Codifying Architecture Knowledge to Support
Online Evolution of Software Product Lines

Danny Weyns and Bartosz Michalik

DistriNet Labs, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven Belgium

{danny.weyns,bartosz.michalik}@cs.kuleuven.be

ABSTRACT

A company’s architecture knowledge is often personalized across
specific people that share experience and knowledge in the field.
However, this knowledge may be important for other stakeholders.
Omitting the codification of the architecture knowledge may result
in ad-hoc practices, which is particularly relevant for software evo-
Iution. In a collaboration with Egemin, an industrial manufacturer
of logistic systems, we faced the problem with a lack of codified
architecture knowledge in the context of the evolution of a software
product line (SPL). In particular, maintainers lack the architecture
knowledge that is needed to perform the evolution tasks of deployed
products correctly and efficiently. Ad-hoc updates increase costs
and harm the company’s reputation. To address this problem, we
developed an automated approach for evolving deployed systems of
a SPL. Central in this approach are (1) a meta-model that codifies
the architecture knowledge required to support evolution of a SPL,
and (2) and algorithm that uses the architecture knowledge harvested
from a deployed system based on the meta-model to generate the list
of tasks maintainers have to perform to evolve the system. Evalua-
tion of the approach demonstrates a significant improvement of the
quality of system updates with respect to the correct execution of
updates and the availability of services during the updates.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Maintenance

General Terms

on-line, evolution, SPL, software produt line

Keywords

Architecture knowledge, software produt line, evolution

1. INTRODUCTION

Maintaining architecture knowledge in the face of system evo-
lution is a difficult task [5]. A company’s knowledge manage-
ment strategy captures which architecture knowledge is codified in
explicit accessible models, and which knowledge is personalized
across specific people that share their experience and knowledge in
the field [4]. However, personalized architecture knowledge may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SHARK ’11, May 24, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0596-9/11/05 ...$10.00.

be important for other stakeholders. Omitting the codification of
this architecture knowledge may result in ad-hoc practices. Lack-
ing of important architecture knowledge is particularly relevant for
maintainers that have to deal with software evolution. The prob-
lem may be even harder in the context of a Software Product Line
(SPL). A SPL comprises a set of software systems (products) that
share a common, managed set of features [7]. Stakeholders of SPL
are faced not only with the evolution over time, but also with the
existence of different products at the same time [15].

In a recent R&D project in collaboration with Egemin', an in-
dustrial manufacturer of logistic systems, we faced the problem
with a lack of codified architecture knowledge in the context of
the evolution of a SPL of logistic systems. Logistic systems in-
clude a warehouse management system and control software for one
or more transportation subsystems, such as automated guided vehi-
cles, cranes, and conveyors. During their lifespan, logistic systems
obviously have to evolve. Our particular focus of evolution is on
the execution of the concrete update tasks maintainers have to per-
form to evolve deployed systems. E.g., the software of a subsystem
needs to be upgraded to improve performance, or a customer intro-
duces a new conveyor belt and its control software needs to be inte-
grated with the existing logistic system. Architects and maintainers
at Egemin face various problems with such evolution scenarios.

Most of the architecture knowledge of Egemin’s SPL is person-
alized across a small group of people. In addition, the logistic sys-
tems comprise a lot of legacy software components, which docu-
mentation is often incomplete or outdated. As a result, maintainers
lack the architecture knowledge that is needed to perform the evo-
lution tasks efficiently and correctly. Faulty updates increase main-
tenance costs, harm the company’s reputation, or even worse, they
may cause serious damage to industrial installations.

To address this problem, we developed an automated approach for
evolving deployed systems of a SPL. Central in this approach are (1)
an architecture meta-model that codifies the architecture knowledge
required to to support evolution of a SPL, and (2) and algorithm that
uses the architecture knowledge harvested from a deployed system
based on the meta-model to generate the list of tasks maintainers
have to perform to evolve the system. Note that we consider a spe-
cific form of architecture knowledge in this paper which includes
knowledge about the course grained structures of SPL products and
their deployment, inconsistencies of installed products, and the up-
date tasks required to evolve a deployed product. We developed
a supporting tool to assist maintainers with the evolution tasks of
deployed systems. Evaluation of the approach demonstrates a sig-
nificant improvement of quality of system updates with respect to
correctness and availability of services during the updates.

The reminder of this paper is structured as follows. Section 2
explains the problems with architecture knowledge of Egemin SPL
evolution in more detail. In Section 3, we present the meta-model

Uhttp://www.egemin.com/

5 L
Key | | Host -

Client/Service
version vx

‘/ Host 1 \‘ ‘/ Host 2 \‘ ‘/ Host 3 \‘ ‘/ Host 4 \‘
I [[[I
| E'car [E'wms [E'tricc [E'car E'wms E'tricc !
I Service } I Service } I Service } I Client Client Client }
} v | | vl | viz| | | vi0 v4 vi2| |
| [[[!
| [[[!
I LP [LP [[LP I
| V5| || V5| || V5 || V5| |
\ /A)\ /A !

