As presented in Section 3 we identified two stages of

Egemin’s SPL evolution, namely the SPL-wide and product-
specific evolution. Whereas we addressed the later, the for-
mer awaits a workable solution.

5.1 Product-Specific Evolution
The goal of the product-specific evolution is to migrate

deployed product from the current version (as-is) to the ex-
pected one (to-be). The knowledge about the deployed com-
ponents and their dependencies is a prerequisite to evolve the
product correctly. Nevertheless, this information is missing.
To address the problem we have built the EvoLine tool.

EvoLine address two important quality requirements in-
herent to the logistic product updates. First is correctness
which means that a deployed system must be transformed to
the new configuration without compromising its consistency.
Second is availability of the system under update.

Our approach benefits from the research in the domain
of software architecture reconstruction (SAR). SAR tools
use source code [7, 9], historical information [9], or applica-
tion management API [11] to construct various architectural
views.

EvoLine reconstructs architectural models from the de-
ployed resources. Central to our approach is an evolution
viewpoint that defines four model kinds that deal with the
various stakeholder concerns. As-Is (M1) and To-Be (M2)
Product Deployment models allow stakeholders to browse
the locations and structure of the deployed product (as-is)
and the future product (to-be) respectively. Update Pro-
cedure Model (M3) shows the update steps that maintain-
ers have to perform to evolve a deployed product, dealing
with the availability and correctness concerns. Finally, Up-
date Inconsistencies Model (M4) shows inconsistencies of the
product, dealing with the correctness concern. The four
model kinds are based on an integrated meta-model that
offers the basis for an architectural repository.

The repository is populated with the information collected
by the harvesters. A harvester is a small subprogram that
extracts architectural knowledge from specific source(s). In
the EvoLine tool three types of harvesters are used: (1) As-
sembly Harvester, that gathers information about compo-
nents including their dependencies and versions; (2) Config-
uration Harvester collecting information about dynamic de-
pendencies between deployed components; and (3) MSI File
Harvester, that gathers information about to-be components
from installation bundles.

The collected knowledge is analysed and visualized.
Model M3 is obtained by comparison of the models
M1 and M2 [12]. Second type of analysis identifies inconsis-

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

Figure 3: Example of an update procedure model.

tencies of the updated product (M4).
Figure 3 shows a snapshot of the EvoLine tool. In the

figure an Update Procedure model for one of the products
of Egemin’s SPL is presented. The box top left shows the
different locations on which the product is deployed. The
box on the right hand side shows the installation bundles
(product installers) that have to be deployed on the selected
location. The box at the bottom shows the update script
that resulted from the analysis. The update script shows
the subsequent update steps the maintainer has to perform
to realize the update.

5.2 SPL-wide Evolution
The focus of SPL-wide evolution phase is on the change

impact analysis of assets on the deployed products. Our
preliminary idea is to extend our meta-model with the in-
formation about variability and configuration used to build
a given variant of the logistic product. This information can
be stored as a product meta-data, and generated during the
product derivation phase. When one of the assets is changed
the variability and configuration information can be used to
determine affected products.

Unfortunately, the current variability models of Egemin’s
SPL are not sufficient to be used in this approach. Therefore,
refinement of these models as well as support for automatic
analysis of change impact of the products are prerequisites
to support SPL-wide evolution.

6. CONCLUSIONS AND FUTURE WORKS
In the paper, we pinpointed the problems Egemin faces

with the evolution of their SPL. Next, we characterize two
evolution stages. In the SPL-wide evolution stage, the can-
didate products for updates have to be identified. In the
product-specific evolution stage, a sequence of evolution
steps has to determined to migrate the deployed product
for its current configuration to the new, fully functional ver-
sion. Unfortunately, accurate knowledge to support main-
tainers with both these evolution stages is not available. Be-
ing aware of the consequences of ad-hoc evolutions, Egemin
searches for a systematic solution to improve the evolution

of their SPL.
Currently, we are looking at architecture reconstruction

techniques that can be used to generate the required archi-
tecture models of the system under evolution. We have built
a prototype tool that supports Egemin’s maintainers in the
product-specific stage of the evolution. Developing a solu-
tion to support the SPL-wide evolution stage is our future
work.

7. REFERENCES
[1] M. A. Babar, C. Lianping, and F. Shull. Managing

variability in software product lines. Software, IEEE,
27(3):89–91, 94, 2010.

[2] H. A. Basit and S. Jarzabek. A data mining approach
for detecting higher-level clones in software. IEEE
Transactions on Software Engineering, 35:497–514,
2009.

[3] J. Bosch. Maturity and evolution in software product
lines: Approaches, artefacts and organization.
Software Product Lines, pages 247–262, 2002.

[4] D. Dhungana, P. Grönbacher, R. Rabiser, and
T. Neumayer. Structuring the modeling space and
supporting evolution in software product line
engineering. Journal of Systems and Software,
83(7):1108–1122, 2010.

[5] G. Douta, H. Talib, O. Nierstrasz, and F. Langlotz.
Compas: A new approach to commonality and
variability analysis with applications in computer
assisted orthopaedic surgery. Information and
Software Technology, 51(2):448–459, 2009. doi: DOI:
10.1016/j.infsof.2008.05.017.

[6] I. Gorton and I. Books24x7. Essential software
architecture, volume 11. Springer Berlin, 2006.

[7] J. Knodel, M. Lindvall, D. Muthig, and M. Naab.
Static evaluation of software architectures. In Software
Maintenance and Reengineering, 2006. CSMR 2006.
Proceedings of the 10th European Conference on, pages
10 pp. –294, Mar. 2006.

[8] C. Krueger. The 3-tiered methodology: Pragmatic
insights from new generation software product lines.

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

danny
Highlight

In Software Product Line Conference, 2007. SPLC
2007. 11th International, pages 97 –106, 2007.

[9] M. Pinzger. ArchView-Analyzing Evolutionary Aspects
of Complex Software Systems. PhD thesis, Vienna
University of Technology, 2005.

[10] K. Pohl, G. Böckle, and F. Van Der Linden. Software
product line engineering: foundations, principles, and
techniques. Springer-Verlag New York Inc, 2005.

[11] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu,
Y. Sun, and H. Mei. Supporting runtime software
architecture: A bidirectional-transformation-based
approach. Journal of Systems and Software, In Press,
Corrected Proof:–, 2010.

[12] D. Weyns and B. Michalik. Codifying Architecture
Knowledge to Support Online Evolution of Software
Product Lines. In Sharing and Reusing Architectural
Knowledge, 2011. SHARK’11. ICSE Workshop on.
IEEE, 2011.