. Logistic platform
vy| version vy

Figure 1: Typical configuration of a logistic system

that codifies the architecture knowledge required to support evolu-
tion of a SPL. Section 4, the central part of the paper, explains in
detail the algorithm that uses the harvested knowledge based on the
meta-model to generate the list of tasks a maintainer has to perform
to evolve a deployed system. In Section 5, we briefly report on the
evaluation of the approach. Finally, we present related work in Sec-
tion 6, and draw conclusions in Section 7.

2. PROBLEMS WITH SPL EVOLUTION

Figure 1 shows a typical configuration of a logistic system.
The system includes a warehouse management system (E’wms®) -
Egemin warehouse management system) that is responsible for
managing tasks in the system, and control software for automated
guided vehicles (E’tricc® - Egemin transport intelligent control
center) and cranes (E’car® - Egemin crane automatic storage and
retrieval system). These logistic subsystems are built from a com-
mon set of components that can be customized and composed to the
needs of the customers. The software is deployed on four hosts.
Each logistic subsystem comprises a service and a client that makes
use of the distributed logistic platform. The service offers the func-
tionality of the subsystem, whereas the client offers a graphical in-
terface to access the service. The distributed logistic platform is a
component framework developed by Egemin that provides common
middleware services for logistic systems such as support for system
configuration, communication, persistence, online updates, etc.

Egemin’s SPL comprises over 200 deployed logistic systems.
During their lifespan (typically 10+ years), logistic systems obvi-
ously have to evolve. An example of an evolution scenario for the
configuration shown in Figure 1 could be an upgrade the E’car ser-
vice from version v19 to version vi2 which includes a new stacking
algorithm that reduces the average retrieval time by 12%.

The goal of a system evolution is to migrate the deployed logistic
system (as-is) to a new version (to-be). The new version is avail-
able as a set of installation bundles that comprise all the resources
(e.g. executables or libraries) of the updated system together with a
specification of the target location of each resource. Two important
requirements that have to be satisfied during system evolution are:

R1. Correctness: The maintainer should perform a correct
sequence of update steps to bring the system from
the as-is to the to-be version. Update steps include
adding/removing/replacing resources and stopping/starting
processes. Restarting an incorrect configuration may com-
promise the consistency of the logistic system.

g

Availability: The maintainer should minimize the total shut-
down time of the various logistic subsystems. Logistic sys-
tems typically have to operate 24/7. Interruption of its ser-
vices is costly and should be kept minimal.

To perform an update, maintainers need detailed knowledge of
the deployed system and the installation bundles. Required knowl-
edge of the deployed system includes the set of running subsystems

each with its resources, the location and version of each resource,
the dependencies between resources, the set of running processes,
etc. Required knowledge of the installation bundles include the set
of subsystems that have to be deployed after the update each with its
resources, the target location and version of each resource, the de-
pendencies between resources, the set of processes that have to run
after the update, etc. Based on this knowledge, a correct sequence
of update steps have to be derived that ensure a correct update of the
deployed system with minimal interruption of its services.

Unfortunately, this detailed knowledge is not codified in explicit
models. Since different subsystems are developed by different teams
in the company, the personalized knowledge is spread across a num-
ber of people. Moreover, the deployed logistic systems comprise a
lot of legacy software components for which documentation is often
incomplete or outdated. The lack of documentation and detailed ar-
chitecture knowledge leads to the ad-hoc update practices which are
inefficient and error prone.

Together with the architects and maintainers at Egemin, we iden-
tified three models that codify the architecture knowledge required
to evolve deployed logistic systems (products) of the SPL:

M1 As-Is Product Deployment Model: A model of the current
product that shows locations, deployed subsystems with their
resources, resource dependencies, and the running processes.

M2 To-Be Product Deployment Model: A model of the future ver-
sion of the product which is available as a set of installation
bundles. This model shows the target set of subsystems with
their resources, target locations of the resources, resource de-
pendencies, and processes that have to run after the update.

M3 Update Procedure Model: A model that describes the se-
quence of update steps (resource changes and process manip-
ulations) that need to be performed to evolve the deployed
logistic system from the as-is to the to-be version.

In summary, the problem we have to solve is: (1) to codify the
architecture knowledge of models M1 and M2, (2) to codify the ar-
chitecture knowledge of model M3 by analyzing models M1 and
M2, and (3) to develop support for automatic reconstruction of this
knowledge for a particular evolution setting to enable maintainers to
evolve deployed systems. The focus of this paper is on the codifica-
tion of the architecture knowledge, i.e. subproblems (1) and (2).

3. META-MODEL

A meta-model presents the conceptual entities, their attributes
and the relationships that comprise the vocabulary of a type of
model [14]. We use meta-models to codify the architecture knowl-
edge required to evolve deployed SPL products. We follow a bottom
up approach which reflects the way we defined the models in prac-
tice. We start by introducing as-is and to-be product deployment
meta-models for Egemin’s logistic systems. Then we integrate these
models in a single meta-model. This first set of models was de-
fined in close interaction with the key stakeholders at Egemin. The

model concepts are specific to the company’s technological context
(.NET). Next, we generalize the integrated meta-model based on a
thorough literature study, including [2, 3, 15, 18]. The generalized
meta-model offers reusable architecture knowledge to support the
evolution of deployed SPL products, independently of any partic-
ular technology. The section concludes with a brief note on the a
supporting framework we developed to support harvesting of archi-
tecture knowledge based on the integrated meta-model.

3.1 As-Is Product Deployment Meta-Model

Figure 2 shows the as-is product deployment meta-model. This
meta-model codifies the architecture knowledge of deployed logis-
tic systems of Egemin’s SPL (as-is products) required to perform
updates.

runs on b 1 Egemin
Windows SPL
0.1| Process Host
1
01 1.% ¥ contains
v 1.
is deployed on
* Logistic
uses ¥ A is deployable on Sygstem
A start versio
starts
¥ consists of
refers to P
1
[s
> Logistic
Assembly | 4 has corresponds to g
Dependency |, 1 Assembly N - St \
version | versio
- N involves A has ¥
- - ~ ~ .
<z ~
[I m————
! |
T ! | ! Subsystem
EXE File |
| } i DL-File } Constraint
,,,,,,,, | |

Figure 2: As-is product deployment meta-model

Egemin’s SPL contains a set of logistic systems. A logistic sys-
tem consists of logistic subsystems, such as management systems
and control software for automated guided vehicles. Both, logis-
tic systems and subsystems have a version. Logistic systems may
have constraints to each other that put restrictions on their compo-
sition. For example, the combination of E’tricc and E’can requires
the installation of E’wms, or a particular version of E’tricc excludes
a particular version E’can. A logistic subsystem is deployed on a set
of hosts. Each host contains a set of assemblies that correspond to
particular logistic subsystems. An assembly has a version. Assem-
blies include EXFE files (Executable) and DLL files (Dynamic Link
Library). An assembly may have dependencies to other assemblies.
A deployed executable assembly can be started as a process that runs
on a host. A process uses one or more assemblies.

3.2 To-Be Product Deployment Meta-Model

Figure 3 shows the to-be product deployment meta-model. This
meta-model codifies the architecture knowledge of Egemin’s future
logistic systems (to-be products) that is needed to perform updates.

A future logistic system can be deployed with a set of MSI Files
(Microsoft Installer). An MSI file contains deployable assemblies
that correspond to logistic systems and can be installed on hosts.

3.3 Integrated Meta-Model

Figure 4 shows the integrated product deployment meta-model
that fuses the as-is and to-be product deployment meta-models.

The integrated meta-model offers the basis for an architectural
repository that can be populated with the necessary architecture
knowledge for a particular setting by harvesting the knowledge from
the deployed system and the installation bundles. The harvested

Egemin
SPL
Host
.| ¥ contains

has to be A * can be -
deployed on deployed with | | ogistic
contains » System

deployable version
MSI File "
0.1 'V consists of
refers to P
1.*
S
Assembly | 4 has corresponds to P Logistic ~ |*
Assembly ub .
Dependency |, 1 >
version 1..*| version
- N involves A has ¥
- ~
- < .
[4 ~
| 1 == R N
Subsystem

Constraint

Figure 3: To-be product deployment meta-model

* runs on 1 Egemin
Windows SPL
0.1| Process Host 1
o1 1.7 .|'v contains
is deployed) 1.
on
. has to b Logistic
uses ¥ A is deployable on as to be System
installed on
version
A starts
contains 1.*
deployable > canbe
MSI File deployed with | ¥ consists of
0.1
refers to P
1.
Assembly | € has A ' corresponds to B Logistic
Dependency |, 1 ssembly e Subsystem
version versior
e o involves A& has ¥
o N *
[| [|
| | I I
"1 EXEFie ! | DLLFile ! Subsystem
| ! | ! Constraint

Figure 4: Integrated product deployment meta-model

knowledge is then used to derive the update procedure model that
defines the sequence of update steps the maintainer has to perform
to evolve the system from as-is to to-be. We explain the algorithm
to determine the update steps in section 4.

3.4 Generalized Meta-Model

Figure 5 shows the generalized product deployment meta-model.
The generalized meta-model specifies the conceptual entities and
their relationships that codify the architecture knowledge required to
evolve deployed products of a SPL, independently of any particular
technology. The mapping between the concepts of the generalized
meta-model and the concepts of Egemin’s SPL are summarized in
the following table.

General Meta-Model Concepts | Egemin Meta-Model Concepts
Product Logistic System
Asset Base Egemin’s asset Base
Asset Logistic Subsystem
Asset Constraint Subsystem Constraint
Location Host
Installation Bundle MSI File
Resource Assembly (EXE, DLL File)
Resource Dependency Assembly Dependency
Process Windows Process

In section 4, we will use the concepts of the generalized meta-

runs on 1 SPL
Process .
0.1 Location .
0-1 1.% 14 contains
* | isdeployed ¥ -
on A
uses ¥ A is deployable on . Product
A hastobe
installed on version
A starts
contains 1.7
deployable A canbe
'"Séa”z‘l“’" deployed with | ¥ consists of
0..1 undle
refers to P
1
* 101.
« has corresponds to W
Resource Resource Asset
Dependency |, 1 .
version 1.7 versior
7 1 S involves A& has ¥
-7 I AN
e T e T
11 [[| Asset
] [[? |
] Assembly Lo Database L Config file | Constraint
| [[|

Figure 5: Generalized product deployment meta-model

model for the specification of the algorithm to generate the update
steps to evolve a product of a SPL.

3.5 Supporting Framework

Figure 6 shows the primary components of the framework that we
developed to support online evolution of SPL.

> GuI
Workflow Controller C

Architecture
Knowledge O Architecture O— g/lo_‘céeelr
Collector Knowledge ul

Repository

@ D Component @ Repository

Runtime Components, KEY
Configuration Files,)— Required Provided Collects
Deployable Assemblies, etc. Intgrface O— [@ Data From

Figure 6: General overview of the supporting framework

System maintainers interact through a standard GUI (Graphical
User Interface) to harvest architecture knowledge, build models (as-
is, to-be, and update procedure model), and browse the models. The
workflow controller triggers the architecture knowledge collector,
architecture knowledge repository, and the model builder to execute
these actions.

The architecture knowledge collector comprises a number of
pluggable harvester components that perform the actual knowledge
gathering. Knowledge can be extracted from run-time system com-
ponents, resource files, system configurations, etc. Three example
harvesters that we used to harvest knowledge for Egemin’s SPL are:

e Assembly Harvester: gathers knowledge about the the as-
semblies of the deployed system per location, including as-
sembles’ version and compile time dependencies. This har-
vester includes a C# program based on the Mono.Cecil li-
brary (http://www.mono-project.com/Cecil) that supports in-
spection of programs and libraries.

e Config File Harvester: gathers configuration knowledge about
dynamically loaded assemblies and the run-time dependen-
cies between assemblies. Two examples of configuration files

harvested this way are the .Net App.config file and the Pro-
fileCatalog.xml for SmartClients in .Net.

e MSI files Harvester: gathers knowledge about the to-be de-
ployed product. This harvester uses the two previous har-
vesters to collect knowledge of the assemblies from a MSI
file, including versions and dependencies.

The architecture knowledge collected by the harvesters is used
to populate the architecture repository. The repository stores archi-
tecture knowledge that complies to the integrated meta-model dis-
cussed above. We used the Eclipse Modeling Framework (EMF) as
a basis for the repository. EMF supports specifying a meta-model,
and generating a Java implementation along with set of adapter
classes that enable basic viewing and command-based editing.

Finally, the model builder queries the architecture repository to
generate on demand the architecture models requested by the main-
tainer. The as-is deployment model (M1) and to-be deployment
models (M2) can directly be derived from the knowledge stored in
the repository. The update procedure model (M3) requires further
analysis of the stored knowledge. We discuss the algorithm to gen-
erate the update procedure model in the next section.

4. UPDATE PROCEDURE MODEL

We now discuss in the algorithm to generate the updated proce-
dure model in detail. This model is derived from the analysis of the
knowledge harvested from a deployed system and the installation
bundles. The update procedure model lists a sequence of steps that
maintainers have to perform to evolve a system correctly and with
minimal interruption of its services. The algorithm is based on the
assumption that the system under evolution allows online updates,
This requires support for (de-)activation of components, buffering
of messages, etc. Egemin’s logistic platform offers such support
(see section 2).

This section starts with a high-level overview of the algorithm
and a description of a running example. Next, a number of defini-
tions are introduced that will be used in the algorithm. Then, the
algorithm is discussed in detail and illustrated with excerpts of the
running example.

4.1 Overview Algorithm

Figure 7 shows an overview of the algorithm to generate the up-
date procedure model.

S0
Harvesting

S2
Determine
Dependent
Processes

s1
Determine
Operations

ADD operations exist

$3.1 Build
ADD
Change Set

no ADD operations exist

KEY START process
operations exist /~ $3.2 Build
@ st REPLACE
Change Set
@ st no START process

operations exist

O Action
O Decision
\b Flow

REMOVE operations exist no REMOVE

operations exist

$3.3 Build
REMOVE
Change Set

Figure 7: Overview of the update script generation algorithm.

The algorithm consists of three main steps (S1 - S3). Step SO is
a preparatory step in which the architecture knowledge is harvested
from the deployed system and the installation bundles and stored in
the architecture repository.

In the first step, S1, the resource operations are determined (ADD,
REPLACE, REMOVE). The set of operations is derived from a
comparison of the architecture knowledge of the as-is and to-be sys-
tem. For example, if there is a resource in the to-be system that is
not in the as-is, a new ADD operation is defined for this resource.
In the second step, S2, all the STOP and START operations for pro-
cesses are determined. The set of affected processes consists of all
the processes with a direct or indirect dependency on a resource for
which a REMOVE or REPLACE operation exists.

In the third step, S3, all the operations are ordered to ensure that
the shutdown time of the system services is minimized. S3 con-
sists of three sub-steps: S3.1 to S3.3. In each sub-step a particular
change set is computed. A change set consists of a sequence of
update operations that migrate the system from one consistent state
to another. In step S3.1, the change set of ADD operations is deter-
mined. The ADD operations can be executed without shutting down
any part of the deployed system. Next, in step S3.2, the change sets
with REPLACE operations are determined. Each change set con-
sists of the subset of REPLACE operations that are applicable to a
set of resources that have dependencies with one another. The RE-
PLACE operations will be preceded by STOP operations and end
with START operations for all processes with dependencies to any
of the resources involved in the change set. The services associated
with the interrupted processes are not available during the execution
of the REPLACE change sets. Finally, in step S3.3, the change set
of REMOVE operations is determined. The REMOVE operations
will be preceded by STOP operations for all processes that have to
be terminated, i.e. the processes with dependencies to any of the re-
sources involved in the change set. As such, REPLACE operations
do not require a shutdown of active services of the deployed system.

4.2 Running Example

We will illustrate the different steps of the algorithm with a sim-
plified evolution scenario of the logistic system shown in Figure 1
of Section 2. The initial setting of the scenario is shown Figure 8.

The figure shows the resources and processes with their depen-
dencies deployed on two locations of the system. In reality, several
hundreds of resources are deployed on each host of a logistic sys-
tem. The installation bundles with the resources of a new version of
E’car and the logistic platform are also shown. The arrows indicate
on which locations the installation bundles have to be deployed.

4.3 Definitions

Before we explain the algorithm in detail, we first give a number
of definitions.

Type Definitions

The basic types for resources, processes, dependencies etc. are de-
rived from the generalized product deployment meta-model shown
in Figure 5 of Section 3. Due to space constraints, we omit the
formal specification of these types. In addition, we introduce the
Operation type that defines atomic steps of the update procedure.
We define a specialized operation for each kind of update step:

ADD (r Resource, [: Location)
Adds resource 7 to location [.

REMOVE (r: Resource, [Location)
Removes resource r from location /.

REPLACE (7o, Tn Resource, [Location)
Replaces resource r, with resource r,, at location /.

STOP (p Process, |
Stops process p at location [.

Location)

Installation Bundle

N
| ! |
| E'car | | Logistic Plaform |
| A G | | B D |
‘ v12| V12 ‘ v10 v9

k | k |

(O Process - Dependency

j Has to be
|:| Resource deployed on

D Host
KEY

(~ " Installation
\ J Bundle

Figure 8: Example scenario to illustrate the update procedure

START (p Process, [
Starts process p at location [.

Location)

The result of the algorithm is the update procedure model that we
represent as an update script:

updateScript Operation(]

The square brackets define a sequence, in this case a sequence of
operations. We use { } to define a regular set.

Input Functions

The harvested knowledge stored in the architecture repository is
used as input for the algorithm. We introduce the following func-
tions to access this knowledge:

locations () Location{}
Returns the set of locations on which the logistic system is
deployed.

resourcesgs—is (I Location) Resource{}
Returns the set of deployed resources for the given location.

resourcesio_ve (1 Location) Resource{}
Returns the set of resources of an installation bundle that have
to be deployed on the given location.

processes (I Location) Process{}
Returns a set of processes running at the given location.

lockedBy (l: Location, r:
Process): Dbool
Evaluates true when process p is using resource r at location
1, and false otherwise.

Resource, p:

Helper functions

The following helper functions are defined to simplify the descrip-
tion of the algorithm:

getOperations (rs: Resource{}, os:
Operation{}): Operation{}
Selects all the operations from the set os that are defined on
resources from the set rs.

getResources (0s: Operation{}, [
Location): Resources{}
Selects all the resources deployed to location [for which an
operation in the set os is defined.

append (operations: Operation[], o
Operation)

Appends operation o to the given sequence of operations.

4.4 Algorithm

We now give a detailed description of the subsequent steps of the
algorithm to generate the update procedure model. Unless stated
differently, all sets and sequences are initialized as empty. Due to
space constraints, some parts of the algorithm are omitted. The com-
plete algorithm specification is available for the interested reader?.

Step 1. Determine Resource Operations

Initialization:
1: toAdd : Resource{}
2 toRemove : Resource{}
3: Tqedd : Resource
Procedure:
4 for alll € locations do
5: toRemove —
6 {r :r € resourcesqs—is(I) Ar & resourcesio—pe(l)}
7: toAdd < {r : r € resourcesio—pe|l] A7 & resourcesqs—is(l)}
8 for all » € toRemowve do
9 Tadd < T :x € toAdd A\ r.name = z.name

10: if roqq 7# nil then

11: operationsyep|l] <

12: operationsyep|[l] | J{REPLACE(r, rqqd,1)}
13: toAdd < toAdd \ {raqdaa}

14: else

15: operations|l]rem

16: operations|l]rem J{REMOV E(r,1)}

17: end if

18: end for

19: for all » € toAdd do

20: operations(l]qqqa + operations(llaqaa U{ADD(r, 1)}
21: end for

22: end for

Listing 1: Determining the resource operations.

The resource operations are derived from the comparison of the
sets of resources of the deployed system (as-is resource set) and
the installation bundles (to-be resource set) for each location. Lines
5, 6 define the toRemowve set. This set contains all the resources
that are currently deployed, but are not present in the installation
bundles. Line 7 defines the toAdd set. This set contains all the
resources which are present in the installation bundles and are not
deployed yet.

The remainder of the procedure defines the proper resource oper-
ations based on the toRemove and toAdd sets. Line 9 checks for
each element of the foRemowve set whether it also belongs to the
toAdd set. If the element belongs to both sets, a REPLACE oper-
ation is added to the set of replace operations for the correspond-
ing resource, and the element is removed from the to Add set (lines
11-13). Otherwise, a REMOVE operation is added to the set of re-
move operations (lines 15-16). Finally, for all remaining elements
in the toAdd set, an ADD operation is added to the set of add opera-
tions (lines 19-21).

OUTPUT :
Host 1:
REPLACE (Bys, Byio, H1) , REPLACE (Cyg, Cy12,H1),
ADD (Dyo, H1) -
Host 4:
REPLACE (Bys, By1o, Ha) ,
REMOVE (Eys, Hg)

Listing 2: Resource operations for the running example

The result of step 1 for the running example is shown in Listing 2.
There are two REP LACE operations and one ADD operations defined

2http://people.cs.kuleuven.be/danny.weyns/UpdateMoclelAlgorithmApdf

for Host 1. In addition, one REPLACE and one REMOVE operation
is defined for Host 4.

Step 2. Determine Dependent Processes

To ensure consistency, every running process of the deployed sys-
tem that uses a resource with a REPLACE or REMOVE operation
has to be shutdown during the execution of these operations. The
algorithm defines two sets of dependent processes: processes,st
contains all processes that depend on at least one resource in the
REPLACE operation set, and processesssp contains all processes
that depend on at least one resource in the REMOVE operation set.
Due to space constrains, we omit the specification of this part of the
algorithm.

INPUT:
Locked at Host 1:
(Pl : Bys, Cyg), (P2 Cy9), (P3 Ay12)
Locked at Host 4:
(P1 : Bys), (P2 : Bys, Dyg), (P3 : Eys)
OUTPUT:
processes,gt [Host 1] : P1,P2
processes,gt [Host 4] : P1,P2

processesstp [Host 4] : P3

Listing 3: Dependent processes for the running example.

Listing 3 shows the resource dependencies of the processes for the
running example. All the processes with a dependency to a resource
with an REPLACE operation are added to the processes;st sets for
both hosts. Process P3 at Host 4 is added to the processes,s: set
since it has a dependency to resource E,5 which will be removed.
Process P3 at Host 1 is not affected because there is no operation
defined for resource A, 12 at this location.

Step 3. Build Change Sets

In the last step of the algorithm, the sequence of proper update oper-
ations is generated. We explain the subsequent sub-steps and illus-
trate them with excerpts of the running example.

The sequence of update operations are collected in the
updateScript. First, all ADD operations are added to the update
script in lines 8, 9. Since ADD operations do not influence running
processes no process operation need to be defined. Figure 9 shows
the ADD change set for the running example which contains only the
operation ADD(Dy9,H;) that is included in the update script shown
in Listing 5.

Lines 11-19 describe the preparation stage for the composition
of the REPLACE change sets. For each resource, the number of re-
place operations on different locations is determined. We assume
that the names of resources can be ordered. For the running exam-
ple, resources are ordered alphabetically (A...E). To minimize the
impact of replace operations, the replace change sets will ordered
in the update script according to decreasing number of affected re-
sources. The result of this preparation stage for the running example
is shown as the first part of Listing 5.

Next, in the lines 20-53 the REPLACE change sets are gener-
ated. First, the sets of affected resources and processes with depen-
dencies are computed for each location (lines 22-32). The compu-
tation starts with the resource that needs to be replaced on a maxi-
mum number of locations. In the running example, this is resource
B, which has to be replaced on both hosts. At Host 1, resource B
has dependencies with the local processes P1 and P2, and indirectly
with resource C. At Host 2, resource B has dependencies with the
local processes P1 and P2. Figure 9 shows how all these resources
and processes belong to the single REPLACE change set.

Next, for each generated REPLACE change set, operations are
added to the update script (lines 33-52). Subsequently, STOP op-
erations for the processes are added, followed by the REPLACE op-

Initialization:
1 af fected : Resource{}[|locations]|]
: T'Scount *
: Tmaz : Resource
- 71 : Resource
. toRestart : Process{}[|locations|]
6. toRestart' : Process{}
7. toModify[l] : Resource{}[|locations|]
Procedure:
s: for [€ locations do
9. updateScript < operationsgdadll]
10: end for
11: for I € locations do
122 affected[l] < {r : r € getResources(operations|l] ep)}
13: end for
14: TScount < []
15: for I € locations do
16: forr € af fected[l] do

[T TR

17: TScount|[r.-name] <— rscount[r.-name] + 1

18: end for

19: end for

20: while 35, 0 ovion s [Processes st [l]| > 0do

21 Tmas &< T:T € UlElocutions af fected[l] A max rscount[r.name]

22 for all [€ locations do

23: r < r:r € affected[l] A r.name = rpqqg.name

2: toRestart[l] < {}

25: toRestart’ < {p: p € processes,st[l] A lockedBy(l, i, p)}

26: while [toRestart[l]| < |toRestart’| do

27: toRestart[l] < toRestart’

28: toModifyll] < {r :r € af fected[l] A Ip € toRestart[l] :
lockedBy(l,r,p)}

29: toRestart’ <

30: {p: p € processes,s¢[l] A Ir € toModify[l] :
lockedBy(l,r,p)}

31 end while

32 end for

33: for all [€ locations do

34: processesrst(l] < processesysi[l] \ toRestart|[l]

3s: processessip|l] < processessip[l] \ toRestart[l]

36: for all p € toRestart|[l] do

37: append(updateScript, STOP(p,1))

38: end for

39: end for

40: for all [€ locations do

41 for all o € getOperations(toModify[l], operations ep|l]) do

42: append(updateScript, o)

43: end for

44: for all r € toModify[l] do

45: TScount[r-name] < 0

46: end for

47: end for

48: for all [€ locations do

49: for all p € toRestart[l] do

50: append(updateScript, START (p, 1))

5l end for

52: end for
53: end while
54 foralll € locations do

s5. forall p € processes,s¢|l] do

56: append(updateScript, STOP(p,1))
57: end for

58: for all o € operations,em[l] do

59: append(updateScript, o)

60: end for

61: end for

Listing 4: Build update scripts.

erations for the resources, and finally, START operations are added
for the stopped processes. The set of operations for the single
REPLACE change set in the running example are shown in Listing
5. The sequence consists of the STOP operations for processes P1
and P2 at both hosts, followed by the REPLACE operations for the
various resources, and finally the START operations are added.
Finally, the REMOVE change set is generated (lines 54-61) for
all the resources for which REMOVE operations are defined. The
operations are added to the update script, preceded by STOP opera-
tions for the dependent processes that are no longer needed after the
update. Figure 9 shows that the REMOVE change set comprises only

PREPARATION STAGE:

LScount [A] : 1 IScount [B] : 2
IScount [C] ¢ 1 IScount [D] : O
IScount [E] : 1

OuTPUT: UPDATE SCRIPT:

ADD (Dyi10, H1)

STOP (P31, H;)

STOP (P, Hy)

REPLACE (Cyo9, Cy12, H1)
REPLACE (Bys, Byio, Ha)
START (P, Hi1)

START (P, Hyg)

STOP (P, Hi)
STOP (P2, Hg)
REPLACE (Bys, Byio, H1)

START (P, Hy)
START (P, Hy)

STOP (Ps, Hi)
REMOVE (Eys, Hy)

Listing 5: Update script for the running example

resource E at host 4 together with process P3. The corresponding
operations conclude the update script as shown in Listing 5.

Host 1.

O Process

KEY — - Dependency
Change Set |:| Resource

Figure 9: Change sets for the running example.

S. EVALUATION

We have evaluated the approach for online evolution of SPL in
an empirical study. In this paper, we briefly summarize the results
of this study. A detailed report of the study is available for the in-
terested reader’. We evaluated a total of 68 updates of industrial
logistic systems of Egemin performed by 17 professionals, half of
them with Egemin’s traditional update approach, the other half with
the tool that automatically generates update scripts. We formulated
hypothesis with respect to the correct execution of product evolu-
tions (R1) and the availability of services during the updates (R2).
Statistical analysis revealed significant differences for the tested hy-
pothesis. In particular, the results demonstrate that 44% of the up-
dates with the traditional approach contain errors, while all the up-
dates with the tool were performed correctly. Furthermore, the re-
sults show that with the traditional approach 58% of the process
shutdowns were unnecessary, while there were only 7% redundant
process shutdowns with the tool.

In addition, we probed whether the availability of architectural
knowledge changed the maintainers’ attitude to evolution tasks.
Therefore, we used a questionnaire that the subjects completed af-
ter the update tasks. The results indicate that maintainers felt more
confident that the updates were performed correctly when they use
the tool with explicit update scripts. The fact that the number of sys-
tem modifications was almost seven times higher in the traditional
approach as with explicit update scripts confirms this finding.

3http://people.cs.kuleuven.be/clanny.weyns/EmpiricalStudyOnlineUpdates.pclf

6. RELATED WORK

In theory, the choice of an architectural knowledge management
strategy should be made explicitly and tailored to the organization’s
needs. However, in practice, there never seems to be enough time to
document architecture knowledge with enough rigor to be useful[4].
Researches from the GRIFFIN project list a number of issues related
to architecture knowledge management in a organization [11]. They
report lack of consistency between documentation and the actual
system, communication overhead between stakeholders, and lack of
explicit collaboration between maintenance teams. Our experiences
with Egemin confirm these findings.

Several authors have pointed to the complexity of managing SPL
evolution. [17] argues that SPL evolution is complex process be-
cause of various interdependencies between software assets. [13]
points to the complexity associated with the typical mismatch be-
tween architectural variability and the actual variability.

To deal with the lack of detailed architecture knowledge of SPL
evolution, a number of methods and tools have been proposed. [16]
proposes architecture reconstruction as a means to integrate product
features in the platform and to maintain the architectural integrity of
the platform. Tools such as Ménage [12] (xADL 2.0 based represen-
tation), SELECTA [10] (which uses composition of meta-models)
and pure::variants [6] (industrial tool) help with the recovery of
architecture knowledge. Whereas the described approaches focus
on evolution of the design and implementation time artifacts, we
address the codification of architecture knowledge for deployment
time evolution of the SPL products.

Our approach benefits from the research in the domain of software
architecture reconstruction. [8] provides a general overview of the
state of the art in this area. Comparing to existing approaches, we
derive as-is models from heterogeneous set of information sources
of the deployed products. We also extract the to-be models, i.e. the
valid installation bundles of updated products.

Several methods for differenting architecture models have been
proposed. [9] uses source code level differencing to analyze the
variability in SPL in a reverse engineering context. [1] proposes a
tree-to-tree correction algorithm for differencing and merging archi-
tectural models. In our work, differencing models has a specific and
practical objective. In particular, the algorithm presented in this pa-
per uses harvested architecture knowledge to generate automatically
the update scripts for evolving deployed products of a SPL.

7. CONCLUSIONS AND FUTURE WORK

In a join effort with Egemin, we faced the problem with a lack
of explicit architecture knowledge to evolve deployed products of
a SPL correctly and efficiently. To tackle this problem, we devel-
oped an automated approach to support maintainers of product lines.
Together with Egemin’s key stakeholders, we codified the architec-
ture knowledge required to evolve SPL in an integrated meta-model.
This meta-model offers the basis for a repository that can be popu-
lated with the relevant knowledge harvested from system artifacts.
We also codified the architecture knowledge of the update procedure
for evolving systems in an algorithm that generates the sequence of
steps that maintainers have to perform to evolve a deployed system
to a new version in a correct and efficient manner.

We developed a supporting tool for the approach and used it
to perform a controlled experiment in which we evaluated the up-
dates of 68 industrial logistic system, half of them performed with
Egemin’s traditional update approach, the other half with the tool.
The results give evidence that using the tool significantly improves
correctness and availability of services during system evolutions.
Moreover, we observed a positive change in the maintainers’ atti-
tude to the evolution task, in particular with respect to their confi-
dence in performing their tasks with the tool.

Architecture knowledge typically refers to design decisions, ra-

tionale, and the like. In this paper, we complement this traditional
perspective with a specific form of architecture knowledge. In par-
ticular, we consider knowledge about the course grained structures
of SPL products, dependencies between components of products,
and the update procedure to evolve deployed products.

Although we successfully applied our approach to Egemin’s SPL,
several research challenges remain. First, we plan to formally proof
the correctness and availability properties of the proposed approach.
Second, we plan to challenge the generality of the approach by ap-
plying it to a different domain with different technology. Finally, we
plan to extend our work by exploring evolution scenarios in which
the asset base of the SPL evolves, rather than particular products. An
example scenario in Egemin’s context is the introduction of a new
module that deals with timing issues of external logistic services.

8. REFERENCES

[1] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and
D. Garlan. Differencing and merging of architectural views.
Automated Software Engineering, 15(1):35-74, 2008.

[2] S. Ajila and A. Kaba. Evolution support mechanisms for
software product line process. Journal on Systems and
Software, 81(10):1784-1801, 2008.

[3] N. Anquetil et al. A model-driven traceability framework for

software product lines. Software & Systems Modeling, 2010.

P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, and D. Perry.

Architectural knowledge and rationale: issues, trends,

challenges. Softw. Eng. Notes, 32:41-46, July 2007.

[5] M. Babar, T. Dingsyr, P. Lago, and H. van Vliet. Software
architecture knowledge management. Springer, 2009.

[6] D. Beuche. Variant management with pure:: variants.
Pure-systems GmbH, Tech. Rep, 2003.

[7] P. Clements and L. Northrop. Software product lines.
Addison-Wesley Reading MA, 2001.

[8] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. /EEE Trans. on
Software Engineering, 35(4):573 =591, 20009.

[9] S. Duszynski. Visualizing and Analyzing Software Variability
with Bar Diagrams and Occurrence Matrices. In /4th
Software Product Lines Conference, SPLC, 2010.

[10] J. Estublier, I. A. Dieng, and T. Leveque. Software product
line evolution: the selecta system. In Product Line
Approaches in Software Engineering. ACM, 2010.

[11] R. Farenhorst, P. Lago, and H. van Vliet. Prerequisites for
successful architectural knowledge sharing. In /8th
Australian Software Engineering Conference, ASWEC, 2007.

[12] A. Garg et al. An environment for managing evolving product
line architectures. In Software Maint. Conf., 2003.

[13] S. A. Hendrickson and A. van der Hoek. Modeling product
line architectures through change sets and relationships. In
International Conference on Software Engineering, 2007.

[14] R. Hilliard. A trust viewpoint. Technical Report, 2009.
mysite.verizon.net/rfh2/writings/hilliard-TrustVP-r1.pdf.

[15] K. Pohl, G. Bockle, and F. Van Der Linden. Software product
line engineering: foundations, principles, and techniques.
Springer-Verlag New York Inc, 2005.

[16] C. Riva and C. Del Rosso. Experiences with software product
family evolution. In Principles of Software Evolution, 2003.

[17] M. Svahnberg and J. Bosch. Evolution in software product
lines: Two cases. Journal of Software Maintenance,
11(6):391-422, 1999.

[18] E. Van Der Linden, K. Schmid, and E. Rommes. Software
product lines in action: the best industrial practice in product
line engineering. Springer, 2007.

[4

—_

